-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

sl , JOURNAL OF
*,“ ScienceDirect DISCRETE

ALGORITHMS

www.elsevier.com/locate/jda

Journal of Discrete Algorithms 5 (2007) 341-347

HyperQuick algorithm for discrete
hypergeometric distribution

Ales Berkopec

Faculty of Electrical Engineering, University of Ljubljana, Slovenia
Received 22 April 2005; accepted 24 January 2006
Available online 14 July 2006

Abstract

Based on the binomial identity

2073 0655
= k n—k oy \X N—m—n+x
we present an algorithm for computing the cumulative distribution function of a random variable with discrete hypergeometric
distribution. For any accuracy € > 0 the required number of computational cycles is less then N — n, where N is the size of the
population and 7 is the size of the sample. In this article we prove the binomial identity above and give the formula for the number

of computational cycles required to achieve the desired accuracy for an arbitrary set of parameters.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Binomial identities; Hypergeometric distribution

1. Introduction

A hypergeometric distribution is used in samplings without replacement [1,2]. Consider the following problem:
Given N balls, M of which are black and the rest are white, what is the probability C(n, x, N, M) that out of n balls
selected uniformly at random without replacement, at most x are black? Clearly the answer is

x (M\(N-M
Zj:O(j)(nfj)
—

()
The computation of (1) is a time consuming process and involves evaluations of binomial coefficients with a high risk

of numeric overflow. In this paper we present an algorithm that on one hand minimizes the risk of numeric overflow,
and on the other hand computes (1) fast for values up to 108,

Cn,x, N,M) = (1)

E-mail address: ales.berkopec @fe.uni-lj.si.

1570-8667/$ — see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2006.01.001

https://core.ac.uk/display/82509069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda
mailto:ales.berkopec@fe.uni-lj.si
http://dx.doi.org/10.1016/j.jda.2006.01.001

342 A. Berkopec / Journal of Discrete Algorithms 5 (2007) 341-347

2. A binomial identity
The algorithm contains two computational loops from the implementation of the binomial identity involving

E(n,x,N, My=1—-Cm,x,N,M), or

Tieo ()0 | Znsd (OGNS
() ()
C(n,x,N,M) C(n,x,N,M)
Theorem 1. Let x,n, M, N be integers such that 0 < x <nand 0 < M < N. Then
M\ (N-Mm\ N N—1-
2 ()02 O6550) @
n—k x)\N—m—n+x
k=0 m=M

Proof. Denote the left- and right-hand sides of (2) by a(N, n) and b(N, n), respectively. By Pascal’s identity [3]

N-M N N-MY\ (N-M+1
n—k n—k+1) \n—k+1)

Multiplying (3) by (AZ) and summing on k from O to x yields
3)

alN+1,n+1)=a(N,n+1)+a(N,n).

Similarly, by Pascal’s identity,
N—m-—1 n N—-—m-—1 _ N —m
N—-—m—-n+x-—1 N—-m—-n+x) \N—-m-n+x)
Multiplying (4) by (') and summing on m from M to N —n + x yields
“)

b(N+1,n+1)=b(N,n+1)+b(N,n),
therefore a(N, n) and b(N, n) satisfy the same recurrence. Since
)

1, n=0
0,n)=b0,n)=1 "’ ’
a(0,n) = b(0, n) {0’ -
and a(N,0) = b(N, 0) = 1, it follows by induction on N that a(N,n) = b(N, n), as claimed. O

3. An algorithm
The parameters n, N and x are constant. We set
m N—1—-m
(x) (N—m —n+x)

Pm pmN () = (N_l)

n—1

and
n—1—
(6)

1—

1

I, = Pm+ _ N ;

Pm - m+1

Obviously J,, > 0 < (x <m) A (n < N). The case J,

With J,, and Mo = N — n + x we write
pM71<1+ﬁ-<1+,M‘3

(g ()

0 < (x =m) A (n= N) is trivial and is not considered here

1+ -~-,%>)) -

Cn,x,N,M) =
pM()(l + JM

A. Berkopec / Journal of Discrete Algorithms 5 (2007) 341-347 343

Because of
My—1
PMy =PM—1" l_[Ji,
i=M—1
it follows that
.t L. _1
Clnx, N M) = ot Do v B , ()
(l+m-(l+ Tro s (44 2= 9))
where
s=14 .<1+ Lo (1+i)).
Im—2 Ju-3 Jxt1 Jx
Let ¢ be a finite sequence of approximations ¢ = ¢¢(n, x, N, M) for k € [0, My — M]:
& =&, x, N, M) = G T TR T)
R (PR iy’ pos BTG SOPRIY) G By

and thus 5(n, x, N, M) = ¢yy—m. By defining ¢ = 1 — ¢, Eq. (1) can be written as
Cin,x, N, M)=cpy—m.

The algorithm is the implementation of Eq. (9) and ¢, = 1 — ¢. It consists of the computation of s that requires a
fixed M — 1 — x number of steps and the variable part implemented with the while loop.

For M < N,x<n,n<N,x,n,N,M >0 and function J,,(n, x, N, m) HyperQuick algorithm for computing (1)
is:

HyperQuick algorithm

function InvJm(n,x,N,m):double;
InvIm:=(1-x/(m+1))/(1-(n-1-x)/(N-1-m))

end function

#

begin

loop1: fixed number of steps

s:=1.0;

for k:=x to M-2 do
s::s*InVJm(n,x,N,k)H.O;

end for

: # loop2: variable number of steps according to accuracy e

: ak:=s;

. bki=s;

: ki=M-2;

: epsk:=2%e;

: while (k<N-(n-x)-1) and (epsk>e¢) do

ck:=ak/bk;

ki=k+1;

jim:=InvIm(n,x,N.k);

bk:=bk*jjm+1.0;

ak:=ak*jjm;

epsk:=(N-(n-x)-1-k)*(ck-ak/bk);

: end while

: result:=1-(ak/bk-epsk/2);

: end

AP ANE ANl e

[N T N T NS I NS I N I S i e e e e e e
GEDNSS0XITTELNEO0

344 A. Berkopec / Journal of Discrete Algorithms 5 (2007) 341-347

4. Convergence and error estimation
Theorem 2. The successive approximations ¢y form a decreasing finite sequence.

Proof. Let Y = ((s - —— +1)---+ 1) - —— + 1, therefore

Jv—1 IM—1+k

Ck+1 1

Since J,;, > 0 and ¥ > 0, we find E’é—:‘ <1. O

Theorem 3. The difference between the successive approximations cy, is decreasing with increasing k:

Ckt1 — Ck
— <1
Ck — Ck—1
Proof.
Crt1 —Ck JImtk V-1
Ck—Ck—1 JIm—14x Y+ Imak

It is possible to show that each of the factors is smaller than 1. For the right one:

Yr—1
Yp=———+1=Yp_1 < VY,
Im—1+k
Yi—1 <Y AJy—-144 > 0= __ et <1
Y + Imik

We transform the left factor into a more suitable form:

and for both factors
_ J Cks1 — G
(V-1 <1>A< M-tk <1>:>c~’k+1~0k<1_ -
Y+ Itk IM—11k Ck — Ck—1

The successive approximations ¢ approach the value c (n,x, N, M) from the above: ¢; — Cc (n,x,N,M)>0.

Theorem 4. The value of G(n, x, N, M) is bounded with
C(n,x, N, M) € [& — ek, &,
where
€x=(Mo—M —k) - |k — Ck—1].
Proof. We put the approximate value in the middle of the interval

5k—%"<6(n,x,N,M><5k+%‘. (10)

A. Berkopec / Journal of Discrete Algorithms 5 (2007) 341-347 345

From Theorems 2 and 3 it can be seen that ¢; decreases with increasing k, therefore
|6 — C(n,x, N, M)| < |&x—1 — C(n,x, N, M)| ¥k > 0.
Since

U < I DACHM Ty =1) = Jpeoo > 1= Jpy > 1,
m-—00

we set
Ml-i-_k[—z 1 r
g = —
oy i IMtr—2
<< < 1) 1 +1) 1 n +1> 1 +1 k+1
—_ - —_—— _ . .. —_ . _ < .
Ju-1 s) Iu s) Juq s) Imyk—2 s Jm-1
where s > M=x=1
- (073
Ck = ——»
Bk
Gy = o Imyk-1
T B 1)) Tmgk—1 B —1/s”
and finally
& — el ak[1 :| ok
Ck—Ci—l]l=—|1—-—m— [< —.
Bk I —1/(sBk) sB?

The error €, = (Mg — M — k)|¢x — Cr—1]| can be estimated with

My —M JNJ}%/I—I
_ 1) — O 11
€k<< k) M—x—-1 (D

Theorem 5. The number of the steps K (€) required to achieve the accuracy € > 0 is less than N — n:

K(e) < N —n.

Proof. The number of the steps K (¢) required to achieve the desired accuracy € is the sum of the fixed part (compu-
tation of s) and the variable part (Eq. (11))

My—M
K€ <M-—x—14+—0 " (12)
— 1+ 5=
fixed part Iedjr_q
[N —
from Eq. (11)

Less than K (¢ = 0) steps are needed to achieve any accuracy greater than zero. Taking into account My = N —n + x,
this means less than

Ke=0)<M—-x—-14+My—M=N—n—1
steps,or K(¢) < N —n. O

For more information about our algorithm see Tables 1-3.
Acknowledgements
The author would like to thank Mr. Andrej Kores, Ljubljana, Slovenia, for the presentation of the problem that had

lead to the development of HyperQuick algorithm. Dr. Tomaz Jarm and Dr. Borut Jurc¢i¢-Zlobec, Faculty of Electrical
Engineering, University of Ljubljana, Slovenia, crosschecked the numerical results.

346

Table 1

A. Berkopec / Journal of Discrete Algorithms 5 (2007) 341-347

The results and computational times. The computations were performed on PC Intel (R) Pentium (R) IV, CPU 3.00 GHz. The accuracy of Hyper-
Quick algorithm is € = 10~16

n X N M C Time [s]
10 5 100 50 0.62966677311277 0.001
100 50 1000 500 0.54194604604641 0.001
1000 500 10000 5000 0.51329471498065 0.002
10000 5000 100000 50000 0.50420511457274 0.007
100000 50000 1000000 500000 0.50132980423988 0.052
1000000 500000 10000000 5000000 0.50042052198071 0.480
10000000 5000000 100000000 50000000 0.50013298075677 4.719
Table 2
The number of the successive approximations K required for the computation of C(n,x, N, M)
with the accuracy € for n = 2000, x = 1000, N = 20000, M = 10000. The fixed part of K is
M —x —1=28999 (Eq. (12))
€x K C
1071 8999 + 631 0.5584
1072 8999 4777 0.5143
1073 8999 + 900 0.5099
10~4 8999 + 1008 0.5095
1073 8999 41105 0.5094
1076 8999 + 1194 0.5094
1077 8999 + 1276 0.5094
Table 3

Comparison of the computational times of HyperQuick on the Pentium (R) 4 CPU 3.20 GHz computer with the freely available packages. R
package computes C(n, x, N, M) in less than 10 milliseconds for every set of parameters above. HyperQuick computes C(n, x, N, M) faster than
other three packages, but only NCSS Probability Calculator is slower than HyperQuick by several orders of magnitude

Package Cn,x,N,M) t [s]

n =1000, x =500, N =10000, M =5000

NCSS Probability Calculator 0.5132947150 7.1
Smith’s statistical package 0.51329471 <0.001
StatCalc 1.1 0.513295 <0.001
HyperQuick 0.513294714980647 <0.001
R 0.513294714980647 <0.010
n =10000, x =5000, N =100000, M =50000

NCSS Probability Calculator - >100
Smith’s statistical package 0.50420511 <0.001
StatCalc 1.1 0.504205 <0.001
HyperQuick 0.504205114572739 <0.001
R 0.504205114572738 <0.010
n =1000000, x =500000, N =10000000, M =5000000

NCSS Probability Calculator - >100
Smith’s statistical package 0.50042047 1.0
StatCalc 1.1 0.500420 0.5
HyperQuick 0.500420521980705 0.3

R 0.500420521980698 <0.010
n =10000000, x =5000000, N =100000000, M =50000000

NCSS Probability Calculator - >100
Smith’s statistical package 0.50013207 10.2
StatCalc 1.1 0.50013 34
HyperQuick 0.500132980756772 2.7

R 0.500132980756751 <0.010

A. Berkopec / Journal of Discrete Algorithms 5 (2007) 341-347 347

References

[1] M. Petkovsek, H. Wilf, D. Zeilberger, A = B, A K Peters Ltd., 1996.
[2] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1989.
[3] J. Riordan, Combinatorial Identities, John Wiley & Sons, 1968.

	HyperQuick algorithm for discrete hypergeometric distribution
	Introduction
	A binomial identity
	An algorithm
	Convergence and error estimation
	Acknowledgements
	References

