Science of Computer Programming 16 (1991) 151-195 151
Elsevier

Automatic autoprojection of
recursive equations with global
variables and abstract data types

Anders Bondorf*

DIKU, Department of Computer Science, University of Copenhagen, Universitetsparken 1,
DK-2100 Copenhagen &, Denmark

Olivier Danvy**

Department of Computing and Information Sciences, Kansas State University, Manhattan,
KS 66506, USA

Communicated by J. Darlington
Received March 1990
Revised January 1991

Abstract

Bondorf, A. and O. Danvy, Automatic autoprojection of recursive equations with giobal variables
and abstract data types, Science of Computer Programming 16 (1991) 151-195.

Self-applic..le partial evaluation has been implemented for half a decade now, but many problems
remain open. This paper addresses and solves the problems of automating call unfolding, having
an open-ended set of operators, and processing global variables updated by side effects. The
problems of computation duplication and termination of residual programs are addressed and
solved: residual programs never duplicate computations of the source program; residual programs
do not terminate more often than source programs.

This paper describes the automatic autoprojector (self-applicable partial evaluator) Similix; it
handles programs with user-defined primitive abstract data type operators which may process
global variables. Abstract data types make it possible to hide actual representations of data and
prevent specializing operators over these representations. The formally sound treatment of global
variables makes Similix fit well in an applicative order programming environment.

We present a new method for automatic call unfolding which is simpler, faster, and sometimes
more effective than existing methods: it requires neither recursion analysis of the source program,
nor call graph analysis of the residual program.

To avoid duplicating computations and preserve termination properties, we introduce an abstract
interpretation of the source program, abstract occurrence counting analysis, which is performed
during preprocessing. We express it formally and simplify it.

* This author was partly supported by ESPRIT Basic Research Actions project 3124 *Semantique™
and partly by the Danish Research Academy. A part of the work was carried out during a stay at
Lehrstuhl Informatik V, University of Dortmund, Germany.

** Most of this work was carried out when this author was employed by DIKU.

0167-6423/91/%03.50 © 1991—Elsevier Science Publishers B.V.

152 A. Bondorf, O. Danvy

Similix has been implemented and self-applied. It has been used for a number of experiments
such as compiler generation from interpretive specifications and generation of efficient pattern
matchers from naive pattern matching programs.

This paper is a revision of [7].

1. Introduction

Partial evaluation transforms programs with incomplete input data: when given
a source program p and a part of its input s, a partial evaluator mix generates a
residual program p, by specializing p with respect to s. Partial evaluation is also
referred to as program specialization. Wh>n agpplied to the remaining input d, the
residual program gives the same result as the source program would when applied
to the compleie input:

p(s,d)=p{dj where p,=mix(p,s).

For simplicity, we have identified programs with the functions they compute. For
instance, p denotes a function in p(s, d) and a program in mix(p, s). Input s is
called static and input d is called dynamic.

The main point in partial evaiuation is one of efficiency: running the residual
program p, can be much faster than running the source program p. If p is being
repeatedly applied to inputs with a fixed value for s, but each time with a new value
for d, then it may be worthwhile first to generate p, instead and then apply it to the
didferent d inputs. The partial evaluator knows p and s and is therefore able to
perform those of p’s computations that only depend on s. Program p, is thus
(potentially) more efficient than program p: it need not perform the computations
that depend only on s.

1.1. Self-application

Self-application means specializing the partial evaluator itself. This is aiso known
as autoprojection [17]. Let us substitute mix for p, p for s, and s for d in the equation
defining a residual program:

mix(p, s) = mix,(s) where mix, = mix(mix, p).

Specializing p with respect to s may thus be achieved by running mix,(s) instead
of the (potentially) slower mix(p, s).

We may even go one step further: we can specialize the specilizer with respect
to itself:

mix(mix, p) = mix,,. (p) where mix,,;, = mix(mix, mix).

We may thus generate mix, by running rix,,;.(p) instead of the (potentially) slower
mix(mix, p). In the particular case where p is an interpreter int, these equations are
known as the Futamura projections [1]; mix,, is then a compiler comp and mix,,,;,
is a compiler generator cogen.

Automatic autoprojection of recursive equations 153

The first successfully implemented autoprojector was Mix [23]. The language
treated by Mix was first-order statically scoped Lisp-type recursive equations over
symbolic values, and Mix was able to generate compilers from interpreters written
in this language. The experiment showed that autoprojection was possible in practice;
an automatic version of Mix was developed later [24]. Since then, autoprojectors
for several languages have been implemented: for a subset of Turchin’s Refal
language [34], for an imperative flowchart language [18], and for pattern-matching-
based programs in the form of restricted term rewriting systems [3].

1.2. Partial evaluation, operationally

Partial evaluation works by propagating the static input and reducing static
operations. As an example, a conditional expression (if E, E, Ez) can be reduced
if the expression E; is static, that is, if the value of E; depends only on the static
input, not on the dynamic input. In that case the result of specializing the conditional
is the result of specializing the branch chosen by evaluating the test E,. If E, is
dynamic, that is, if its value depends on some dynamic input, the conditional is left
residual: a residual expression (if R-E, R-E,R-E;) is produced. Here R-E; is the
residual expression obtained by specializing E;.

We consider a specific form of partial evaluation called polyvariant specialization
[9]. In the context of a recursive equation language, a function call is either unfolded
or a residual call to a specialized function is generated [23, 24]. Where the source
program is a set of (recursive) functions f,g, . . ., the residual program is a set of
(recursive) specialized functions £-1,f-2,...,g-1,g-2, Each residual func-
tion is an instance of a source function, specialized with respect to values of its
static parameters.

Polyvariant specialization achieves sharing in residual programs: in the residual
program, there may be many calls to the same (residua!) function [24]. Relying on
the sharing property, it has been possibie to generate residual programs equivalent
to the Knuth-Morris-Pratt algorithm as well as compiled directed word acyclic
graphs out of a brute-force (naive and quadratic) matching program. Self-application
provides the corresponding matcher generators [13, 28].

1.3. Binding time analysis

Experience has shown that an important component of an autoprojector is the
preprocessor. Preprocessing is performed before program specialization. Its purpose
is to add annotations (attributes) to the source program [23]. The annotations guide
the program specializer (which actually produces the residual program) in various
ways: they tell whether variables are static or dynamic, that is, whether they will
be bound to static values or residual expressions, whether operations can be reduced
during program specialization, and whether calls and let-expressions should be
unfolded. Annotations provide a way to relieve the specializer from taking decisions
depending on the static input to the source program, and this gives major improve-
ments, especially when the specializer is self-applied [8] (ihe essential reason: the

154 A. Bondorf, O. Danvy

static input to the program with respect to which the specializer is being specialized
is not available yet).

The central preprocessing phase is binding time analysis [24]. Binding time analysis
is usually implemented by abstract interpretation (and is therefore safe but
approximative): the program is abstractly interpreted over a binding time lattice, in
the simplest case the two-point lattice S=D. The binding time value S is to be
interpreted as “definitely static™, i.e. it - Ustracts values that are available (known)
at program specialization time. D means “possibly nonstatic”” and abstracts values
that are possibly not available (possibly uaknown) at program specialization time.
Variables and operations are then classified ~ccording to their binding times. During
program specialization, static operations are reduced whereas residual code is
generated for the dynamic ones.

1.4. This work

The main motivation for this work was a desire to design a user-friendly and
automatic autoprojector and to use it for further experimenting and better under-
standing.

It is desirable to have data abstraction in the programs to be specialized [11].
This is necessary to have specialized versions of programs that do not account for
the actual represeniation of data structures (environments, etc.). Experience from
using Mix shows that having to specify everything as for example Lisp-type lists
yields too low-level residual programs because even the processing of data structures
has been specialized. Using abstract data types makes it possible to hide the
representation and treatment of data from the partial evaluator. (Note: we only use
the term “abstract data type™ in this sense; we do not consider algebraic issues.)

For the sake of generality, it is advantageous to have an open-ended set of operators
in the source language, as introduced in [10] and also described in [11]. This can
be combined with the abstract data type approach, but it also introduces a new
problem of coexistence: a program specialized with respect to another program (for
instance by self-application) intermingles operators from both programs. Thus a
general solution to handle possible homonymies between sets of operators is needed.

Existing methods for automating call unfolding, one of the central transformations
performed by a partial evaluator, rely on particular knowledge about a fixed set of
primitive operators—for instance that (carl) is a substructure of 1 [38]. To
automate call unfolding in an autoprojector for a language with an open-ended set
of operators, other methods are needed. We describe a new algorithm for classifying
calls unfoldable/residual, and we also present an alternative post-unfolding method.
Our post-unfolding method is significantly simpler and faster than the one described
in [38] (no expensive call graph analysis is needed), and in some cases it is more
effective.

There exist sound methods to detect and globalize single-threaded variables in
functional programs [35,40]. Many programs naturally use such global variables
directly, for example the i/o from any existing, call-by-value oriented operating

Automatic autoprojection of recursive equations 155

system. In interpretive specifications of programming languages and program trans-
formation systems, a number of variables are single-threaded: variables holding
stores, various counters, symbol generators, and so on. It is natural to keep them
global, as done for example in action semantics [32].

Also in partial evaluators, some internal variables are single-threaded. Globalizing
them reduces the size and improves the speed of the - recializer and of its specialized
instances obtained by autoprojection. In this paper, we show how to handle global
variables safely during partial evaluation.

Computation duplication is a problem that may result in very bad residual
programs: if a program runs in linear time, its residual version may sometimes run
in exponential time due to computation duplication [23]. A closely related problem,
call duplication, is addressed and solved in [38]; in Section 3.6 we give a simpler
solution which does not intermingle the problems of call unfolding and duplication.

A related problem concerns preservation of termination properties: due to the
call-by-name nature of unfolding, partial evaluators may sometimes produce residual
programs that terminate more often than the source programs [24]: computations
may be discarded due to unfolding. In this paper, we address and solve this problem.
We almost get the solution for free: the analysis needed for avoiding duplication
only needs a small modification to handle the discarding problem too.

1.5. Notation and prerequisites

Programs are written in a subset of the Scheme language [33]. Formal descriptions
of algorithms are written in a conventional denotational semantics style using double
brackets to surround syntactic objects. The conditional is written as _-> _[_.

Knowledge about partial evaluation is no requirement but will definitely be an
advantage. Good introductions may be found in e.g. [23, 24].

1.6. Outline

In Section 2 we describe the language treated by Similix. Section 3 describes the
central problems solved 1 Similix. Section 4 contains a formal description of the
hinding time analysis, and Section 5 discusses automatic call unfolding. In Section
6 we develop an analysis needed for avoiding duplicating and discarding computa-
tions. Section 7 contains a larg=r example of partial evaluation: we specialize an
interpreter for an imperative language, thus compiling imperative programs into
Scheme. Section 8 gives some benchmarks for Similix. Section 9 discusses related
work and in Section 10 we conclude.

2. Language

Similix processes recursive equations expresse<'in a subset of Scheme [33] (see
Fig. 1). Since programs foliow tiic syntax of Scheme, they are directly executabie
in a Scheme environment.

156 A. Bondorf, O. Danvy

Pr € Program, PD € Definition, ¥ € FileName,
L-E € LabeledExpression, L € Label, E € Expression,
C € Constant, V ¢ Variable, 0 € OperatorName, P € ProcedureName

Pr := (loadt F)" (load F)* PD*

PD := (define (P V*) L-E)

L-E = LE

E := C | V| (if L-E; L-E; L-E3) | (let ((V L-E;)) L-E;) |

(begin L-E*) | (0 L-E*) | (P L-E%)

Fig. 1. Abstract syntax of Scheme subset handled by Similix.

A source program is expressed by a set of user-defined procedures and a set of
user-defined primitive operators. Following Scheme terminology, we use the term
“procedure” rather than “function”. Procedurss are treated intensionally, whereas
primitive operators are treated extensionally. The partial evaluator is given the
d~finition of procedures. In contrast, an operator is a primitive operation: the partial
evaluator never worries about how the internal operations are performed by a
primitive operator. It can only do two things with a primitive operation: either
pe.aorm the operation or suspend it, generating residual code.

The BNF of the abstract syntax of programs is given in Fig. 1. Every expression
is identified by a unique lavel. The labels are not part of the concrete syntax of a
program, but they are important in the abstract one: they are used to give a uniform
description of annotations computed during preprocessing. Except for the labels,
this abstract syntax is idcntical to the concrete one.

The user-defined primitive operators are defined in external modules located in
files. These files are loaded by the loadt expressions; this is described in Section
2.2. Procedure definitions and loadt expressions from other files can be reused
using load. _

An expression can be a constant (boolean, number, string, or quoted construction),
a variable, a conditional, a let-expression (unary for simplicity; L-E, is called the
actual parameter expression and L-E, the bedy expression), a sequence (begin)
operation (used for sequentializing side effecting expressions), a primitive operation
(applying a user-defined operator), or a procedure call. The order of evaluation is
applicative (strict, call-by-value, inside-out), and arguments are evaluated in an
unspecified order.

2.1. Syntactic extensions

A number of built-in syntactic extensions [26] arc treated by Similix. We mention
the ones used in this paper. The form cond is expanded into (nested) if-expressions;
a sequence of let-expressions can be abbreviated by let*:

(let* ((V,E,)...(V,E,))E)

Automatic autoprojection of recursive equations 157

expands into
(let ((V,E;))...(let ((V,E,))E)...).
Implicit sequencing is allowed as in Scheme. E* thus expands into (beginE")
in the syntactically sugared forms (define (PV*) E') and (let ((VE,)) E').
2.2. User-defined primitive operators

User-defined primitive operators are defined according to the abstract syntax
given in Fig. 2. Here are some examples of operator definitions:

(defprim-transparert (my-opxy) (consx (consxy))).
(defprim-transparent 1 my-car car).
(defprim-opaque 1 read read) .

The form SE can be any Scheme expression and is thus not restricted to the expression
subset allowed in procedures (Fig. 1). Similix never lcoks “inside” SE-expressions,
but considers a primitive operation to be atomic. The representation of the data
handled by primitive operators is completely hidden to the partial evaluator, thus
providing abstract data type operators. SV-variables are variables defined at the
Scheme top-level (such as read), or possibly operators O defined earlier in the file.

0D € OperatorDefinition, 0 € OperatorName,
SE € SchemeExpression, SV € SchemeVariable

oD := (Key (0 V°) SE) | (Key Arity 0 SV)
Key := defprim-transparent | defprim-dynamic | defprim-opaque
Arity = 0,1,2, ...

Fig. 2. User-defined primitive operators.

When a program is run ordinarily, the operator definitions correspond to ordinary
Scheme definitions. The three above definitions would thus correspond to the
definitions:

(define my-op (lambda (xy) (consx (consxy)))).
(define my-car car).
(define read read) .

Notice that in Scheme, a definition such as (define (read x) (read x)) is not
equivalent to (define read read): the former one redefines read to a nonterminat-
ing operation whereas the latter one binds read to its fermer value and thus has
no effect.

When a program is partially evaluated, the additional information in the operator
definitions becomes significant: arity information and transparency information.

158 A. Bondorf, O. Danvy

The arity of operations of the form (Key (0V*) SE) is given by the number of
arguments, but has to be specified explicitly for the form (Key Arity O SV) (there
is no way to deduce the arity of a functional object in Scheme).

The key gives the transparency information: an operator can be referentially
transparent or opaque, according to whether it uses global variables, or it can be
dynamic (to be explained below). read is opaque since it accesses (and even updates)
a global input stream.

In effect, the transparency information associates an abstract binding time function
to each operator. Given the binding times of the arguments, this function computes
the binding time of the result. Transparent operators thus have associated binding
time functions that take the least upper bound of the binding times of the arguments;
dynamic and opaque operators have more conservative associated binding time
functions (see Section 4.1 for precise definitions). For instance, the following
operator implemerits generalization [41]:

(defprim-dynamic (generalize x) x) .

Generalization consists in raising a static value to be dynamic. Operationally,
generalize acts as the identity, but its binding time function makes its resalt
dynamic, even when the argument is static.

Generalization provides the user a way to prevent infinite specialization (generating
infinitely many specialized versions f-x of a source procedure f). Generalization
yields more conservative residual programs by delaying the evaluation of static
expressions until run time.

It is always possible to avoid infinite specialization: by generalizirg all arguments
to all procedure calls; there will then be exactly one specialized version of each
procedure, specialized with respect to no static values at aii. Of course this trivial
solution does not yield good results (although the residual program, because of
unfolding, may still be an optimization of the source program). One should generalize
only when necessary.

Generalization can also be used to increase sharing in residual programs, for
example to obtain residual programs that are linear in size with respect to the static
input [28].

In practice, generalization is rarely necessary, and finding the right generalization
points is problem-dependent. For these reasons Similix does not try to find these
points automatically. Instead, this is left to the user.

3. Overview of central problems and assumptions

3.1. Having an open-ended set of operators

The partial evaluator must ensure that programs always run with the right set of
operators. For example, the residual program rarget, obtained by specializing an
interpreter int with respect to a program source, runs with the set of operators of

Automatic autoprojection of recursive equations 159

int and occasionally uses some of source’s operators. Similarly, the residual program
comp (compiler), obtained by specializing the specializer mix with respect to int,
runs with the set of operators of mix. However, since comp implements the specializ-
ation of int with respect to some program source, it can use the operators of int
(though not those of source). Finally, the residual program target' obtained by
applying comp to a program source runs with the set of operators of int and
occasionally uses some of source’s operators (this was already stated, since target
and rarget' are textually identical).

With a specializer having a universal and fixed set of operators, there is no problem
of possible inconsistency between the diffe.ent operator sets. But with a specializer
having an open-ended set of operators, ensuring consistency is vital since different
sets of operators may overlap (for example, they may name two different operators
identically).

Similix provides this consistency in a transparent way. A program declares its
own set of operators, which is loaded when the program is loaded. A residual
program loads the same operators as the source program did. For instance, a compiler
comp loads the operators coming from mix. The operators in comp coming from int
are also loaded automatically, but these are stored separately to avoid name clashes
with the operators coming from mix. Operators from int are evaluated in an indirect
way, essentially by using Scheme’s apply.

3.2. Termination of specialization: call unfolding

Unfolding, the replacement of a procedure call by the (partiaily evaluated) body
of the procedure definition, increases the efficency of residual program. Let us review
unfolding with the standard example, a recursive program appending two lists:

(define (append xsys)
(if (null? xs)
ys
(cons (car xs) (append (cdr xs) ys))))
Specializing this program with respect to a static value for xs, for instance the list
(78), yields the following—intermediate—residual program:

(define (append-0ys) (cons7 (append-1ys)))
(define (append-1ys) (cons 8 (append-2ys)))
(define (append-2ys) ys)

Static computations have been performed (the null?, car, and cdr operations)
and the corditional has been reduced (since the test (null? xs) is static), but we
have not yet unfolded calls. Unfolding simplifies the intermediate residual program
to the following program:

(define (append-0ys) (cons7 (cons8ys))).

For another example, we could interchange the inputs and thus specialize append
with respect to a dynamic first and a static second parameter. This would give this

160 A. Bondorf, O. Danvy

residual program:

{define (append-0xs)
(if (null? xs)
'(78)
(cons (car xs) (append-0 (cdrxs)))))

The test in the conditional is now dynamic and therefore cannot be reduced at
partial evaluation time. Thus the conditional remains residual. Clearly, one cannot
systematically unfold the append-0 calls (this would give infinite unfolding).

Sometimes one can unfold, sometimes not. Some way of controlling unfolding is
necessary. In Similix, this is done automatically by combining pre- and postprocess-
ing: some calls are classified ‘“‘unfoldable’™ in preprocessing, and these are blindly
unfolded at program specialization time. Then the residual program is simplified
by post-unfolding some of the remaining calls. This approach was also used in [38],
but the preprocessing algorithm described there relies on knowledge about a par-
ticular set of primitives (e.g. that car produces a substructure). To handle a language
with an open-ended set of primitives, a new preprocessing algorithm is needed.

The postprocessing algorithm described in [38] is rather complex. We present a
simpler and faster algorithm. Similix’s ¢call unfolding strategy (pre- and postprocess-
ing) is covered in Section 5.

3.3. Termination of specialization: stafic computations

During program specialization, static computations are evaluated completely to
exploit the static results. As an example, we evaluated (null? xs) when xs was
static above.

This gives a termination problem of partial evaluation: such a complete evaluation
may not terminate (a recursive procedvre may be called with only static parameters).
However, any standard evaluation of the same program, with input values that
coincide with the static part of the input values to the partial evaluation, will not
terminate in that case either (if the loaping part is entered): the looping is controlled
by the siatic part of the input only. We therefore accept the possibility of nontermina-
tion of static computations during program specialization (as is also done in [38]).

Note that if a dynamic test guards the ooping part, partial evaluation will enter
the loop (since both branches of the conditional need ic be specialized). But standard
evaluation may, depending on the te¢si, not enter the looping branch. Standard
evaluation may thus terminate more often that partial evaluation.

3.4. Computation duplication

Let us consider an intermediate residual program in which all static computations
have been performed. Let-expressions with static actual parameter expression have
thus been (beta) reduced (to make waximal use of static information at partial
evaluation time), but let us further assume that all let-expressions with nonstatic
parameter remain in the (intermediate) residual program.

Automatic autoprojection of recursive equations 161

One would often like to unfold such residual let-expressions, similarly to unfolding
calls: the residual program becomes shorter and more efficient. But it is not always
a good idea to unfold let-expressions. For example, let us consider the following
residual let-expression:

(let ((n(foo0...)))
(+nn))

If the let-expression were unfolded to (+ (foo ...) (foo...)), the computation
performed by the expression (£00 . ..) would be performed twice instead of once
when running the code piece. This would be inefficient and even incorrect if foo
had side effects (side effects are addressed in Section 3.9).

To avoid unfolding such a let-expression an occurrence counting analysisis needed.
The analysis will detect that n is referenced twice in (+nn), and thus the let-
expression should not be unfolded. More precisely, the analysis must iake all possible
execution paths of the body of the let-expression into account. If any of these may
have two or more occurrences of the formal let-parameter, then the let-expression
is not unfolded.

3.5. Termination of residual programs

Unfolding may discard computations. To avoid discarding a possibly nonterminat-
ing computation (controlled by dynamic data) during partial evaiuation, we adopt
the following conservative strategy: any (nonconstant) residual expression must be
present in the residual program. For example, the (intermediate) residual let-
expression

(let ((n(foo...)))
33)

will notbe unfolded since (foo . . .) might not terminate. Keeping the let-expression
of course yields a less reduced residual program.

To ensure that nonconstant expressions are never discarded, a second occurrence
counting analysis (cf. Section 3.4) is required: if it is not guaranteed that a nonstatic
formal parameter of a let-expression will occur at least once on any possible
execution path of the let-body, then unfolding is unsafe.

Earlier partial evaluators [10, 36] contained rules for reducing combinations of
primitive operations on nonstatic arguments. For example, the expression
(car (consE, E,)) was reduced to E,, hence discarding E;—even if evaluation of
E, were possibly non-terminating. In Similix we take the purist view: such reductions
are never performed.

3.6. Call unfolding should neither duplicate nor discard computations

Unfolding procedure calls may also duplicate or discard computations, just as
unfolding let-expressions. Let us for example consider the call (bar (foo . ..))

162 A. Bondorf, O. Danvy

where bar is defined by
(define (barn) (+nn)).

It is, however, possible to avoid duplicating/discarding when unfolding calls by
inserting let-expressions (an idea dating back to the work reported in [30]): the call
(bar (foo ...)) can be unfolded to

(let ((n(foo...))) (+nn)).

Technically, this effect can be achieved by inserting identity let-expressions in the
source program: let-expressions are inserted for all formal procedure parameters.
The definition of bar is thus automatically transformed into

(define (barn) (let ((nn)) (+nn))).

This relieves the program specializer from caring about inserting let-expressions
(which it has to do in [30]). The inserted let-expressions are treated just like the
user-defined ones. For example, one should not unfold the inserted let-expression
in the bar definition.

Using inserted let-expressions, the decision of whether to unfold calls reduces to
a problem of termination; duplication/discarding need not be considered at all.

3.7. Occurrence counting analysis

The duplication requirement is that nonstatic expressions are not duplicated, i.e.
that they occur at most once on any possible execution path. The termination
property requires that nonstatic expressions are not eliminated, i.e. that they occur
at least once on any possible execution path.

Both requirements must be fulfilled, so let-expression unfolding can only take
place in case of exactly one occurrence. Only one occurrence counting analysis is
therefore necessary: one that distinguishes between “‘exactly one occurrence” and
“anything else”.

3.8. Abstract occurience counting analysis

The occurrence counting analysis sketched so far reasons over intermediate
residual expressions: one first constructs an intermediate residual expression (in
which static computations have been performed), then one builds a new simplified
residual expression by unfolding let-expressions.

We can, however, in many cases avoid building an intermediate expression: by
performing an approximate (abstract) occurrence counting analysis reasoning over
the source expressions, it can be stated that unfolding any residual version of a
given (source) let-expression is always safe. Then there is no reason to build an
intermediate residual let-expression first; the unfolded version can be built directly.
When unfolding is possibly unsafe, it is necessary to build the residual let-
expression—and then it can possibly be post-unfoided later.

3
a,
o
o
o

The abstract occurrence counting analysis does, as we shall see, reason over
binding time analyzed source expressions. We describe the abstract occurrence
countirg analysis in Section 6. Similix also contains a concrete occurrence counting

o d 1.

analysis used for post-unfoiding reSIdual let- expressmns The concrete analysns is
13

version of a given source expressnon We shall not go into d ta11 the (relanvely
straightforward) concrete analysis.

3.9. Global side effects

(1) side effects upon local bindings (with set!),

AN A Wl a o al VALY B S | — [PP Y ~ 1
(<) S1a€ €nCClS upon a Consruciion (wiln sev-car! anda reiatca), ana
(2) cide effecte unon olaobhal variablac (i/0 gneratiane for examnle)
\3) siGe ciieCls upon gicval variabies (1/0 operations, Ior exampie)

We shall only consider the third class.
The global varlables are accessed a d

programs, but textuallv Ih° do not occur as parameters bemg passed around. An
example is the input stream accessed by read. Hiding global variables is beneficial
for the partial evaluator: it need not “worry”” about global variables, except when
they are actually addresscd by the corresponding opaque primitives.

1rymg to perfciii s fiects statically (at pariiai evaluaiion time) wouid be

noaad tna l-\o Lont raci AI
HVVU W

|thnu W
UV AV resigu i1 v

1

statically, t idual program would not have the correct semantlcal behavior
(since t
be dlﬂicult to attempt to reduce other side-effecting operations such as store accesses
and updates. We can for instance consider a nonreducible conditional (i.e. with a

nonstatic test) with update operations in both branches: it is wrong to perform both

b

RS R - JUEIVS. DS R IS = L lonmnliss mand ¢4 b
updates, but at partial evaluation time both branchss need to be processed since
one does not know which branch to choose.

We take the conservative approach simply to suspend all side-effecting operations
until run time. This is, however, not sufficient to give side-effecting operations a
semantically correct treatment: because of unfolding, there is a risk of duplicating
or discarding possibly side-effecting parameter expressions (Sections 3.4 and 3.5).

£ L.,
1cu vy

— e e g e LS = =

rurmermore umommg may reverse evaluation orders. This can be exempli

-
=
-
(¢}

{let ((n (readport)))
(1let ((m (readport)))
njj

164 A. Bondorf, O. Danvy

Unfolding the first let-expression neither duplicates nor discards the read operation.
But unfolding is still incorrect: the expression

(let ((m (readport)))
(readport))

is not semantically equivalent to the original one. Side-effecting dynamic expressions
are thus “more dangerous” than expressions that are just dynamic: the side-effecting
ones must be treated more conservatively.

3.10. A new binding time lattice

Existing abstract interpretation-based binding time analyses, such as described
in e.g. [24, 36], distinguish definitely static values (constants) from values which are
possibly dynamic, i.e. which may be residual expressions. The static values are
described by the binding time value S, the residual expressions by D (we do not
consider structured binding time values [27, 30]). The ordering S=D indicates an
asymmetry: a static value may be lifted into and treated as a residual expression
(for instance (1 .2) - (quote (1.2))), but residual expressions cannot be conver-
ted into values. Static values are thus safely abstracted by S (and by D), but residual
expressions are only safely abstracted by D.

We also need to describe possibly side-effecting expressions. The binding time
lattice is therefore extended with a new element X (“external’’). The binding time
lattice then becomes (BT Value, =), where

BTValue ={S, D, X}
and Sc=DcX.

The binding time value X abstracts residual expressions, which may have side
effects on global variables. D thus now abstracts residual expressions, which definitely
have no side effects on global variables.

During binding time analysis, the binding time value X is introduced when a
primitive operator is declared opaque. For instance, any expression (read ...),
where read is user-defined as described in Section 2.2, gets binding time value X.

Section 4 describes Similix’s binding time analysis in detail.

3.11 Let-expression parameters with global side effects

An earlier version of Similix contained an abstract so-called “evaluation order”
analysis. This analysis was used in addition to the abstract occurrence counting
analysis to decide when unfolding of a let-expression with external actual parameter
expression (i.e. with binding time value X) was safe. The abstract evaluation order
analysis would for instance detect that urfolding is unsafe for the expression

(let ((n (read port)))
(let ((m (readport)))
n))

from above (Section 3.9).

Automatic autoprojection of recursive equations 165

The binding time analysis is performed before the abstract occurrence counting
and—for this early Similix—evaluation order analyses. It therefore does not know
whether let-expressions are unfolded or kept residual, and therefore it has to be
conservative to take both possibilities into account. The binding time value for n
in the expression (let ((n (readport))) ...) depends on whether the let is
unfolded or kept residual: in case of unfolding, n must get binding time value X
(since it will be bound to the external expression (read port) at partial evaluation
time), but if the let is kept residual, D cuffices (since n will be bound simply to a
residual variable, essentially “itself’). But the binding time analysis does not know
whether the let is unfolded, so it has to classiiy n exieinal (X).

Ali expicssions depending on n also become external, and this may prevent later
unfoldings. This problem can be clarified by the following example:

(let ((x (readport)))
(let ((y (readport)))
(let ((z (+x1)))
(if (fooa)
(+ (read port) z)
(—z (readport))))))

We assume that a is static, so the conditional will be reduced to one of its branches.
The evaluation order analysis would prevent unfolding all three let-expressions,
also the one defining z which actually could be safely unfolded. The problem is
that the actual parameter expression (+x 1) must be classified external even though
it definitely does not perform a side effect.

We therefore take another approach which at a first glance may seem very
conservative: let-expressions with external actual parameter are never unfolded. The
advantage of the approach is that formal let-parameters always get binding time
value D (or S), but never X. In the above example, the let-expressions defining x
and y immediately become non-unfoidable. But X now gets binding time value D,
not X, and therefore the let-expression defining z becomes unfoldable. The
apparently very conservative approach thus sometimes turns out to be more liberal,
and experience has shown that this is the better approach—and further, no abstract
evaluation order analysis is needed.

3.12 Maps and environments

Binding time and unfolding annotations will be represented as mappings from
expression labels and variables.

We assume given the following injective functions from syntactic to semantic
domains:

¥ :Label - Label,
P .ProcedureName - Label,

¥ :Variable - Variable.

166 A. Bondorf, O. Danvy

% and 7 are used for “purity” to convert from syntactic to semantic domains
(Label is, somewhat artificially, considered a syntactic domain since the labels are
part of the extended abstract syntax). P associates a procedure name with the label
of the procedure’s body expression: when analyzing a procedure call, this gives
access to information about the procedure body. The semantic domains are defined
by:

Index=1{1,2,...},
le Label,
v € Variable = Label x Index.

Formal parameters to a procedure P are identified as (/, 1), (/, 2), etc., where I = 2[P].
The formal parameter V of a let-expression is identified by some arbitrary unique
value v in the domain Variable.

The binding time analysis produces two global mappings:

b € BTMap = Label » BT Value,
Pue € BTEnv = Variable -~ BT Value.

My, maps labels (expression results) and p,, maps variables to binding time values.
A global mapping corresponds to what is called a cache in [19]: it associates a value
to every expression in the program.

The preprocessing phase also produces two mappings for annotating procedure
calls an« let-expressions:

Maer € DefMap = Label - Annotation,
Wier € LetMap = Label > Annotation.

Here Annotation ={Unfold, Resid}.

Maes Classifies procedures: when g (P[P]) = Unfold, all calls to procedure P are
unfolded; when pur(P[P]) = Resid, all calls to P are kept residual (specialized).
Note that this in effect annotates procedures rather than calls. Let-expressions are
annotated by u,.,: when p.,(Z[L]) = Unfold (where L is the label of a let-expression
L (let ((VL-E,;))L-E;)), the let-expression is (always) unfolded. When
Miee(Z[L]) = Resid, the let-expression is kept residual.

3.13. Overview of Similix

We end this section by giving an overview of the phases in Similix.

Partial evaluation is performed in three steps: the source program is preprocessed,
then the preprocessed program is specialized, generating an intermediate residual
program, and finally the intermediate residual program is postprocessed to produce
the final residual program.

The input to the preprocessing phase is the source program (where identity
let-expressions have been inserted for the formal procedure parameters) and binding

Automatic autoprojection of recursive equations 167

time information about program inputs. The output is a heavily annotated program;
the annotations guide the program specializer.

The program specializer is given the (preprocessed) annotated program and the
static input values. It produces an intermediate residual program, which is then
optimized in postprocessing.

Preprocessing consists of the following phases, performed in that order: binding
time analysis (produces u;, and p,,), a phase that adds call unfolding annotations
(produces p4er), and finally an abstract occurrence counting analysis (these phases
are described in the following sections). Let-expressions are annotated (by u,.,) in
the binding time and abstract occurrence counting analysis phases. Let-expressions
with static actual parameter expression are classified as unfoldable, those with
external actual parameter expression are classified as non-unfoldable. The remaining
let-expressions (with dynamic parameter) are classified in the abstract occurrence
counting phase.

An important point in Similix’s preprocessing is that no iteration of the phases
is necessary. The binding time analysis need not be redone after the annotation of
procedure calls and let-expressions.

Specialization performs static computations, unfolds calls and let-expressions,
and specializes program points (procedures).

Postprocessing performs additional unfolding of procedure calls and let-
expressions.

4. Binding time analysis

This section describes the binding time anaiysis. Binding time analysis is performed
by abstract interpretation and assigns a binding time value to all variables (p,,) and
all expressions (u.,, expressions are identified by the labels). The analysis initially
assigns the binding time lattice’s bottom value S to all variables and all expressions.
The user specifies the binding time values of the parameters to the goal procedure.
These values are then propagated through the program, updating the global map-
pings p,, and u,, incrementally until a fixed point is reached.

4.1. Semantic domains and functions

The binding time lattice has already been given eatlier:
be BTValue ={S, D, X}
where S=D=X.
The analysis computes a binding time map s, and a binding time environment

s These are updated by corresponding monotonic update functions. Map updating
is performed by the function upd:

upd : Label > BTValue > BTMap - BTMap,
updlb#’bl = Mbt L—' [l'_>b.} J-BTMap .

168 A. Bondorf, O. Danvy

Environment updating has functionality
Variable > BTValue > BTEnv - BTEnv

and is defined in a similar way. For readability, we uniformly refer to all updating
functions simply as upd; the functionality is clear from the context. The least upper
bounds on functions and cartesian products are defined pointwise:

Mo L by = Av. prp ()L (),
Po: LI pbe = Av. pp (V)L pi(0),
(ﬂbu pbt)l—-l(l-";ns P;n) = (M’btl—ll"'s)la pbxl—‘pin)-

The binding time values associated with primitive operators are defined by the
arity and transparency information given by the user. The function O associates a
binding time function with each operator:

O :OperatorName > BT Value* > BT Value.

We assume that O, for any given program, knows the arity n and transparency
information for all operators. Here is the definition of O:

ofo>* I by, . .., b]=X.

4.2. The analysis

The function BT (see Fig. 3) takes a set of definitions and an initial binding time
environment that contains the binding time values of the parameters to the goal
procedure. In practice, the user does not provide an initial environment, but the
name of the goal procedure and a list of binding time values for the parameters.
The function bt processes expressions. Explicit quantification of indices has been
avoided for readability (the quantification is clear from the context).

4.3. Comments to the binding time analysis

Let us now comment the binding time computations.

The binding time value of a constant is trivially S. Processing a constant does
not involve any variables, so p,, need not be updated.

The binding time value of a variable is the one given by (the current) p,,.

For conditionals, we first process the subexpressions. Then, to compute the binding
time value of the result of the conditional expression, the least upper bound of the
binding time values of the subexpressions is taken. This gives the correct result: if
all three subexpressions are guaranteed to specialize to static values, then so will
the whole conditional expression. In that case, all three subexpressions will have

Automatic autoprojection of recursive equations 169

BT : pefinitiont — BTEnv — BTMap x BTEnv
BT[(define (P ...) LiE;) ... (define (P, ...) L.E,)]pi% =
fix(AMpbes poe) - L DUILE Jitbepne U (LBTMaps PIN))

bt: LabeledExpression — BTMap — BTEnv — BTMap x BTEnv
bt[L E]ppepr. =
let €= L[L] in
case [E] of
fc): (upd €S poe, pre)
vl : (upd € pue(VIVD) 61> pit)
[¢if LiE1 L2E; L3E3)]:
let (ph, phe) = LI bE[LiEiJupepre in let by = p (L[L]) in
(upd € (by U b U b3) piy, phe)
[Cret ((V LiE})) L:E)]:
let (phe.) = LIiDE[LiE:Jpepp in let b = py, (L[Li]) in
(upd € (b U by) iy, upd V[V] (by = X — D[by) pi,)
[(vegin LoEg L;E; ... LaE,)]:
let (phes pbe) = Ui Dt[LiEiJibeppe in let b; = p,(L[L.]) in
(upd € (i) pber Pbe)
€0 LiE: ... L.En)]:
let (phes pbe) = (bt poe) U Ll bt[LEiJpbepe in let b, = p (LL.]) in
(upd € 0ﬂ0][bl, o+ vy ba] Hher PLe)
[P LiEy ... LuEx)]:
let (ihes Pbe) = (bt Pbe) U UiDt[LiEJppepre in let by = pi (LIL]) in

(upd € (by U ... U b, U py (P[P])) pes Li(upd (P[PY,7) b p1,))
end

Fig. 3. Binding time analysis.

binding time value S, and then so will the least upper bound (which then safely
abstracts the result of specializing the conditional expression).

If some subexpression specializes to a residual expression (thus abstracted by D),
the residual version of the conditional is a residual expression and thus it must be
abstracted by a binding time value greater than or equal to D. Further, if some
subexpression is (possibly) side-effecting, this residual expression as a whole is
(possibly) side-effecting and thus must be abstracted by the binding time value X.

For let-expressions, p}, is updated since the let-expression binds a variable. The
formal parameter never gets binding time value X: let-expressions with external
actual parameter are not unfolded, and so the formal parameter gets binding time
value D (cf. the discussion in Section 3.11).

Every subexpression of a sequence expression is evaluated. The binding time
value is therefore simply the least upper bound of the binding time values of the
(results of the) subexpressions.

170 A. Bondorf, O. Danvy

Primitive operations are handled by the function 0. Since primitive operations
(and procedure calls as well) may be nullary, it is necessary to take the least upper
bound with the old values of u,; and p,.

The most complex case is the one for procedure calls. The binding time value of
the procedure call expression is the least upper bound of the arguments and the
binding time value of the procedure body: both the arguments and the body are
evaluated when evaluating a procedure call. The procedure call also influences the
formal parameters of the procedure, and therefore pj, is updated. The ith parameter
is influenced by the ith argument.

4.4. Finiteness

There is a finite number of binding time values. The mappings u;, and p,, have
finite domains (the set of labels and the set of variables are both finite) and thcy
are updated monotonically; hence they can oniy be updated a finite number of
times. Fixed point iteration will therefore stabilize after a finite number of iterations.
The analysis is thus guaranteed to terminate.

4.5. Correctness

We will not give a correctness proof for the binding time analysis, but we do give
a precise statement of correctaess.

Certain safety criteria relating program specialization and binding time analysis
must be fulfilled: the binding time analysis is correct if and only if u,, and p,, safely
apstract the values appearing during specialization (it was defined in Sectior. 3.10
what the binding time values abstract). Assuming that the binding time values of
the program input (specified in pj;") safely abstract any input values with respect
to which the program i, specialized, correctness can be stated as follows:

® Safety of u;,: for anry program expression LE, wu, (Z[L]) safely abstracts any
possible result of specializing LE.

® Safety of py,: for any program variable V, p,(7'[V]) safely abstracts any value
that V may be bound to during program specialization.

A formal correctness proof would require a formal specification of program speciliz-
ation. The proof would be done by structural induction, relating the specialization
specification to the binding time analysis, much like we informally did above when
explaining the binding time analysis (Section 4.3).

4.6. Implementation issues

In the description, the subexpressions of a compound expression are processed
in a parallel way. This simplifies the description, but sequential processing is better
from an efficiency point of view. Using sequential processing there is always only
one active copy of u,, and of p,,. The mappings are thus single-threaded and can
be updated destruciively; further, they can be implemented as global variables.

Automatic autoprojection of recursive equations 17

In practice, the mappings are not kept as separate variables. Instead, the informa-
tion is kept as attributes (annotations) in the abstract syntax.

4.7. Independence of unfolding annotations

The binding time value of a let-expression with dynamic actual parameter is
independent of the subsequent unfolding annotation, performed by the abstract
occurrence counting analysis. The binding time analysis “knows” that a let-
expression like

(let ((x Edynamic)) Esmlic)

will never be unfolded (in which case the result of the let-expression could be static);
it immediately assigns D to the result of the let-expression—the least upper bound
of the actual parameter and body expressions. Abstract occurrence counting event-
ually disallows unfolding because E;,,.mic cannot occur inside E.

A similar consideration holds for procedure calls: the binding time value of the
result of a procedure call is independent of the subsequent annotation of the
procedure call. The only procedure calls which have a static result are those with
only static parameters and static body, and such calls are always unfolded anyway.

Because binding time analysis is independent of let and call annotations, it must
not be redone after adding unfolding annotations.

5. Automatic call uniolding in Similix

5.1. Background: automatic call unfolding in Mix

The first Mix [23] required user-guided annotations for controlling call unfolding,
but this was later automated [24]. The techniques used in the automatic version are
described in detail in [38].

The process of automatic call unfolding in Mix is twofold: some function calls,
annotated unfoldable in preprocessing, are unfolded “on the fly” during specializ-
atioi. However, many trivial functions remain in the residual program, and some
of these are reduced away in postprocessing by unfolding the calls to them.

It is obviously desirable to perform as much unfolding as possible already du-ing
program specialization. This produces the residual program piece directly: one
avoids building intermediate specialized functions, which are removed again in
postprocessing.

It is important that the decision on whether to unfcld a call during program
specialization has been taken purely on the basis of binding time information. The
reason is self-application: the more decisons taken on the basis of only binding
time information, the better self-application results (smaller and faster compilers)
[8]. Decisions that depend only on binding time information can be performed in
preprocessing and thus need not be performed during prcgram specialization; this

172 A. Bondorf, O. Danvy

is the reason why Mix annotates calls in preprocessing. The idea in preprocessing
is to find some calls which can be safely unfolded. No other calls will be unfolded
during program specialization (although some may be post-unfolded later).

Mix uses both termination and duplication criteria to decide whether a call can
safely be unfolded. A cali may be safe to unfold from a termination point of view,
but unfolding may duplicate an argument expression. In that case Mix will not
unfold the call. In the description of Mix below, we do, however, not consider
duplication. Only Mix’s termination analysis is of interest for comparison with
Similix (in Similix, call unfolding never duplicates, cf. Section 3.6).

Mix’s preprocessing annotates calls with completely static arguments as unfoldable
(cf. Section 3.3). For all other calls, it detects primitive recursion loops (functions
calling themselves) in which at least one static parameter becomes smaller for each
recursion; such a parameter is called an inductive variable. Recursive calls with
inductive variables can safely be unfolded during program specialization, provided
the partial ordering on static values is well-founded (with no endless descending
chains): eventually, the inductive variable will reach the smallest value, so infinite
unfolding is impossible. The well-founded ordering used in Mix is the proper subterm
ordering on acyclic S-expressions {Mix’s only data structure): a term is greater than
its proper subterms. Application of the primitives car and cdr produce smaller
terms: (car E) and (cdr E) are always smaller than E (taking car/cdr of an atomic
value gives an error).

Mix’s postprocessing starts by performing a so-called call graph analysis of the
(finite) residual program. The call graph is a directed graph representing all depen-
dencies between calling functions and called functions. Nodes represent functions
and arcs represent calls from one function to another one. Program loops are
reflected by cycles in the graph. Unfolding is then performed in such a way that
one does not go around in cycles: a cut point is chosen for each cycle. This guarantees
a finite post-unfolding.

The automatic call unfolding of Similix described below is also based on annota-
tions produced in preprocessing (the mapping p4.r) and additional unfolding perfor-
med in post-unfolding. However, the methods used in pre- and postpfocessing are
significantly simpler than those of Mix: preprocessing does not require any recursion
analysis, but only relies on the binding time analysis; and postprocessing does not
require an expensive call graph analysis.

3.2. Choosing dynamic conditionals as specialization points

Let us state our basic observation: any nontrivial loop contains at least one
conditional for deciding whether to stop or continue looping. Loops without such
a conditional never terminate; if a program contains such a loop, we do not take
any responsibility (we then accept that partial evaluation does not terminatie). (Note:
all primitive operations are assumed terminating.)

If the test of the conditional is static, the loop is controlled statically: it is controlled
statically whether to stop or continue looping. This makes it reasonable to unfold

o £, fnptin 1 00in At
ARBIUVITIRIIL URIVPTUJTLIIUN Uy TTLRIDIVUE Cyuutiuny

[
w

the recursion: the unfolding process will stop when the static test chooses the stop
branch. An infinite unfolding loop can only be entered if caused by static data. But
in that case, a standard evaluation of the program—with any value for the dynamic
1
1

part of the input data—would also loop (if the looping part were entered), so we
le i

completely static computations used in Sectlon 33 ‘

On the other hand, 1f the test of the conditional were dynamic, it would indeed
be a bad idea to unfold the recursion: the specializer specializes both branches of
a dynamic conditional, the ““continue part” and the “stop part”, and so can never

reduce it to its “stop part”. Infinite unfolding couid resuit. Therefore, dynamic
conditionals are chosen as specialization points to break unfoldine. Let us concretize
! ANSELAVAALRLD Ak AIVOVII G0 DPVWIRIIAGUIUIL PULIIHILS LU UVivan BILIVINILLIES. VL U VULIVIVLLILL

We first observe that it cannot immediately be deduced where a program contains
a loop. Programs essentially consist of recursive equations, and there is no special
syntactic loop construction. One could perform a static “loop detection” analysis,
but we choose a simpier solution: insert specialization points for ail dynamic

conditinnale indanandantly of urhnt

ar thav cantral o racnircin
lelulllvll“lo, lll“vy\tlluvllll] L VYV RAW Wi

"
I-ll\a] wUiM v a IVWwUiIOoIVIilL.

One therefore sometimes gets many small specialized procedures in residual
programs: these can, however, be removed in post-unfolding. Thus, by sacrificing
some unfolding during program specialization and performing it in post-unfolding
instead, a considerably simpler preprocessing is achieved. And as we shail see below,
post-unfoiding can be made very eificient, so we beiieve that the trade-oif is

warthwhila
VWAULLIL VY ALLIV,.

That dynamic conditionals are “dzngerous™ with respect to termination can also
be understood in terms of zirictness. Partial evaluation is stricter, and thus less
terminating, than standard evaluation when—and only when—processing dynamic
conditionals: standard evaluation evaluates only one of the branches, but partial
evaluation spec1allzes (ct Section 3 5)

ingly well, also for other conditionals than those controlling recursion. For example,

dynamic conditionals are the ideal specialization points when considering string

pattern matching [13]. Specialization yields residual programs that exhibit a con-

siderably increased amount of sharing [?". Interestingly enough, the idea of using

dynamic conditiona ls as specnahzatxon pomts nas been used in otner ianguage
. e 4

for an impera

rojecto ve assembly-style

IR] thh us report an autopr 1
idea. Turchin [41] and Bondorf [2] ssentlally use the same

5.3. Insertion of new procedure calls
"SRV IR TR . . MUY SR PRy tln cmanializahla mraoram
1n partial €valuatOrs 10r recursive cquation llguagca, ui€ SpelianzZaoit progiaiin
points have traditionally been reduced to be only lser-wr!tte-_ pr-ccd, res (func-

174 A. Bondorf, O. Danvy

we ieplace the expression in question by a call to a new procedure whose body is
that expression. The parameters to the procedure are the free variables in the
expression. These procedures then serve as the only specialization points: all calis
to user defined procedures are unfolded.

Since we have chosen dynamic conditionals to be the (only) specialization points,
we replace all dynamic conditional expressions by such new procedure calls, and
corresponding new procedures are generated. To deal with nested dynamic condi-
tional expressions, the process proceeds recursively for the new procedures. This is
important when dealing with embedded dynamic conditionals where the inner ones
depend on fewer static values than the outer ones: (residual versions of) the inner
ones may be shared even though the outer ones are not.

Let us give a simple example of procedure call insertion. Suppose the program
piece

... (if (fooa)
(if (bar x)
(cary)
(edry))
(carz))

has been binding time analyzed, and X, y, and z turn out to be dynamic (or external,
that makes no difference) whereas a is static. This program piece is replaced by

... (if (fooa)
(newxy)
(carz))

(define (newxy)
(let ((xx))
(let ((yy))
(if (bar x)
(cary)
(cdrz)))i)

where new is a new name, ‘hich is annotated with Resid in u,,.

Identity let-expressions are inserted for all formal parameters to the inserted
proceaures (just as for the user-written ones, cf. Section 3.6). Such a new let-
expression is annotated as unfoldable if it has a static actual parameter variable; if
the actual parameter is dynamic, the let-expression is annotated in the abstract
occurrence counting phase just as any other let-expression. An external actual
parameter variable would give rise to a non-unfoldable let-expression; it turns out,
however, that the actual parameters cannot possibly be external because the actual
parameters of the inserted procedure call are all variables.

An obvious optimization, implemented in Similix, is to avoid inserting new calls
for dynamic conditionals occurring outermost (apart from the inserted let-

_A lnmntuv nutnnrnux/'nnn of ro/-nrn 1 orntinne
L 1] rojection gf rect LQqURQIICNS

_—
Wy

expressions) in procedure bodies, for instance when processing the append program
(Section 3.2) with dynamic xs and static ys. Here append itself is simply annotated
with Resid.

5.4 Comparison of Mix and Similix preprocessing

Mix needs loop detection, whereas Similix does not. Detecting loops in Mix is
rather primitive: only direct recursive calls are detected, not mutually recursive ones
(procedures calling each other). Hence mutual recursron is treated very conserva-

1 as the pa erformed in an
atypical i mterprete r, Mix will only unfold the primitive recursive “eval’ calls; Similix
will also unfold the mutually recursive ones. Thls makes a difference if the user has
written the “eval” procedure such that it uses special procedures (‘“eval-if”, “eval-

while”, etc.) for dealing with the different syntactic constructs.
1 VSIS LR [V s Pupiapey R eys My o SRS, S N . SR & 1 I U P, PR
IVIIA 1C1ICS VIl KIIUWICUEC aDOUL UIC 1IACU SC et Ul pl'lmlllVCb usca TC, 101 INSlance
thai car reduces the size of a structure. Similix requires no kn ow!edge of that kind
As pointed out above, using dynamic conditionals as specialization points gives

nice sharmg properties in residual programs. This snanng is difficult to achieve in
Mix.
The termination properties only vary slightly: Mix terminates in a few cases where

Similix does not. This is the case for statically controlied loops where at least one
dynamic parameter is passed around, but never nested: Mix never enters an infinite
unfolding loop in such a case, but Similix may. For purely static computations, Mix

and Similix both evaluate completely and SO have identical termination properties.
There seems to be no good reason why the termination of a siaiically controlled
loop should depend on whether some dynamic parameter incidentally is carried
ion; there is always the possibility of
infinite specialization. Infinite specialization can always be avoided by generalization
(forcing static expressions to become dynamic, cf. Section 2.2), but finding generaliz-
ation points is in general undecidable. The best one can do is to make approximative
analyses which on the one hand do guarantee termination (safety), but on the other
nd may be too conservative (generalizing unnecessarily much) in some cases. The
i t

hlam ic analunad in great AdAatail in 711 Tanec nranncac diffaren
Ul l'yL\.\.l 11 5 VAl uvidll 111 | 41 J. JULIVO PIVPUOVO WlLiivE wil

ensuring safety; the algorithms pay special attention to specialization of interpreters,
and some of the analyses correspond to the analysis performed by the Mix prepro-
cessing (loop detection and detecting inductive static structures).

5.5. Postprocessing in Similix

oatp L2

Postprocessing unfolds calls to “trivial* procedures in the residual program.
Post-unfolding is independent from and performed aiter program specialization.

176 A. Bondorf, O. Danvy

Post-unfolding could, for instance, transform the (residual) program piece

(define (fxy)
(if (focx) -
(gy)
176))

(define (gz)
(if (h2)
671
716))

(define (f xy)
(if (foo x)
{if (hy)
671
716)
176))

Care must be taken so that post-unfolding does not enter a nonterminating unfolding
loop. In Mix, this is handled by the call graph analysis, which finds cycles in the
graph.

The Similix post-unfolding performs no graph analysis, but relies on the following
simple observation: a loop will always contain at least one procedure, to which
there are at least two calls. There is an intial call for entering the loop and one or
more recursive calls. In graph terminology: any cycle contains at least one node
towards which at least two arcs are directed. We note that the goal procedure, to
which the initial call is performed, is a special case since the initial call is not
explicitly present in the program. In graph terminology, the goal procedure corre-
sponds to the root node.

The strategy for post-unfolding in Similix then follows: if a procedure is called
only once, the call is unfolded. If a procedure is called more than once, none of
the calls to it are unfolded. This guarantees termination of the post-unfolding.

This post-unfolding strategy implies that post-unfolding never duplicates code of
procedure bodies, but keeps sharing. This has consequences when a procedure is
called nonrecursively from two different places in the program: Similix does not
unfold such calls (keeping sharing), but Mix only considers cycles and thus does
unfold (duplicating function bodies and thereby destroying sharing).

The implementation of the Similix stritegy is very simple: during specialization,
a one-bit reference counter is associated with each residual procedure. During
postprocessing, if a procedure is cziled only once, its call is post-unfolded. No call
graph needs to be analyzed.

Automatic autoprojecticn of recursive equations 177

6. Abstraci occurrence counting analysis

This section describes the abstract occurrence counting analysis (cf. Section 3.8)
and the related raising of annotations (from Unfold to Resid) of let-expressions
with actual parameter expression with binding time vale D. The analysis safely
approximates the number of occurrences of a dynamic parameter on any possible
execution path of any possible residual version of the analyzed source expression.
If this number is “always exactly once”, the let-expression can be unfolded safely
during program specialization and thus it can be annotated with Unfold. Otherwise
it must be annotated with Resid since duplication/discarding is possible.

The idea is to compute an abstract count for all nonstatic variables, let-parameters,
and as well all procedure parameters. Let-expressions with dynamic actual parameter
are initially all annotated unfoldable (Unfold); the annotations are then raised
according to the following algorithm: compute an abstract occurrence count environ-
ment p,. that contains abstract counts for all nonstatic variables; then, if there exists
an unfoldable let-expression whose actual parameter expression is dynamic and
whose formal parameter’s abstract occurrence count is different from ““exactly once”,
raise .he annotation of the let-expression to Resid (i.e. update u,,) and repeat
(computing a new p,. etc.), otherwise stop.

Abstract occurrence counts depend on other counts, so p,. is defined recursively.
Therefore it is necessary to compute counts not only for variables with binding time
value D, but also for the ones with binding time value X: dynamic variables may
be used in expressions that during program specialization become bound to variables
with binding time value X (recall that D=X), and the counts for these external
variables influence the counts for the dynamic variables in question. On the other
hand, there is no need to count occurrences of static variables: dynamic variables
cannot possibly be used in expressions that during partial evaluation become bound
to variables with binding time value S.

Counts for formal let-parameters depend on counts for procedure parameters.
Therefore occurrence counts are computed not only for (nonstatic) let-bound vari-
ables, but also for (nonstatic) procedure parameters.

The algorithm for annotating dynamic let-expressions always terminates: annota-
tations are only raised, never lowered. In the worst case, all the dynamic let-
expressions becom¢ residual.

The abstract count for a let-parameter is computed by analyzing the body of the
let-expression. For procedure parameters, the procedure body is analyzed. The
computation of p,. depends on the current annotation of let-expressions and p,.
therefore has to be recomputed after each annotation raising. Because p,. is defined
recursively, every computation of it is itself a fixed point iteration.

It turns out that considerable simplification is possible. The computation of p,,
can be made independent of the current annotations, so recomputing it after each
raising is not necessary. It also turns out that the recursive dependencies vanish, so
no fixed point iteration is needed to compute p,,.

178 A. Bondorf, O. Danvy

6.1. The abstract occurrence count lattice

.

Absiract occurrence counting is computed over the lattice
(AbstractCount, =
where
c € AbstractCount ={1%,0%, 1%, any™}
and where the partial ordering is given by

any

N
\/

The lattice is an abstraction of a concrete domain, the lifted flat domain Nat, =
{0,1,2,3,...},. The values in the concrete domain count occurrences of a variable
on an execution path; the concrete domain is lifted to account for nontermination,
which corresponds to an infinite execution path.

The abstract values are related to the concrete ones in the following way: 0*
abstracts 0, 1* abstracts 1, and any™ abstracts any natural number (including 0).
1* means “no value yet” (the initial value before fixed point iteration) and
abstracts L.

One could have chosen a simpler lattice containing just the two values 1* and
any”. However, 0 would then need to be abstracted by any®, and this would have
given unnecessarily conservative results when analyzing compound expressions. For
instance, as we shall see below, we sometimes add abstract counts. Adding 1* and
0* thus gives 1%, whereas we would get any” with the simpler domain (there we
would need to add 1* and any®).

A let-expression is only unfolded when the abstract count is 1%; this valuc precisely
means “exactly one occurrence”. Since L*=1%, it mlg_.f be argued that we then
also have to unfold when the abstract count is L*. However, in the simplified version
of the analysis (presented later in this section), L* aever occurs in practice. The
simplified analysis is slightly more conservative, and it may indeed happen that it
gives 17 in situations where the fixed point analysis would give 1*. However, since
1” abstracts computations that are always nonterminating, either at partial evalu-
ation time or when running the residual program, it does not matter whether the
let-expression is annotated with Unfold or Resid when the count is L7.

Let us define some operations over the counting lattice. To analyze compound
expressions, we need an operator +* to add abstract counts. A let-expression factors
a value to avoid its multiple computation, so we need an operator x* to multiply
abstract counts. Conditional expressions reduce to one expression out of two, so
we need an operator | to take the least upper bound of abstract counts. We therefore

Automatic autoprojection of recursive equations 179

define:
+%: AbstractCount x AbstractCount - AbstractCount,
x* : AbstractCount x AbstractCount - AbstractCount,
LI: AbstractCount x AbstractCount - AbstractCount,

where +* and x* are defined by the tables in Fig. 4. The precedence rules for +*

and x* are the ordinary ones. The least upper bound operator L| is defined by the
partial ordering .

+* | L#¥| o* 1# | any* x¥ | L#¥|0* | 1# |any*
L7 JLF] 17 | L¥ | 1¥ LF i 1F] 1 [L¥
0% | 1#] 0% 1# | any* 0% | L¥| 0% | 0¥ 0¥
#F | F 1F |any® | any® 1% 1 i 0% | 1¥ |any”
any” | L¥ | any* | any* | any™ any* | L# [0% | any* | an™®

Fig. 4. Definitions of +* and x*.

The operations +*, x*, and LI can be verified to be commutative, associative,
and monotonic (this is easily deduced from the tables). The operations +* and x*
abstract addition and multiplication over the domain Nat,, i.e. for all natural
numbers n, and n, the following relations hold:

abs(n,+ n,)= abs(n,) +” abs(n,),
abs(n, x n,)= abs(n,) x* abs(n,).

abs : Nat, -» AbstractCount is the abstraction function. We note that abstraction is
not defincd on the powerdomain of Nat, but on Nat, itself. A similar approach
to abstraction is found in [20].

The abstract occurrence count environment p,. maps variables to occurrence
counts:

Poc € OCEnv = Variable - AbstractCount.

6.2. Computing the abstract occurrence count environment

The function OC computes p,. as a fixed point (see Fig. 5). It uses the function
oc to process expressions. The lattice AbstractCount is finite and oc is monotonic
since L, +”%, and x* are, so the fixed point will be reached after a finite number
of iterations.

6.3. Comments on ihe abstract occurrence counting analysis

e, initially maps all let-expressions with actual parameter expression with static
or dynamic result 0 Unfold. Those with external actual parameter expression are

180 A. Bondorf, O. Danvy

OC : Definitiont — LetMap — DefMap — OCEnv
OC[PD+) ptrerprater =
ix(Apoc . A6, i) . | |

((3 a definition [(define (P V; ... V,) L)] in [PD+]: & =PPJ A i < n) (1)
v
(3 an expression [Lo (let ((V L,E;)) L E)] in [PD+] : (€,i) = V[V])) (2)
A Pbl(ev l) g 0] (:
— ocfL EJ(€.i)pacttiettider
0L1%) (4)

oc : LabeledExpression — Variable - QOCEnv — LetMap — DefMap
— AbstractCount

oc[L E}vpoctiestaer =
let € = L[L] in
pel€) =S — 0¥
[case [E] of
[c): o*
i:vivj=v — 1¥ 0%
[¢if L,E; LzE; L3E3)]:
oc[LiEa] vpoctiteraer +¥# (0C[L2E2]Vpocttietder L OC[LIE3] vpocttier pier)
flet ((V L,E)) LE2)]:
let c1 = oc[LiEa]Vpocktieritder » €2 = OC[LaE2]VPocttettider TR
wiee(€) = Resid V pp(L[L1]) =5 — a+¥c2
[0 tet ¢ = ocLE2J(VIV])pocitiettder in
adIFAGE* o agt¥alax*g+a
[(vegin LoEy LiE; ... LaEx)]:
oc[LoEo] VPocktetptder +# OFTUEL]Vpocttectder +# ... +# OC[LuEq]VPoctieettaer
[€0 LiE; ... LaEd)]: oc[LiE]vpocktierptaer +¥ ... +% OC[LuEn]Vpocittertter
[P LiE; ... L.ED]:
let ¢ = oc[LiE] vpocttiectder X ¥ pocl P[P}, 1) +#... +*
OC[LAE] Vpoctieetider X poc(PIP], n)
in pge(P[P}) = Unfold — ¢
0 c U ocLiE\] vpacttterprder +# ... +# OC[LnEn]VPockterttder
end

Fig. 5. Abstract occurrence counting analysis. Line (1) in the definition of QC accounts for formal
procedure parameters, line (2) for let-bound parameters. Only nonstatic variables are of interest (3),and
only those actually occurring in the program (4).

mapped to Resid (cf. Section 3.13). u,,, maps procedure names to either Unfold
or Resid: user-defined procedures are mapped to Unfold, the inserted ones to Resid
(see Section 5.3).

A static expression always reduces to a constant in the residual program, so the
(non-static) variable being counted can never occur in the residual version of a

Automatic aut, jortion of ropurcing onuntinmee
Autom Qlic quigprejection gy recursive :quuuuuo

pas
e lo]
-

static expression. The count therefore is 0. The same holds for constants. This case
is actually redundant since constants always get binding time value S.
The occurrence count for a variable is either 1” or 0%, according to whether it is

the variable v currenily being counted
If tha tact nf a randitinnal avnraccinn ic ctatin tha nanditinmal eadirnnn ¢4 Ama ~F
A1 LIV LWOL Vi @ VUMIBILIVIIGRI VARPIVOJIVIL 10 SV, LIV VULIUIIUIIAR TCUULOD LU ULIC O1
its branches. In that case, th unt is the least unner bound of the two h_an(‘h

this residual conditional, the test and one of the branches are executed. The count
therefore is the sum of the test count and the least upper bound of the branch
counts. Since a static tes 1mplles that the test count is 0%, this sum gives the correct

S 3) . ¢ tains a residual
version of the parameter expression and a re51dual version of the body. The count
therefore simply is the sum of the two counts. If the actual parameter expression
E, is static, the let-expression will be unfolded (Section 3.13) and (the nonstatic) v

cannot occur in E,; the count is therefore simply c,, but since ¢, is now 0%, the

[¢]
(=N
=
[~
P g
<
[}
-y
4
[=]
=]
[}
=Y 93
[+
s}
o
]
(]
B
3
-
[y]
17
@
©
3
]
3
=]
]
-
i»
t'b
(=%
o)
(L)
]
o,
<D
=]
..

-
e
=
¢]

sources of occurrences: the “ordinary” ones in the (residual version of the) let- bodv
and the indirect ones caused by occurrences of the actual parameter expression in
the let-body. This gives the couni ¢, x* ¢5+% c,.

In some cases, however, one can foresee that even though the let-expression

7

currently is annotated Unfoid, it must evertualily be raised to Resid. This happens

wham tha aandisica o 1% o ol £ 17 o £u181ad (ngtice that in that case the count
WIIVIE LIV LUlINIuVULL 11 =1 Ve, 71 O 1TUHIIIVU LHVLIVG LIal 111 Ladl vaoy uUliv vuulit
¢; +% ¢, is used, the same as for let-expressions annotated Resid). The condition

states that if there is a possible occurrence of v in the parameter expression (¢,21%)
and if the count for the formal parameter of the let- -expression is different from
“exactly once” (¢ # 17), then we already know that the let-expression—if ¢; remains
different from l”—eventually will be raised to Resid.

he reason is that i

T c,=17, then E, must have a nonstatic binding time value
(when ¢,21%, v occurs in E; which is therefore at least D), and since ¢} # 17, the
let-expression will be raised to Resid. It may also happen that c¢5 eventually becomes

17 becuase of new annotations in the let-body, in that case the let-expression remains
unfoldable, but since

ax*ey+* c,=c,+% ¢, when ci=1%,

€
sequence (_ex_prgssion is a constant lf the operation is

expression itself w1th resndual versions of the subexpressions. In the former case,
the count is 0%, in the latter it is the sum of the counts of the subexpressions. This
sum trivially reduces tc 0¥ when all subexpressions are static, and so the sum can
be used in both cases.

182 A. Bondorf, O. Danvy

Like sequence operations, primitive operations are strict in all subexpressions.
The count is therefore simply the sum of the counts of the subexpressions.

The treatment of an unfoldable procedure call is similar to the primitive operator
case (summing over the arguments), but each actual parameter must be treated in
a way similar to an unfoldable let (multiplying with the count for the formal
procedure parameter). The residual version of a procedure call annotated Resid is
a residual procedure call. In that case, the sum of the counts for the arguments is
simply taken (as for primitive operations). This residual procedure call may, however,
be post-unfolded. When that happens, the call must be treated as if it had been
annotated Unfold. The abstract count for calls annotated Resid thereforeis “cLl...”.

The analysis does not consider code duplication [38], only computation duplica-
tion. For example, the variable y would get the abstract count 1* in (if Eyy)
(where y does not occur free in E). This may result in residual programs with
duplicated code. It is straightforward to make a more conservative analysis that
prevents such code duplication. This is done by changing the count for conditionals
into

let ¢;= oc[LoE;] UPocMietthders €3 = ocL:E;] VPoclleibdes iN
ocI[LiEil! vpoc“lell"def +# ((CZ I—] C3) L—I (Cz +# C3)) .

6.4. Correctness

As for the binding time analysis, we will not give a correctness proof for the
abstract occurrence counting analysis, but we do give a precise statement of
correctness.

The abstract occurrence counting analysis is correct if and only if the resulting
abstract occurrence counting environment p,. fulfills the following safety require-
ment: for any nonstatic program variable V defined either in a procedure definition

(define (P...V...)LE)
or in a let-expression
Lo (let ((VL4E,)) LE)

(where nonstatic means p,,(V'[V])=D), p..(5"[V]) safely abstracts the number of
occurrences n of V on any possible executior path of any possible residual version
of the expression E (i.c. z,.(V'[V])= abs(a)).

A formal correctness proof would be quite complex, involving both reasoning
over program specialization and over executing the generated residual code.

6.5. Simplifying the analysis

The counting analysis can be much simplified without losing significant precision.
This will be done now.

Automatic autoproj
r c4

-
=
"
=
o
3
n

-

oo

W

Lemma 1. oc (and consequently OC) can be made independent of u,,,.

Proof. u,, is only referred to in the oc ruie for iet-expressions. Here we observe that
e, 21 A c5#1%) © (c,21%)vei=1*
& qg=1%ve=0"vei=1%

In that case it is easy to verify that

n V#n’-l-#nl_tl J_#n
QX o7 EO T 6,
so it is safe to reduce the count for let-expressions to simply ¢, +* c,.
e £ onnlcime hacib mmsn slns A L H o A # "I PR S
This gives a loss of precision, but note that ¢, X” ¢3+” ¢;=¢, +” ¢, except for
the rather uninteresting case ¢;=0%aci=_L" (uninteresting since 1* abstracts

nontermination). Practically, we therefor
o x*ch+* ¢, with e, +* ¢,. O

o

do not lose anything by approximating

Lemma 2. Abstract occurrence couiits for formal procedure parameters are always 17,

Proof. We know that a_l!

of the form (let ((x))) The only free occurrence of a formal procedure
parameter is in the corresponding inserted let-expression (cf. Section 3.6). The count
therefore trivially is 1%, using Lemma 1 for counting when processing the inserted
let-expressions. [J

Lemma 3. oc (and conseguently OC) is independent

Proof. .. is used when processing procedure calls. But using Lemma 2 and that
¢ x* 1% = ¢ (for any c), the count for procedure calls can be simplified to

ocﬂLiEill UPoclrietfhdef +7 7 ocﬂLnEnllvpoc“lel“dejs

independently of the test. []
Lemma 4. oc is independent of p,..

Lol o nodoion o aaatase
formal pro cedure paraiivicis.

Proposition 1. p,. need not be computed as a fixed point.

Proof. Follows from Lemma 4: the recursive dependency has vanished. [J

identity let-expressions reduce the duplication/ discardx ng problem toa questlon of
unfolding let-expressions.

-

»

"

"

»

[

§

-

ot
2
h_

184 A. Bondorf, O. Danvy

Proposition 2. Computation duplication/ discarding never occurs due to procedure call
unfolding.

Proof. Follows from Lemma 2: all formal procedure parameters have abstract
occurrence count 1%, [

Abstract occurrence counting thus does not affect procedure call unfolding (so
Maer Need not be changed).

Proposition 3. The resulting p,., is independent of the order in which let-expressions
are raised.

Proof. Follows from Lemma 1: the computation of counts is independent of the
current let-annotations. [0

6.6 Simplified abstract occurrence counting analysis

The simplified abstract occurrence counting analysis is given in Fig. 6. We
formalize the raising of let-annotations by defining a function raise,. It raises
let-expressions until ali dynamic (binding time value D) actual parameter expressions

raise, : Definitiont — LetMap — LetMap
raiseoc[PD+] pee =
fix(Apge, -
f1ee U (3 an ezpression [L (let ((V L,E,;)) L;E)] in [PD+]:
#ie(CIL]) = Unfold A ppe(VIV]) = D A oc[LEJV[V] # 1#
— upd L[L] Resid yj,,

0 4ier))
oc’ : LabeledExpression — Variable — AbstractCount
oc[L Ejv=
po(L[L]) = S — 0*

[case [E] of
[c): 0*

V:vivl=v — 1¥[Jo*

[(if LiE; L2E; L3Es)] : oc[LiEs]v +# (oc'[L2E2]v U oc'[LsEa]jv)

[Clet ((V LiE1)) L2E2)] : oc[LiEs]v +# oc[LeEx]v

I(begin LoEo LiEy ... LnEn)]: od[LoEo]v +* oc'[LiEs]v +%# ... 4+# oc'[L.E.]v
[0 LiE; ... L.Ea)]: od[LiEs]v +#*... +* oc'[L.E.]v

[P LiE ... LiED] . od[LiE]lv +#. . +# oC/[LaE,]v
end

Fig. 6. Simplified abstract occurrence counting analysis.

Automatic autoprojeciion of recursive equations 188

of unfoldable let-expressions have the abstract occurrence count 1*. We note ti.at
due to the various simplifications, the GC function has vanished.

7. A larger examp'e: specializing an MP-interpreter

Tenbnmemmatans fan +hha T PN CSEAADY? (iantommnAzmnad 2o T27TTY Lincrs tcrnlmalle, Lo o
LILL lplclclb LUl e Uy la.usua.gc jL/0 1N ll.l UULCU 111 LJIJ} nave yplbdlly UCCI1
used to test self-applicable partial evaluators [11, 30, 36]. MP is a small imperative

untyped “while” language with Llsp data structures, assignments, conditionals, and
loops. The abstract syntax of MP is given in Fig. 7.

There are two kinds of variables declared by rars and vars The “pars™ are
s the straightforward
- erm b . L£_1__. "L _
an vaiue Jawe. 11nc

Figure 8 gives an example of an MP-program (colnmg from [371}). The program
computes X to the yth symbolically; the numbers x, y, and the result oui are

::= (program (pars Vi) (vars V2*) B)

ii= (Cx)

::= (:= VE) | (if E Bt B2) | (while E B)

::= Cst | V| (cons E1 E2) | (equal El1 E2) |
(car E) | (cdr E) | (atom E)

m aQ w v
|

a
/\=I'I

(vhile next
((if (cdr (car next))
((:= next (cons (cdr (car next)) (cdr next))) then ...
(while kn

((:= next (cons x next))
(:= kn (cdr kn))))

N ais e

(:= out {cons next out)))
((:= next (cdr next)) else ...
(:= kn (cons ’1 kn))))))))

Fig. 8. The MP-program power-MP.

186 A. Bundorf, O. Danvy

represented as lists. It is not important here how the program actually works, it
simply serves as an example.

7.1. MP-interpreter text

The interpreter uses an environment {env) and a store. An environment binds
variables to locations, the store binds locations to values. Figure 9 gives the interpreter
text. The interpreter uses a number of primitive operators, for instance for processing
abstract syntax (for example P> V2, isAssignment?, and C-Assignment - V) and
environments. These operators are defined in the file “MP-int . adt”.

The interesting point with this version of the MP-interpreter is the absence of an
explicit store variable: the store is handled by primitive operations that only have

(loadt “"scheme.adt"))
(loadt "MP-int.adt")

-]

fine (run P valu
1 (V2= (P->V2* P))
(env (init-environment (P->Vi* P) V2%)))
(init-store! value* (length V2s))

(evalBlock (P->B P) env)))

lues) ; Program x

(define (evalBlock B env) ; Block x Env — Undef
(if (emptyBlock? B)
"Finished block"
(evalCommands (headBlock B) (tailBlock B) env)))

(define (evalCommands C B env) ; Command x Block x Env — Undef
(if (emptyBlock? B)
(evalCommand C env)
(begin (evalCommand C env)
(evalCommands (headBlock B) (tailBlock B) env))))

(define (evalCommand C env) ; Command x Env — Undef
(cond
((isAssignment? C)
(update-store! (lookup-env (C-Assignment->V C) env)
(evalExpression (C-Assignment->E C) env)))
((isConditional? C)
(if (is-true? (evalExpression (C-Conditional->E C) env))
(evalBlock (C-Conditional->B1 C) env)
(evalBlock (C-Conditional->B2 C) env)))
((isWhile? C)
(if (is-true? (evalExpression (C-While->E C) env))
(begin (evalBlock (C-While->B C) env)
(evalCommand C env))
“Finished loop"))
(else
"Error - unknown command"))j

Fig. 9. MP-interpreter.

Automatic autoprojection of recursive equations 187

(define (evalExpression E env) ; Expr x Env — Value
{cond
((isConstant? E)
(constant-value E))
((isVariabl- E)
(lookup-store (lookup-env (E->V E) env)))
; where lookup-env: Variable x Env — Value
((isPrim? E)
(let ((op (E-»operator E)))
(cond
((is-cons? op)
(cons (evalExpression (E->E1 E) env)
(evalExpression (E->E2 E) env)))
((is-equal? op)
(equal? (evalExpression (E->E1 E) env)
(evalExpression (E->E2 E) env)))
((is-car? op)
(car (evalExpression (E->E E) env)))
((is-cdr? op)

{cdr (evalExpressicn (E->E E) env)))

(cdr (evalExpressica
({is-atom? op)
(atom? (evalExpression (E->E E) env)))
(else
“Unknown operator"))))

(else

"Unknown expression form")))

Fig. 9 (continued).

locations (and values) as parameters, not the store itself. The store is implemented
as a global variable which is updated destructively, and the store operators (defined
in the file “MP-int.adt”) are hence opaque (see Fig. 10). As can be seen from
these definitions, the store is represented as a list, but this could be changed to any
other representation; using a vector (array) is an obvious choice of a more efficient

(defprim-opaque (init-store! input-Viz length-V2x)
(set! store
(append
input-Vi*
((rec £ (lambda (n) (if (equal? n 0) ’() (cons () (£ (subi nli)))))
length-V2%))))

(defprim-opaque (update-store! location value)
{set-car! (list-tail store location) value)) .

(defprim-opaque (lookup-store location)
(list-ref store location))

Fig. 10. MP-interpreter, store operators.

188 A. Bondorf, O. Danvy

implementation. We use a list to get a more faithful performance comparison with
Mix (Section 8).

Most importantly, the store is global. Notice that the interpreter in case of
successful evaluation always returns some dummy (or even undefined) value such
as the string “Finished loop”. The point is that the global variable store has
been updated, so after the execution store contains the final values of the variables.

The above interpreter has been written with a globzl:zed store from the beginning.
However, globalizable variables can be detected in purely applicative programs.
Schmidt has described a method for detecting such variables in denotational seman-
tics definitions [35], and Sestoft has developed techniques for replacing function
parameters by global variables [39]. One could imagine that the above interpreter
had been generated automatically (or at ieast semi-automatically) from a purely
applicative program.

One may note that not only the store, but also the environment could be globalized:
after initiaiization, the environment never changes and thus it is definitely single-
threaded and globalizable. There are, however, two good reasons not to giobalize
the environment. Firstly, globalizing environments is not possible in general: if the
MP-language had been extended with local Algol-like variable declarations, there
would be several active environments around at the same time. The environment
would thus not be single-threaded and could not be globalized. A second reason
for not globalizing the environment is related to Similix. Globalizing wouid make
environment processing dynamic rather than static: all operations on global variables
are treated as dynamic (cf. Section 3.9).

Finally, we note that no generalization point is needed in the MP-interpreter (cf.
Section 2.2). This is usually the case in interpretive specifications of programming
languages.

7.2. Specializing the MP-interpreter

Let us now use Similix to specialize the MP-interpreter with respect to the
MP-program power-MP from above. This yields the Scheme target program given
in Fig. 11. The structure of the target program is quite close to assembler code,
although the code is not “flattened” (nested begin expressions have been flattened
automatically by the postprocessor, but other nested expressions still exist). Notice
that variable offsets have been computed and that there are no parameters to the
residual procedures. There were only static parameters to eval-command in the
source program, and therefore there are no parameters in the residual code. The
residual procedure calls correspond closely to assembler instructions of the kind
“jump subroutine”.

Also notice that the two small while-loops both have been compiled into the
same procedure, eval-command- 1. This is of course possible since both while loops
perform the same operations. The partial evaluator detects this because both loops
are textually identical. They therefore correspond to identical static values for the
parameter C to eval-command.

Automatic autoprojection of recursive equations 189

(loadt "scheme.adt")
(loadt "MP-int.adt")

(define (run-0 value#*_0)

(init-store! value*_0 3)

(update-store! 4 (lookup-store 1))

(evalcommand-1)

(update-store! 2 (cons (lookup-store 3) (lookup-store 2)))
(evalcommand-2))

(define (evalcommand-2)
(if (is-true? (lookup-store 3))
(begin
(if (is-true? (cdr (car (lookup-store 3))))
(begin
(update-store! 3 (cons (cdr (car (lookup-store 3)))
(cdr (lookup-store 3))))
(evalcommand-1)
(update-store! 2 (cons (lookup-store 3) (lookup-store 2))))
(begin (update-store! 3 (cdr (lookup-store 3)))
(update-store! 4 (cons 1 (lookup-store 4)))))
(evalcommand-2))
"Finished loop"))

(define (evalcommand-1)
(if (is-true? (lookup-store 4))
(beogin (update-store! 3 (cons (lookup-store 0) (lookup-store 3)))
(update-store! 4 (cdr (lookup-store 4)))
(evalcommand-1))
"Finished loop"))

Fig. 11. Compiied puwer-MP program.

7.3. Generating an MP-compiler

Similix generates an MP-compiler from the interpreter by self-application (cf.
Section 1.1). Using the generated compiler, target programs are generated sig-
nificantly faster than by specializing the interpreter (see the benchmarks in the
Section 8). The compiler text is too large to show here. The interested reader can
find fragments of automatically generated compilers in [6, 7].

8. Performance

Similix has been implemented in Scheme and self-applied successfully. Because
source and residnal programs follow the same syntax (our particular subset of
Scheme), they can both be run directly in Scheme and specialized further. We have
mainly used Similix to generate compilers from interpreters and to specialize pattern
matching algorithms. Along the lines of earlier work in self-applicable partial
evaluation, we reproduce benchmarks addressing the MP language.

i90 A. Bondorf, O. Danvy

For simplicity, we identify programs with the functions they compute. Following
the tradition, the program specializer is referred to as mix, the compiler generator
as cogen. Binding time annotated (preprocessed) programs have the superscript ann.
Figure 12 shows the speedups achieved by partial evaluation. It compares (1) running
the MP-interpreter on the power-MP source program and running the power-MP
target program, (2) specializing the MP-interpreter and running the MP-compiler,
and (3, 4) specializing mix and using cogen.

job time/s| speedup
output = int(source, data) 20 | 9.2
output = target(data) 0.2
target = mix(int*™, source) 04| 438
target = comp(source) 0.1
comp = mix(mix"™, int>"") 34| 44
comp = cogen(int*"") 0.8]
cogen = mix(mix®", mix*"") | 184 | 3.9
| cogen = cogen(mix*"") 4.7

Fig. 12. Similix performance, MP-interpreter example.

Preprocessed programs are superscripted with ann. The first column identifies the
job, and the run time figures are given in the second column. The figures are given
in CPU seconds with one decimal, and they are for an implementation in Chez
Scheme version 2.0.3 on a Sun 3/260. The figures exclude the time used for garbage
collection (in the worst case 40% additional time, typically much less), but include
time for postprocessing (post-unfolding). The third column shows the speedup
ratios. More run time decimals than the ones given have been used in the computation
of the ratios. The run time figures and ratios have the usual uncertainty connected
to CPU measures.

Preprocessing int takes 0.7 seconds, and preprocessing mix takes 6.4 seconds. The
size of the MP-interpreter is around 2 K, and that of the MP-compiler around 8 K.
This gives an expansion factor 4. The size of mix ‘s around 10 K, of cogen around
40 K, also giving an expansion factor of 4.

The figures compare very well with [24], to cur knowledge the only other fully
automatic partial evaluator (with automatic call unfolding) for a recursive equation
language. We get smaller and faster programs, and better speedup ratios. One reason
is that besides providing a stronger language, our use of abstract data type operators
allows more conciseness and prevents the speciaiization of data structure processing.

The figures are also comparable to the ones given in [11].

9. Related work

The book by Bjgrner, Ershov and Jones [1] contains a thorough bibliography
about other works involving partial eevaluation.

Automatic autoprojection of recursive equations 191
9.i. Mix

Mix [23] was the firsi actual autoprojector. It processed programs expressed as
collections of Lisp-type first-order recursive equations with a fixed set of primitive
operators. Mix showed the need for binding time analysis in self-application partial
evaluation, and many problems were identified while developing it: duplication,
termination, and so on. An automatic version of Mix has been developed later [24].

9.2. Call duplication

The problem of call duplication is described and solved in [38]. Whereas computa-
tion duplication concerns duplicating any nonconstant residual expression, call
duplication only concerns a subset of these, namely those containing function
(procedure) calls. An additional abstract analysis operating on source programs.
Sestoft’s call abstract interpretation, is needed to detect such expressions. The analysis
may need to be repeated during preprocessing. Sestoft’s duplication risk analysis
resembles our abstract occurrence counting analysis, but it is used differently: the
language used there has no let-expressions, so duplication is avoided by raising the
annotation of the surrounding call (that causes the duplication) into Resid.

9.3. Partially static structures

Mogensen developed an autoprojector treating partially static structures (using
structured binding time values); to some degree, let-expressions were used to separate
call/code duplication issues from call unfolding issues [30].

9.4. Arity reducing and arity raising

Moscow-Mix [34] is an autoprojector for RL (“‘Refal-Lisp™) programs. It presents
partial evaluation essentially as a two-phase process: arity reducing (specialization)
and arity raising. Arity raising changes the functionalities of residual procedures
from taking a list of n values to taking n arguments. Arity raising is referred to as
variable splitting in the Copenhagen Mix work and retyping in [31].

9.5. Schism

Schism [10], an autoprojector for first-order Scheme programs, was the first to
offer an open-ended set of primitive operators. The sysiem uses hand-written fiiters
to specify whether a procedure call should be unfolded or specialized as well as
how arguments should be propagated if the call is specialized. As described in [11],
Schism uses polyvariant binding time analysis and it also treats partially static
structures.

In contrast, Similix’s binding time analysis is monovariant: it only generates one
binding time annotated version of each source procedure. If a procedure is called
with different binding time patterns, the least upper bound is taken. This implies a
possible loss of static information at program specialization time. In Consel’s system,
calls with different binding time patterns cause the binding time analyser to generate

192 A. Bondorf, O. Danvy

several annotated versioi'-, one for each binding time pattern. This is similar to
polyvariant partial evaluation, but the polyvariancy occurs already at binding time
analvsis time. In addition to this, Schism uses polyvariant specialization at partial
evaluation time; the residual procedures are thus specialized versions of (binding
time) specialized versions of the source procedures.

9.6. Compilation of binding times

In Schism, the interpretation of binding times is lifted away from the self-
applicable specialization kernel, which allows to factor completely static and com-
pletely dynamic expressions out of the actual specialization [11, 14].

9.7. Synthesis

Similix has fulfilled and even gone beyond our initial expectations, in its underly-
ing principles as well as in its actual realization: call unfolding is fully automatic
(no user-added call unfolding annotations); it offers an open-ended abstraction of
data structures compatible with the binding time analysis; it provides a sound
interface with global variables (such as i/0); it guarantees not to duplicate computa-
tions in residual programs; it preserves termination properties; it specializes different
program points than just user defined procedures; and it automaticall; maintains
the consistency between different overlapping sets of user defined primitive
operators.

As a direct consequence of Similix’s open-ended design, arity raising (variable
splitting) need no longer be particular for the operators cons, car, and cdr: it can
be parameterized with respect to the user defined abstract data type operators. A
prototype arity raiser based on this idea has been developed [29].

9.8. Higher-o:der partial evaluation

Similix has been extended to handle a higher-order subset of Scheme. This
extension is described i.: [4] for a side-effect-free language. For a full description,
also covering side effects on global variables, see [6]. This: kigher-order extension
of Similix does provide arity raising through the higher-oicur constructs [4]. Other
higher-order partial evaluators include Lambda-Mix [22] and a new version of
Schism [12]. These systems are all based on monovariant binding time analyses and
they offer various degrees of polyvariancy and automatism.

10. Conclusion and open problems

We have addressed and solved the partial evaluation problems of automating call
unfolding, having an open-ended set of operators, and processing global variables
updated by side effects. The problems of computation duplication and termination
of residual programs have been addressed and solved: residual programs never

Automatic autoprojection of recursive equations 1o,
duplicate ccmputations of the source program; residual programs do not terminate
more often than source programs.

We have presented a new method for automatic call unfolding which is simpler,
faster, and sometimes more effective than existing methods: it neither requires
recursion analysis of the source program, nor call graph analysis of the residual
program.

To avoid computation duplication and preserve :ermination properties, we intro-
duced an abstract interpretation of the source program, performed during prepro-
cessing: abstract occurrence counting analysis.

Two important open problems remain: Similix’s binding time analysis in
monovariant (Section 9), and generalization points need to be inserted by hand in
source programs (Section 2.2).

10.1. Applications

Applying partial evaluation in an active research area today. The applications
include, among others, compiling pattern matching, [16, 25], compiling laziness [5],
and compiling Algol-like programs [15].

Acknowledgement

This work has been accomplished in Neil D. Jones’s Copenhagen Mix group,
through many discussions with each member. We are most grateful to Torben £E.
Mogensen for stimulating discussions and for ideas and suggestions on inserting
let-expressions to avoid duplication. We have benefited from insightful discussions
with Charles Consel, especially concerning open-endedness in partial evaluation.
Thanks are also due to Chris Hankin and the referees for many useful comments.

References

(1] D. Bjgrner, A.P. Ershov and N.D. Jones, eds., Partial Evaluation and Mixed Computation, !FIP
TC2 (North-Holland, Amsterdam, 1988); Workshop Proceedings, G. Avernas, Denmark (1987).
[2] A. Bondorf, Towards a self-applicable partial evaluator for term rewriting systems, in: D. Bjgrner,
A.P. Ershov and N.D. Jones, eds., Partiai Evaluation and Mixed Computation (North-Holland,

Amsterdam, 1988) 27-50.

[3] A. Bondorf, A self-applicable partial evaluator for term rewriting systems, in: J. Diaz and F. Orejas,
eds., TAPSOFT’89, Proceedings of the International Joint Conference on Theory and Practice of
Software Development, Barcelona, Spain, Lecture Notes in Computer Science 352 (Springer, Berlin,
1989) 81-96.

[4] A. Bondorf, Automatic autoprojection of higher order recursive equations, in: N.D. Jones, ed.,
ESOP'90, 3rd European Symposium on Programming, Copenhagen, Denmark, Lecture Notes in
Computer Science 432 (Springer, Berlin, 1990) 70-87; also: Sci. Comput. Programming 17 (1991).

(51 A. Bondorf, Compiling laziness by partial evaluation, in: S.L. Peyton Jones, G. Hutton and C.
Kehler Holst, eds., Functional Programming, Glasgow 1990. Workshops in Computing (Springer,
Berlin, 1990) 9-22.

[6] A. Bondorf, Self-applicable partial evaluation (revised version), Ph.D. Thesis DIKU Report 90-17,
DIKU, University of Copenhagen, Denmark (1950).
71 A. Bondorf and O. Danvy, Automatic autoprojection of recursive equations with global variables
and abstract data types, Tech. Report 90-4, DIKU, University of Copenhagen, Denmark (1990).
{81 A. Bondorf, N.D. Jones, T.£. Mogensen and P. Sestoft, Binding time analysis and the taming of
self-application, Draft, DIKU, University of Copenhagen, Denmark (1988).
[9] M.A. Bulyonkov, Polyvariant mixed computation for analyzer programs, Acta Informat. 21 (1984)
AT2_AQA
[10] C. Consel, New insights into partial evaluation: the SCHISM experiment, in: H. Ganzinger, ed.,
ESOP’88, 2nd European Symposium on Programming, Nancy, France, Lecture Notes in Computer

Science 300 (Springer, Bzrlin, 1988) 236-247.

SCICNCC JUY 2PIINGEE,

[11] C.Conscl, Analyse de programmes, evaluation partielle e génération de compilateurs, Ph.D. Thesis,
LITP, University of Paris 6 (1989).

[12] C. Consel, Binding time analysis for higher order untyped functional languages, in: 1990 ACM
Conference on Lisp and Functional Languages, Nice, France (1990) 264-272.

{i3] C. Consei and O. Danvy, Pariiai evaiuaiion of paiiern maiching in sirings, Inform. Process. Leii.
30 (1989) 79-86.

[14] C. Consel and O. Danvy, From interpreting to compiling binding times, in: N.D. Jones, ed.,

rcNDon ad Tirmnmare Cusmemnciiiss e Dencesmessiin £ omombacsie Nowasssl T aatinea Natas in
zoVvr ’U J'u uh'upcu'l o_yruyu.)lulu urn l'(’s'“'ll"llfls, \,u‘lcnuuszu, L/TIEITEAT N, LVVLUEY 1YV 11

Computer Science 432 (Springer, Berlin, 1990) 88-105.
[15] C. Consel and O. Danvy, Static and dynamic semantics processing, in: Eighteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Orlande, FL (1991),
[16] O. Danvy, Semantics-directed compilation of nonlinear patterns, Inform. Process. Lett. 37(6) (1991)
315-322.
[17] A.P. Ershav, Mixed computation: potential applications and p
Sci. 18 {1982) 41-67.
18] C.K. Gomard and N.D. Jones, Compiler generation by partial evaluation: a case study, in:
Proceedings Twelfth IFIP World Computer Congress (1989).
[19] P. Hudak and J. Young, A collecting interpretation of expressions (without powerdomains), in:

A RS CTFTVALT OFYIDT A AT O £ o

rljleenm ﬂ""ual AUV JIUAC T -JIUrLAN aymposmm on rrmcnples 2]4 rrogrammmg Language.s,
San Diego, CA (1988) 107-118.
[20} ! Hushes Abstract interpretation of first-order polymorphically typed languages, in: C. Hall,
Hunkhac neecd TT N'Naceall ads 1000 £ lunminnes W/ nadiodenes mae Eaioengddne] Donvaresnssnsine s Dacanenk
J- IIUEIICB anyd J. 1. UV UL, <as. oy 1700 WTIUIEUW YWUIRSIUp uni rum.uunul tluguunnuus, l\Cbcalbll
Report 89/R4, Computing Science Department, Glasgow University, Scotland (1989) 68-86.
[21] N.D. Jones, Automatic program specialization: a re-examination from basic principles, in:
D Rnlrnnr AP Erchov and N.D. Iones eds.. Partial Evaluation and Mixed Computation (North.

s 2JeINRC o EAORIUY Gt INIs. JURIVTy TUS., 2wl AlvisiuiesniUn Wil YAl L UMNpniienn AN OEu

Holland, Amsterdam, 1988) 225-282.

{22} N.D. Jones, C.K. Gomard, A. Bondosf, O. Danvy and T.£E. Mogensen, A self-applicable partial
evaluator for the lambda calculus, in: IEEE Computer Society 1990 International Conference on
Computer Languages (1990) 49-58.

{23} N.D. Jones, P. Sestoft and H. Sgndergaard, An experiment in partial evaluation: the generation of
a compiler generator, in: J.-P. Jouannaud. ed., Rewriting Technigues and Applications, Dijon, France,
Lecture Notes in Computer Science 202 (Springer, Berlin 1985) 124-140.

{24] N.D.Jones, P. Sestoft and H. Sgndergaard, MIX: a seif-appiicabie partial evaiuator for experiments
in compiler generation, LISP Symbolic Comput. 2 (1989) 9-50.

[25] 3. Jargensen, Generating a pattern matching compiler by partial evaluation, in: S.L. Peytor: Jores,

£ Ll.cétnen N Wall.. et] PR ___ 10NN ul___l___l____, .
. nUnoin auu . ACHICIK ﬂUlbl, cua, rum.uumu rrugrummmg, UlﬂbgUW I17JU. WOIrKInops in

Computing (Springer, Berlin, 1990) 177-195.
[26] E.E. Kohlbecker, Syntactic extensions in the programming language Lisp, Ph.D. Thesis, Indiana

llnlue_rmhl Rlaominetaon IN (1028)
versity, sioomingtion, ilv (19686).

[27] J. Launchbury, Projection factorisations in partial evaluation, Ph.D. Thesis, Department of Comput-
ing, University of Glasgow, Scotland (1989).

{28] K. Malmkjer and Q. Danvy, Preprocessing by specialization.
Manbhattan, KS (1991).

[29] M. Marquard and B. Steensgaard-Madsen, Parameter splitting in a higher order functional language,
Student Report 90-7-1, DIKU, University of Copenhagen, Denmark (1990).

—

ablems for study, Theoret. Comput.

—

Automatic aut

-
2
©
©
=3
S
]
(=]
~
3
o
3
13
)
3
=
)
=
9
3
n
-
Nl
vy

[30] T./E. Mogensen, Partially static structures in a self-applicable partial evaluator, in: D. Bjgrner, A.P.
Ershov and N.D. Jones, eds., Partial Evaluation and Mixed Computation (North-Hoiiand,-
Amsterdam, 1988) 325-347.

[31] T.£. Mogensen Binding time aspects of partial evaluation, Ph.D. Thesis, DIKU, University of

Nmnmbnane Thacoen 1. {1000)
wopcinagell, Ucllllldll\ \1707).

[32] P.D. Mosses and D.A. Watt, The use of action semantics, in: IFIP TC2 Working Conference on
Formal Descriptions of Programming Concepts 111 (North-Holland, Amsterdam, 1986).

1221 I Reac and W Clincer Raviced renort’ on the alegrithmic lanouase cohame Sienlan Notices 21
LJJJ Js AVWWO Qi VY, \wllllabl, l\\i'l-‘lb\-l l\rl.l\lll Ull ik ﬂlsvlllllllll\f lﬂllsuﬂs\' Ebll\nlll\-, uls’uu T IYUIILTY &k

(1986) 37-79.
[34] S.A. Romanenko, A compiler generator produced by a self-applicable specialiser can have a
:nrnylsmolv natural and understandable etrm‘m!'e in: D, Rmrnpr A_P. Ershov and N.D. Jones

natuirat unaersianagan Structiu D)ert OIS,

eds., Partial Evaluation and Mixed Computation (North-Holland, Amsterdam, 1988) 445-463.
[35] D.A. Schmidt, Detecting global variables in denotational specifications, Trans. Programming
Languages Syst. 7 (2) (1985) 299-310.
[36] P. Sestoft, The structure of a self-applicable partial evaluator, in: H. Ganzinger and N.D. Jones,
eds., Programs as Daia Objects, Copenhagen, Denmark, Lecture Notes in Computer Science Zi7
(Sprmger, Berlin, 1985) 236-256.
[37] P. Sestoft, The structure of a self-aprlicable nartial evaluator, Tech. Report 85-11, DIKU, University

Ul LUpClllldgCll, UCllllldlK L1700).
[38] P. Sestoft, Automatic call unfolding in a partial evaluator, in: D. Bjgrner, A.P. Ershov and N

Jones, eds., Partial Evaluation and Mixed Computation (North-Holland, Amsterdam, 1988) 485- 506
201 D Qactnft Damlaning fuinstian naramatare hy olahal variahlac Mactar’e Tha Ctudant Ranort
L27] L. OUSUIL, NLPaliily 1UliLivil Paiailivivis Uy pivual vaiilauvily, ivaadsivi o nuw.na, Swuliviae N[WwpUse

88-7-2, DIKU, University of Copenhagen, Denmark (1988).
[40] P. Sestoft, Replacing function parameters by global variables, in: Fourth Interational Conference
on Functional Programming and Computer Architecture, London, (ACM Press and Addison-Wesley,

ogramnuing ang Lompuley Arcaneciure, Lorecon AL VI FTESss ar LGaAIs0 esie

Reading, MA, 1989) 39-53.
[41] V.F.Turchin, The concept of a supercompiler, Trans. Programming Languages Syst. 8 (1986) 29

N\
o

