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Abstract

We give the (Ahumada type) Selberg trace formula for a semiregular bipartite graph G.
Furthermore, we discuss the distribution on arguments of poles of zeta functions of
semiregular bipartite graphs. As an application, we present two analogs of the semicircle law
for the distribution of eigenvalues of specified regular subgraphs of semiregular bipartite
graphs.
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1. Introduction

Graphs and digraphs treated here are finite. Let G be a connected graph and D the
symmetric digraph corresponding to G. Set D(G) = {(u,v), (v,u) |uve E(G)}. We
also refer D as a graph G. For e= (u,v)eD(G), set u=o0(e) and v = t(e).
Furthermore, let e~! = (v,u) be the inverse of e = (u,v).

A path P of length n in D (or G) is a sequence P = (ey, ..., ¢,) of n arcs such that
eieD(G), t(e;) = o(eir) (1<i<n—1). Set |P| =n, o(P) =o(e;) and t(P) = t(e,).
Also, P is called (o(P),t(P))-path. We say that a path P = (ey,...,e,) has a
backtracking if ef!; = e; for some i (1<i<n—1). A (v,w)-path is called a v-cycle
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(or v-closed path) if v = w. The inverse cycle of a cycle C = (ey, ..., e,) is the cycle
Cl=(e!,...,erh).

We introduce an equivalence relation between cycles. Such two cycles C; =
(e, ...,em) and Cy = (f1, ..., f) are called equivalent if f; = e;  for all j. The inverse

cycle of C is not equivalent to C. Let [C] be the equivalence class which contains a
cycle C. Let B" be the cycle obtained by going r times around a cycle B. Such a cycle
is called a multiple of B. A cycle C is reduced if both C and C? have no backtracking.
Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note
that each equivalence class of prime, reduced cycles of a graph G corresponds to a
unique conjugacy class of the fundamental group =;(G,v) of G for a vertex v of G.
Then the (Ihara) zeta function Z(G,u) of a graph G is defined to be the function of
ueC with u sufficiently small, given by

Z(G,u) = Zg(u) = [J(1 =), (1)

[

where [C] runs over all equivalence classes of prime, reduced cycles of G (cf.
[6,7,9,13]).

Thara [9] defined zeta functions of graphs, and showed that the reciprocals of zeta
functions of regular graphs are explicit polynomials. Hashimoto [6] treated
multivariable zeta functions of bipartite graphs. Bass [2] generalized Thara’s result
on the zeta function of a regular graph to an irregular graph G. Stark and Terras [12]
gave an eclementary proof of this formula, and discussed three different zeta
functions of any graph.

Let G be a connected graph with n vertices vy, ...,v,, and neN. The adjacency
matrix A = A(G) = (a;) is the square matrix such that ¢; =1 if v; and v; are
adjacent, and a; = 0 otherwise. Let Spec(G) be the set of all eigenvalues of A(G). Let
D = (d;) be the diagonal matrix with d; = deggv;, and Q =D —1. The degree
degg v = deg v of a vertex v in G is defined by degg v = [{w | vwe E(G)}|. A graph H
is called k-regular if degpy v = k for each vertex ve V(H).

Theorem 1 (Ihara). Let G be a connected (q + 1)-regular graph with n vertices. Set
Spec(G) = {1, ..., An}. Then the reciprocal of the zeta function of G is

Z(G,u)"" =1 —u®)" " det(1, — uA(G) + qu’l,)
=(1- u2)<q71)"/2 H (1 — Jju+ qu?)
=1
where m = |E(G)|.
The Selberg trace formula for a connected graph G is closely related to the zeta
function of G. Ahumada [1] gave the Selberg trace formula for a regular graph (cf.

[15,16]). For a semiregular bipartite graph G, Hashizume [8] presented the Selberg
trace formula.
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Now, let G be a connected (g + 1)-regular graph. Furthermore, let /#(6) be a
complex function on R which satisfies the following properties:
1. k(0 +2m) = h(0),
2. h(=0) = h(0),
3. h(0) is analytically continuable to an analytic function over Im 0<%10gq+a
(e>0).

For this (0), we define its Fourier transform by

. 1 2n
(k) =5 0 h(0)e¥ "% qg,

where keZ.
Theorem 2 (Ahumada). Let G be a connected (q + 1)-regular graph with n vertices.

Set Spec(G) = {1, ..., An}. Let Ay, ..., be the eigenvalues of G which 1 — Aju+

|
qu?> = 0 has imaginary roots. Furthermore, for each 4; (1<i<l), let q_fe‘/’_l % be a
root of 1 — Aju + qu?> = 0. Then the following trace formula holds:

/ n 22 0
S () :2_"/ sin” 0 hO)do+ 3" S| Clg ™V h(m| C)),
T Jo (g+1)" —4gcos?0

i=1 [c] m=1

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Let G be a connected (¢ + 1)-regular graph with m vertices. Furthermore, let
Spec(G) = {1, ..., Am}. By Theorem 1, the poles of Z(u) are +1 and roots of
1 — Aju+ qu* = 0 (1<j<m). Therefore, u = ¢g~'/2¢V~10
if A =2,/gcos0 is an eigenvalue of G.

Sunada [14] gave an analogue of the semicircle law for the distribution on
eigenvalues of regular graphs by using Theorem 2. Let

is a pole of Z(u) if and only

1 \4qg-22 .
o) = { T s TSV
0 otherwise.

Theorem 3 (Sunada). Ler {G,},~, be a family of (q+ 1)-regular graphs such that
lim,, » g(G,) = o, where g(G,) is the girth of G,. For a,beR (a<b), let

¢u([a,b]) = [{A€Spec(G,) | a<A<b}|.
Then

. 1 B b
lim bl = [ b di
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For a family {G,},~, of (¢+ 1)- (Gy)| = 0
and lim,_ « gx(G,)/|V(G,)| =0 for each k=3, McKay [l1] determined the
limiting probability density f(4) for the eigenvalues of G, as n— co and showed
that /(1) = ¢(4). Here gr(G,) is the number of cycles with length k in G,.

Furthermore, Sunada [14] presented the semicircle law for the distribution of
eigenvalues of regular graphs when their girths and degrees are divergent. Let

v (x) :{%W—xz if |x<1,

0 otherwise.

Theorem 4 (Sunada). Let {G,},~, be a family of (q, + 1)-regular graphs such that

. o o a
Jm 9(Gy) = im g, =coand - lim 2o G =

For a,beR (a<b), let

V,([a,b]) = [{7eSpec(G,) | 2q,*a<1<2q)/*b}|.
Then

S RCURI AT

Using different methods, Godsil and Mohar [4] determined the expected
distribution of the eigenvalues of a large random (g; + 1,¢> + 1)-semiregular
bipartite graph, and showed that the discrete part of the distribution is supported at
0 while the continuous part is supported on the set |\/q1 — /72| <A< /g1 + /q2-
This gives another proof of our Theorem 8. Furthermore, Li and Solé [10] showed
that the continuous spectrum of the universal covering of (¢1+ 1,42+ 1)-
semiregular bipartite graphs does not contain 0 if ¢; # ¢».

In this paper, we give the (Ahumada type) Selberg trace formula for a semiregular
bipartite graph G. Furthermore, we discuss the distribution of arguments of poles of
zeta functions of semiregular bipartite graphs. As an application, we present two
analogue of the semicircle law for the distribution of eigenvalues of specified regular
subgraphs of semiregular bipartite graphs.

For a general theory of spectra of graphs and the Selberg trace formula, the reader
is referred to [3] and [15], respectively.

2. The Selberg trace formulas for semiregular bipartite graphs
We present the Selberg trace formula for a semiregular bipartite graph G.

A graph G is called bipartite, denoted by G = (V, V>) if there exists a partition
V(G) = ViuV, of V(G) such that uve E(G) if and only if ueV; and veV;. A
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bipartite graph G = (¥, V2) is called (¢; + 1, ¢2 + 1)-semiregular if degg v = ¢g; + 1
for each ve V; (i = 1,2). Furthermore, ¢, + 1 and ¢, + 1 are called the degrees of G.
For a (g1 + 1,4, + 1)-semiregular bipartite graph G = (V3, V»), let G!! be the graph
with vertex set V; and edge set {P: reduced path||P|=2; o(P),t(P)eV;} for
i = 1,2. Note that G/l is a (g, + 1)g>-regular graph, and G? is a (g» + 1)gq;-regular.

Let G= (V1,V2) be a connected (q; + 1,¢2 + 1)-semiregular bipartite graph.
Set |Vi|=n and |V3| =m (n<m). Let Al = A(G") be the adjacency matrix of
Gl (i=1,2).

Theorem 5 (Hashimoto). Let G = (V1,V>) be a connected (q\ + 1, g2 + 1)-semire-
gular bipartite graph with v vertices and ¢ edges, |Vi| = n and |V3| = m (n<m). Then

Z(Gu) " =(1 =) (1 + )" ™"
x H (1= (4 — q1 — @ + qugou®)
J=1

W) (1 + )" " det(1, — (A — (g2 — D) + q1gouT)
) (14 quu )" " det(1,, — (A —(q1 — l)Im)u2 + q1q2u4lm),
o+, 0, ..., 0} and A = A(G1) (i =1,2).

(1-
(1 -
where Spec(G) = {+ i,

In Theorem 5, let Spec(G!Y) = {u;, ..., u,}. If Spec(G) = {+ 1, ..., + 2,0, ..., 0},
then we have

w=7x45-—q—1 (1<j<n)

and so

Z(Gu) ' =1 —®) (1 + gud)™" —qr + Di® + qrqou®)
j=1
(see [6]).
Let G = (V), V3) be a connected (¢; + 1,¢> + 1)-semiregular bipartite graph. Set
V1| =nand | V2| =m (n<m). Let

Z(v) = Z(G, /). (2)
By Theorem 5, we have
Z)™" = (1= 0P (1 + @0 ] (1 =y — 4 + Do+ 1) 6)

J=1

Theorem 6. Let G = (V1, V) be a connected (q1 + 1,q> + 1)-semiregular bipartite
graph with v vertices and ¢ edges. Set |Vi| = n and |V3| = m (n<m). Furthermore, let
h(0) be an even complex function on R with period 2nt which is analytically continuable
1o an analytic function over Im 0 <1log qiq> + ¢ (¢>0). Set Spec(GM) = {uy, ..., 1,}.

Let py, ..., be the eigenvalues of G which 1 — (1 —q2 + v+ g1g2v* =0 has
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imaginary roots. Furthermore, for each u; (1<i<l), let (q]qz)_l/2 V=19 be a root of
1 — (w; — g2+ 1)v+ q1q2v* = 0. Then the following trace formula holds:

!

PRICH)

i=1
2n

=—qqq +1)

T
X/“ sin’ 0

0 (ql+qz)(qlqz+ ) +2Vq192(q1 — 1)(g2 — 1) cos 0 — 4q,g> cos? 0

X h(0) 0+ 5 Ly ZICI q192) "V h(m|C|/2),
[C] m=1

where [C] runs over all equivalence classes of prime, reduced cycles of G, and

2n
h(k):% /0 h(0) exp¥ " ¥ 4.

Proof. The argument is an analogue of Venkov and Nikitin’s method [16]. By (3), we
have

Z(U/\/QIQ2)71 :(1 _l;/\/m)ﬁ*v(l +CI2U/\/W)'"7”
XH (1= (1 — 2+ V)v//q1q2 + 7).

Thus,
—log Z(v/\/q142) = (¢ — v) log(1 — v/\/q1q2) + (m — n) log(1 + q2v//q142)

+ > logv/Vaie (Vi@ (v +v") = (1 — g2+ 1)).
=1
Therefore,

*Z log(vaigz(v+v™") = ( — g2 + 1))

e—v m-—n n d
= + +-—+—logZ(v/\/ .
VIG@ =V Qg +qu v dv eZ(v/Vine)

Since G is bipartite, we have n(q; + 1) = m(qx + 1), i.e., mqy — ng; = n — m. Thus,

e—v m—n n_ nqiqx(1 —v?)

— - +-= :
VI —v @@ +qo v (V3ig —v)(/4192 + gav)v
Next, since Tr(log(I — B)) = logdet(I — B), (1) and (2) imply that

log Z(v) = log Z ;(v'/?) Z log(1 — vl72) = Z Z L jcmn

[C] m=1
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Then,

dﬁlogZ 12 Z |CJul€lm/2,
where C runs over all prime reduced cycles of G. Thus,
dilogZ(v/\/m 12 Z |C|(q1ga) VA€l
Therefore,

Z log Vaiw+uv ) = (4 — g2+ 1))

- 421~ ) v yICl4ymicl/2
(\/‘Ilqz —0)(\/q192 + q2v)v Z mz ICl(q142) (4)

Now, for ujeSpec(Ay]) (1<j<n), let z; be a root of
(q1q2) e+ 171 = —q2+ 1.

If z; is not contained in R, then |z;| =1, ie., z; = eV=10 Let z;, ...,z be not
contained in R, and z,,, ...,z, be real numbers. Moreover, let #(6) be an even
complex function on R with period 2n which is analytically continuable to an
analytic function over Im 0<%log q192 + ¢ (¢>0). Furthermore, let K be a simple
closed curve traced in the positive direction(counterclockwise) which contains

Z1y ey 21 /192, —/ 41/ 42, and does not contain z; (I + 1<j<n),z7, ...,z,1,0. We
consider the following three contour integrals:

O(h,j) = — ﬁ ]i( h(—V—T1log v)%log(\/qlqz(v +u ") = (g — g2+ 1)) dv,

2

1—v
j{_K h(—\/—_llog v (V3132 —v) (Va1 g2 + Q2U)Udv

1
H(h,m) :__% h(—’/—lylogv)u’”'CVz—l dv.
2ni J_x
Then, by (4), we have
D QUhj) = ngiqal (h T3 Z > 1ClHa192) )MV (b, m).
=1

m=1

" 2mi

By the property of the residue theorem, we have
1 d
Olhj) = 5= H—v=Tlog o) G log VATE/o(v — 5) (0 ~ 1/5) do = (0)

if z; is not contained in R. Moreover, if z;eR, then Q(h,j) = 0.
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Furthermore, let K| be the circle of radius 1 traced in the positive direction. Then
we have

H(h,m) = L ]{ h(—V—1log v)o™1>=1 dp,
2mi K,
Set v = e¥~1? (0<O<2nm). Then
2n
T

Now, we have

| 1 -
I(h) = h(—v—11logv)
2ni i, (I =v/vVag2) (1 +v/v/q1/q2)v
Set v = eme(—nSQSn). Then we have
() = - / " o) - a0
2 J o (Va1 d — /1) (Vaiqs + goe¥~17)

But,
1 — 62\/:76
(V@1d: — ¢/ 1) (V@i qs + gae¥ 1)
_ 2¢2(1 4+ q1) sin” 6 — (2\/q192(q2 — 1) sin 0 + q2(q1 — 1) sin 20)v/—1
72(9192 — 2\/q1q2 cos 0 + 1)(q1 + q2 + 2./q1q2 cos 0)

Let g(0) = (q192 — 2\/q1g2 cos 0 + 1)(q1 + g2 + 2,/q1¢2 cos 0). Since g(0) is an even
function, we have

1) = 5- / " oIS +g‘f("9))5i“2 O a0

V=L n(0) 2./q192(q2 — 1) sin 0 + g2(g; — 1) sin 20
2 J_ q29(0)

2 - sin” 0
:E(q1+1)/0 h(6) 0 do

Therefore, it follows that

/ . 2
T sin” 0
E h(0;) =n— 611612(41+1)/ h(0) do
0

j=1
+ 233 [Cllaige) " Vimicl2).

] m=1

do

We show that the second term in the right side converges.
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Since GI! is (g1 + 1)gp-regular, Theorem 2 implies that

3 ST G @ + g2 = 1) V(| €l

(€] m>1

converges, where [Cy] runs over all equivalence classes of prime, reduced cycles in
G!". Each prime, reduced cycle with length 2m in G corresponds to a unique prime,
reduced cycle with length m in GI'. Thus, the following series converges:

© . .
>3 S 1CHags + a2 = ) Vigmicl/2).
[C] m=1
Since (q1g2 +q2 — 1) " V* = (4142) ™™ V* for sufficiently large m|C|, the second

term in the right side converges. [

3. The distribution of poles of zeta functions of semiregular bipartite graphs

We shall state the notion of graph covering of a graph.

Let G be a connected graph, and let N(v) = {weV(G)|vweE(G)} for any
vertex v in G. A graph H is called a covering of G with projection n: H— G if
there is a surjection n: V' (H)— V(G) such that x|y, : N(v') > N(v) is a bijection
for all vertices ve V(G) and v'en~!(v). When a finite group IT acts on a graph
(digraph) G, the quotient graph (digraph) G/II is a simple graph (digraph)
whose vertices are the IT-orbits on V(G), with two vertices adjacent in G/II if
and only if some two of their representatives are adjacent in G. A covering n: H— G
is said to be a regular covering of G if there is a subgroup B of the automorphism
group Aut H of H acting freely on H such that the quotient graph H/B is
isomorphic to G.

Let G be a graph and 4 a finite group. Let D(G) be the arc set of the symmetric
digraph corresponding to G. Then a mapping o: D(G)— A4 is called an ordinary
voltage assignment if a(v,u) = a(u,v)”" for each (u, v) € D(G). The pair (G, o) is called
an ordinary voltage graph. The derived graph G* of the ordinary voltage graph (G, o)
is defined as follows:

V(G*) =V(G) x A and ((u, h), (v,k))e D(G*) if and only if (u,v)eD(G)
and k = ha(u,v),

where V(G) is the vertex set of G (see [5]). Also, G* is called an A-covering of G. The
natural projection n: G*— G is defined by n(v,h) = v for all (v,h)e V(G) x A. Then
the covering 7: G*— G is a regular covering of G.

For a graph G, the girth g(G) of G is the minimum of the lengths of prime, reduced
cycles in G. Let ord(g) be the order of an element g in a group.
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Lemma 1. Let G be a connected graph with v vertices and ¢ edges. Then there exists
some finite group I' and an ordinary voltage assignment o.: D(G)— I such that

9(G*)>¢(G).

Proof. Let T be a spanning tree of G. We give each of the r = ¢ — v+ 1 edges in
G\E(T) a direction and label ey, ..., e, Let e, ; = ¢ (1<j<r).

Any prime, reduced cycle on G is uniquely determined by the ordered sequence of
ex’s it passes through. Specially, if e; and e; are two consecutive e;’s in this sequence,
then the part of the cycle between e; and ¢; is the unique reduced path on 7T joining
t(e;) and o(e;). Note that the free group of rank r generated by the ¢;’s is identified
with the fundamental group n; (G,v) (ve V(G)).

Let I'=<y,) x--x<y,» be the direct product of r cyclic groups
{y1Yy ey {7py, where ord(y;)>1,i =1, ...,r. Furthermore, let a: D(G)—T be the
ordinary voltage assignment such that

ale)) =y, (1<i<r); ale) =1, eeD(T).

Let C be any prime, reduced cycle in G*. Then there exists some prime, reduced

cycle C in G such that
(€)=, f=0.

Let e, ..., e; be the sequence of ¢;’s corresponding to C. Then we have
o(C) = afe; ) a(e;)

and
t =ord(x(C))>1.

By Gross and Tucker [5, Theorem 2.1.3], the preimage 7, !(C) of C in G* is the union
of |I'|/t disjoint cycles with length ¢|C|. Since |C|>g(G), we have t = f, and so

C| = 1|C=19(G)>g(G).
Therefore, it follows that

9(G*")>¢(G). O

In Lemma 1, G* is (¢1 + 1,¢> + 1)-semiregular bipartite if G is (q; + 1,42 + 1)-
semiregular bipartite.

Corollary 1. There exists a family {G,},~, of (q1 + 1,92 + 1)-semiregular bipartite
graphs such that

lim ¢(G,) = .
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Now, we consider a family {G,},-, of (¢1 + 1,¢> + 1)-semiregular bipartite graphs
such that lim,, , g(G,) = . For 0<a<f<mn, let

ol B) = v = (1g2) V"1 | v a pole of Z(v),a<0<B}|.

We give a property of the distribution on arguments of poles of zeta functions of
semiregular bipartite graphs.

Theorem 7. Let {G,},- | be a family of (q1 + 1,q> + 1)-semiregular bipartite graphs
such that lim,_, o, g(G,) = co. Then

1
m%([%ﬁ])

2
==—qiq2(q1 + 1)
T

lim,,, o

x/ﬁ sin” 0
@+ @)+ 1) +2/0q:(q1 — 1)(q2 — 1) cos 0 — 4q1q» 00526

Proof. Let G =G, = (V1,V2), |Vi| =n and | V2| = m (n<m). Furthermore, let
1 if a<0<p,
h(0) ;:{ ifa<0<p

0 otherwise,

where 2(0) = h(n) =0
Theorem 6 implies that

do

B sin?
ouln ) =2t + 1) [

+5 Z Z 0192)”" "V h(m| C1/2), (5)

[C] m=1

where g(0) = (q1 + ¢2)(q1q2 + 1) + 2/q1q2(q1 — 1)(g2 — 1) cos 0 — 4q1g2 cos® 0, and
[C] runs over all equivalence classes of prime, reduced cycles of G. Then we have

1
hmlC 2 \/_1m|C\0/2 do = e\/jtﬂ\C\[i/Z _ e\/jlﬂ‘C‘G{/Z )
HmlCl/2) / nm|C|\/—1( )
Thus,
1 < cl/ar
—> (ara2) "Vl 1/2)
[ m>1
1 =1 )ICU4 (VT miCIp/2 _ /T miClaf2
—(q192) e —e .
2nv/—1 T mzzl m ( )
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Therefore, we have
Kl < = > i i{(qlqz)_‘cl/“}"’ -2
27 m
] m=1
== Z —log(1 — (q142)”'“V*))
1
—_1 _ —|Cl/4y~1
7 og H (1= (q192) )
(]
Since |C|=¢(G) = g, we have

(019)V* = (q12)"*,

i.e.,

tog T (1= (mrg) V) <log TT (1 = (arg2) )"
(€] €]

The fact that lim,, , g(G,) = oo implies that

1 9(Ga) /4
_) <

Ve, ANeN: a>N = (
q192

Thus, we have

0< (1 = (qug2) ") <(1—g)™"

for any a> N. Since ¢ is any,

lim log H (1= (q192) 9(Ga)/ 4)7] <log H lim0 (1- g)’1 =0.
a— o0 e—+
(] (]

Therefore, it follows that

lim K, =0.

a— oo

Hence, the result follows. [

4. Analogue of the semicircle law for the distribution of eigenvalues of
specified regular subgraphs of semiregular bipartite graphs

185

In this section, we consider a sequence Gy, G, ..., G,... of semiregular bipartite

graphs, and then study the distribution of eigenvalues of regular subgraphs G,[zl] in G,

(cf. [4,10]).
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Let G = (V), V3) be a connected (¢; + 1,¢> + 1)-semiregular bipartite graph. Set
|Vi| = nand |V,| = m (n<m). Furthermore, let Spec(G!") = {u;, ..., 1, }. By (3), we
have

n

Z(U)71 =(1-=0)"""(1+qv)"™" H (1= (g —q2+ v+ qlqzvz).
J=1
Thus, the poles of Z(v) are 1,—1/¢> and roots of 1— (y; —q2 + Do+ q1q0* =
0 (1<j<n). Therefore, v = (q142)""?¢¥=1? is a pole of Z(v) if and only if
1 = 24/q1q2 cos 0 + g2 — 1 is an eigenvalue of Gl

Now, we consider a family {G,},~, of (g1 + 1,¢> + 1)-semiregular bipartite graphs
such that lim,, o, g(G,) = o0. For a,beR (a<b), let

¢,(la, b)) = [{ne Spec(G))) | a<pu<b}|.

We present an analogue of the semicircle law for the distribution of eigenvalues of
specified regular subgraphs of semiregular bipartite graphs. This is the same as the
formula (5.2) in Godsil and Mohar [4], and we give a different proof of it.

Theorem 8. Let {G,},-, be a family of (q1 + 1,q2 + 1)-semiregular bipartite graphs
such that lim,,_, o, g(G,) = oo. Then

1
lim ———

b
Jim e = [ o0

where

g1+l 41— (u—qo+1)° ;
(p(ﬂ) e 1271 (0192+1=(u—q2+1))(q1 +q2+(p—q2+1)) if "u 4t 1|<2 Va9
0 otherwise.

Proof. Let 0<a<f<m. Then Theorem 7 implies that

2 F sin® 0
lim —— ¢, ([« f]) == +1 x/
lim |V(GL”)|¢ ([ B) =~ 1g2(q1 + 1) 0

do, (6)

where ¢(0) = (q1 + q2)(q142 + 1) + 2/@1q2(q1 — 1)(g2 — 1) cos 0 — 4q14> cos® 0. Let
G=G,=(V,V3), |[Vi| =n and |V,| = m (n<m). Furthermore, let Spec(G!!) =
{1, ... 1, }. For the root v= (qiqs) V10 of 1— (W — g2+ D)o+ qrgov* =
0 (I<j<n),

<0< == 2/q1q2 cos f<p; — g + 1<2\/q192 cos a..
In (6), let
u=2/q1g2cos 0+ ¢, — 1.
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Then we have

b sin? 0 1 Ha sin 6
do = du,
» 9(0) VO@: Jyy (@@ +q— )+ 1+ p)

where p, = 2\/q1q2 cos o+ q> — 1 and pg = 2,/q1q2 cos f + ¢» — 1. But,

im0 VT Ve = (=2 1)
2\/q1q2 .

Thus,

du.

/ﬁsinzﬂde_ 1 /#7 \/4611612—(/1—QZ+1)2
o 15

9(0) " Aq1a2 Jyy (@2 + a2 — p)(qr + 1+ p)

Therefore, it follows that

lim e, (o)) = Jim %wn([%m)

= (G| V(G,[,”)‘

1t A — (- g+ 1)
u

2 Sy, @@+ —p)(q+1+p)

Next, we consider a sequence of semiregular bipartite graphs for which both their
girths and degrees are divergent.
By Lemma 1, we obtain the following result.

Corollary 2. There exist a family {G,},~, of (qu1 + 1, quo + 1)-semiregular bipartite
graphs such that

lim ¢(G,) = lim ¢, = o0,
n— oo n— oo :

where gy = qn2 for each neN.

Let {G,},~, be a family of (¢g,1 + 1,¢n2 + 1)-semiregular bipartite graphs such
that

lim ¢(G,) = lim ¢,; = oo,
n— oo n— oo

where ¢, 1 >¢,2. For —1<a<b<1, let

Vo[, B]) = {1t = 24/G 5 c0s 0 + g> — 1€ Spec(Gl)) | a< cos 0<b}].
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Furthermore, let

2 _V1-£~ :
Y(1) = T 1+6+2/61 if <1,
0 otherwise,
where
5= lim 2,
n—=>0 (]

We present another analogue of the semicircle law for the distribution of
eigenvalues of specified regular subgraphs of semiregular bipartite graphs.

Theorem 9. Let {G,},- | be afamily of (qu1 + 1,quz + 1)-semiregular bipartite graphs
such that

lim ¢(G,) = lim ¢,1 = 00, ¢n1>qn>

n— oo
and

. \4/ qn,lqn,2
Iim Y——- =
n—ow lOg g(Gn)

Suppose that 6 = lim,,_, ., qﬁ Then
Tim |V< llat) / )

Proof. Let G = Gy = (V1,V2), |[Vi| =n, [Val| =m (n<m), q1 = qx1 and g2 = qx».
For 0<a<f<m, let

I if a<0<§,
h(B)::{ i asO<p

0 otherwise,

where /(0) = h(n) = 0. Then (5) implies that

B “© -
ol ) =L aastan+ 1) [ S La0+ LSS (e i),
g [C] m=1

o

[\S) \

where g(0) = (q1 + ¢2)(q192 + 1) + 2/7192(q1 — 1)(g2 — 1) cos 0 — 4q,g> cos? 0.
Let Spec(G') = {u,, ..., ,}. For the root v = (qlqz)_l/ze‘/j"‘/ of 1 — (1, —q2+
Do+ qigav* =0 (1<j<n),

<0< == 2/q1q2 cos B<p; — g + 1<2\/q192 cos a..
Thus, we have

@i([on ) = Yi([cos B, cos o).
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Therefore,
1 2 B sin® 0
lim ————,([cos B,cosa]) = lim —q1q2(q1 + 1 / do
k— o |V(G1[cl])| ll ) koo ( ) . 9(0)
li _} : 2 : m\C|/4 2
- ker}L 2 m=>=1 q q h m|C|/
Let

1 - —m A
=3 Z (q192) ‘C‘/4h(m|C|/2).
]

m=1

Then the proof of Theorem 7 implies that

1
<-1 1 —9(Gi)/4\—1
| K| - og |[C|] ( (q192) )

Since lim,,_, o, lovgq’;zq” o= =0, we have

hm |Kk‘< hm —log H 1— 41(]) 9(Gk) /4) =0

[C]
and so
lim Kk =0.
k— oo
Next, let
t =cos0.
Then we have
2 B sin® 0
—q1q2(q1 +1 / ———d0
7 1192 ) . 9(0)
) cos o \/1——[2
=-q192(q1 + 1)/ dt
n cosp (@2 +1=2qq@ ) (q1 + ¢ + 2 /0192 1)
Thus,
2 B sin? 0
lim = 1 do
Jim nqlqz(ql + )/1 20
cos o m
= klim - dt.
- T B 1 a/q1—1/ V@ /0
. (1 Tae T \/111112 ) (1 +% lfllrll/qlql REREYT t>

) cos o m
cos f 1+5—|—2\/(§l
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Therefore, it follows that

Vi ([cos B, cos o)) :/COM 2 V1i-2

lim ——— S O
k= (G cosp T 140+2V/0t
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