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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [FZ1]. They have strong links with
the representation theory of finite dimensional algebras (see e.g. the survey articles [BM,Kel2]), with
semisimple algebraic groups and the dual semicanonical basis of a quantum group (see e.g. the survey
article [GLS]), and with many other areas (see e.g. the survey article [FZ2]); these articles contain
many further references.
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Here we consider acyclic coefficient-free cluster algebras of affine type, i.e. those which can be
given by an extended Dynkin quiver. We give a formula expressing the denominators of cluster
variables in terms of any given initial cluster in terms of dimensions of certain Hom-spaces in the
corresponding cluster category. The representation theory, and hence the cluster category, is well un-
derstood in the tame case. Thus, the formula can be used to compute the denominators explicitly.

We assume that k is an algebraically closed field. Caldero and Keller [CK2] (see also [BCKMRT])
have shown, using the Caldero–Chapoton map [CC], that for an acyclic quiver Q , the cluster variables
of the acyclic cluster algebra A Q are in bijection with the indecomposable exceptional objects in the
cluster category C H , where H = kQ is the path algebra of Q . Furthermore, under this correspondence
the clusters correspond to cluster-tilting objects. We denote by xM the cluster variable corresponding
to the exceptional indecomposable M in CkQ .

Recall that an indecomposable regular H-module X lies in a connected component of the AR-
quiver of H known as a tube, which we denote by T X . For a regular indecomposable exceptional
module X , we let W X denote the wing of X inside T X , i.e. the category of subfactors of X inside T X .
We let τ denote the Auslander–Reiten translate.

We prove the following theorem.

Theorem A. Let Q be an extended Dynkin quiver. Let H be the path algebra of Q , and let {y1, . . . , yn} =
{xτ T1 , . . . , xτ Tn } be an arbitrary initial seed of the cluster algebra A Q , where T = �i T i is a cluster-tilting
object in CkQ . Let X be an exceptional object of C not isomorphic to τ Ti for any i. Then, in the expression

xX = f /m in reduced form we have m = ∏
i ydi

i , where

di =
⎧⎨
⎩

dim HomC (Ti, X) − 1 if there is a tube of rank t + 1 � 2 containing

Ti and X, q.l. Ti = t and X /∈ Wτ Ti ,

dim HomC (Ti, X) otherwise.

We remark that representation-theoretic expressions for denominators of cluster variables for an
arbitrary initial seed were given in [CCS1] for type A and for any simply-laced Dynkin quiver in [CCS2,
RT]. In the general case, for an initial seed with acyclic exchange quiver, it was shown in [BMRT,CK2]
that denominators of cluster variables are given by dimension vectors (see the next section for more
details). The general case for an arbitrary initial seed was studied in [BMR2]. In particular, it was
shown that for an affine cluster algebra, provided the cluster-tilting object corresponding to the initial
seed contains no regular summand of maximal quasilength in its tube, the denominators of all cluster
variables are given by dimension vectors. Cluster variables in affine cluster algebras of rank 2 have
been studied in [CZ,MP,SZ,Ze]. The present article completes the denominator picture (for an arbitrary
initial seed), in terms of dimension vectors, for affine (coefficient-free) cluster algebras.

In [FK, 6.6] it is shown that for any cluster category (and in fact in a wider context), the dimension
vector of a module coincides with the corresponding f -vector in the associated cluster algebra with
principal coefficients. See [FK, Sec. 6] for the definition of f -vectors.

Thus our results determine when Conjecture 7.17 of [FZ3] holds for affine cluster algebras. We also
remark that in Theorem A, each exponent in the denominator is less than or equal to the correspond-
ing entry in the dimension vector, in agreement with [FK, 5.8] and [DWZ].

Representation-theoretic expressions for cluster variables have been widely studied; see for exam-
ple [CK1,D,Hu,Pal,XX1,XX2,XX3,Zh]. See in particular [BKL,D] for other aspects of cluster combinatorics
associated with tubes, and see e.g. [M,Par,Pr,Sc,ST,YZ] for related combinatorial constructions.

In Section 1, we recall some of the results described in the previous paragraph. In Section 2, we
recall some standard facts about tame hereditary algebras. In Section 3, we study the transjective
component of the cluster category, to prepare for the proof of Theorem A. In Section 4, we study
regular objects in the cluster category, and then in Section 5 we prove the main theorem, and in
Section 6 we give a small example to illustrate it.
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1. Preliminaries

Let Q be a finite connected acyclic quiver and k an algebraically closed field. Then H = kQ denotes
the (finite dimensional) path algebra of Q over k. Let Db(H) be the bounded derived category of finite
dimensional left H-modules. The category Db(H) is a triangulated category with a suspension functor
[1] (the shift). Since H is hereditary, the category Db(H) has almost split triangles; see [Ha], and thus
has an autoequivalence τ , the Auslander–Reiten translate. Let C = C H = Db(H)/τ−1[1] be the cluster
category of H (introduced in [CCS1] for type A and in [BMRRT] in general). Keller [Kel1] has shown
that C is triangulated. For more information about the representation theory of finite dimensional
algebras, see [ARS,ASS], and see [Ha] for basic properties of derived categories.

We regard H-modules as objects of C = C H via the natural embedding of the module category
of H in Db(H). For a vertex i of Q , let Pi denote the corresponding indecomposable projective H =
kQ -module. Note that every indecomposable object of C is either an indecomposable H-module or of
the form Pi[1] for some i.

We denote homomorphisms in C simply by Hom( , ), while HomH ( , ) denotes homomorphisms
in mod H (or Db(H)). For a fixed H , we say that a map X → Y in C H is an F -map if it is induced by a
map X → τ−1Y [1] in Db(H), where X, Y are direct sums of H-modules or objects of the form Pi[1].
Note that the composition of two F -maps is zero.

An H-module T is a called a partial tilting module if Ext1
H (T , T ) = 0, an almost complete tilting

module if in addition it has n − 1 nonisomorphic indecomposable summands, and a tilting module if it
has n such summands (by a result of Bongartz [Bo] this is equivalent to the usual notion of a tilting
module over H). We shall assume throughout that all such modules are basic, i.e. no indecomposable
summand appears with multiplicity greater than 1. For more information on tilting theory see [AHK].

The corresponding notions of cluster-tilting object, partial cluster-tilting object and almost complete
cluster-tilting object in C can be defined similarly with reference to the property Ext1

C (T , T ) = 0;
see [BMRRT]. Note that every cluster-tilting object in C is induced from a tilting module over some
hereditary algebra derived equivalent to H [BMRRT, 3.3].

If T is a partial tilting module (respectively, a partial cluster-tilting object) and T � X is a tilting
module (respectively, a cluster-tilting object), then X is called a complement of T .

Let A = A(Q ) ⊆ F = Q(x1, x2, . . . , xn) be the (acyclic, coefficient-free) cluster algebra defined using
the initial seed (x, Q ), where x is a free generating set {x1, x2, . . . , xn} for F; see [FZ1].

For an object X of C , let c X = ∏n
i=1 xdim HomC (Pi ,X)

i . The following gives a connection between
cluster categories and acylic cluster algebras.

Theorem 1.1.

(a) [BMRT, 2.3] There is a surjective map

α :
{

cluster variables of A(Q )
} → {indecomposable exceptional objects in C}.

It induces a surjective map

ᾱ : {clusters} → {cluster-tilting objects}.
(b) [CK2] There is a bijection β : X → xX from indecomposable exceptional objects of C to cluster variables

of A such that for any indecomposable exceptional kQ -module X, we have xX = f /c X as a quotient of

integral polynomials in the xi in reduced form, where c X = ∏n
i=1 xdim HomC (Pi ,X)

i .
(c) [BCKMRT] The maps α and β are mutual inverses.

We now recall some results and definitions from [BMR2]. Assume Γ is a quiver which is mutation-
equivalent to Q . By the above theorem there is a seed (y,Γ ) of A, where y = {y1, y2, . . . , yn} is a free
generating set of F over Q. Let Ti = τ−1α(yi) for i = 1,2, . . . ,n, so that we have α(yi) = τ Ti . Then
�n

i=1τ Ti is a cluster-tilting object in C and Γ is the quiver of EndC (τ T )op � EndC (T )op by [BMR1].
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For a polynomial f = f (z1, z2, . . . , zn), we say that f satisfies the positivity condition if f (ei) > 0
for i = 1,2, . . . ,n, where ei = (1, . . . ,1,0,1, . . . ,1) (with a 0 in the ith position).

Definition 1.2. (See [BMR2].) Let x be a cluster variable of A with α(x) = X for some exceptional
indecomposable object X of C . We say that x expressed in terms of the cluster y has a T -denominator
if either:

(I) we have that X is not isomorphic to τ Ti for any i, and x = f /t X , where f satisfies the positivity
condition and t X = ∏n

i=1 ydim HomC (Ti ,X)

i , or
(II) we have that X � τ Ti for some i and x = yi .

Note that when the choice of cluster y is clear we also say that an exceptional indecomposable
object X of C has a T -denominator, when its corresponding cluster variable has. We also recall that
in (I), the expression for x must be in reduced form. (For a contradiction, suppose that f and t X have
a common monomial factor u. Suppose that the variable yi divides u. Then f (ei) = 0, since u(ei) = 0,
contradicting the fact that f satisfies the positivity condition.)

Here, in addition, we make the following definition:

Definition 1.3. Let x be a cluster variable with α(x) = X for a regular object X of C , and assume
x = f /

∏n
i=1 ydi

i for some cluster y, where f satisfies the positivity condition. We say x (or X ) has a
diminished T -denominator if di = dim HomC (Ti, X)− 1 for all regular summands Ti of T with T X = TTi

and q.l. Ti = ti , where ti + 1 is the rank of TTi , and d j = dim HomC (T j, X) for all other summands T j .

Theorem 1.4. (See [BMR2].) Let T = �n
i=1Ti be a cluster-tilting object in C = CkQ for an acyclic quiver Q and

let A = A(Q ) be the cluster algebra associated to Q . Then:

(a) If no indecomposable direct summand of T is regular then every cluster variable of A has a T -denominator.
(b) If every cluster variable of A has a T -denominator, then EndC (Ti) � k for all i.

Suppose in addition that kQ is a tame algebra. Then the following are equivalent:

(i) Every cluster variable of A has a T -denominator.
(ii) No regular summand Ti of quasilength t lies in a tube of rank t + 1.

(iii) For all i, EndC (Ti) � k.

The main result (Theorem A) of this paper gives a precise description of the denominators of all
cluster variables for the tame case, i.e. also including the case when T has a regular summand Ti of
quasilength t lying in a tube of rank t + 1.

Fix an almost complete (basic) cluster-tilting object T ′ in C . Let X, X∗ be the two complements
of T ′ , so that T ′ = T ′ � X and T ′′ = T ′ � X∗ are cluster-tilting objects (see [BMRRT, 5.1]). Let

X∗ f→ B
g→ X

h→, (1)

X
f ′

→ B ′ g′
→ X∗ h′→ (2)

be the exchange triangles corresponding to X and X∗ (see [BMRRT, §6]), so that B → X is a minimal
right add(T ′)-approximation of X in C and B ′ → X∗ is a minimal right add(T ′)-approximation of X∗
in C . The following definition is crucial:

Definition 1.5. (See [BMR2].) Let M be an exceptional indecomposable object of C . We say that M is
compatible with an exchange pair (X, X∗), if either X � τ M , X∗ � τ M , or, if neither of these holds,
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dim HomC (M, X) + dim HomC
(
M, X∗)

= max
(
dim HomC (M, B),dim HomC

(
M, B ′)).

If M is compatible with every exchange pair (X, X∗) in C we call M exchange compatible.

We also have:

Proposition 1.6. (See [BMR2].)

(a) Suppose that (X, X∗) is an exchange pair such that neither X nor X∗ is isomorphic to τ M. Then the
following are equivalent:

(i) M is compatible with the exchange pair (X, X∗).
(ii) Either the sequence

0 → HomC
(
M, X∗) → HomC (M, B) → HomC (M, X) → 0 (3)

is exact, or the sequence

0 → HomC (M, X) → HomC
(
M, B ′) → HomC

(
M, X∗) → 0 (4)

is exact.
(b) Let M be an exceptional indecomposable object of C and suppose that X � τ M or X∗ � τ M. Then we

have that

dim HomC (M, X) + dim HomC
(
M, X∗)

= max
(
dim HomC (M, B),dim HomC

(
M, B ′)) + 1.

(c) Let (x′, Q ′) be a seed, with x′ = {x′
1, . . . , x′

n}, and assume that each x′
i has a T -denominator. Let T ′

i = α(x′
i)

for i = 1,2, . . . ,n and T ′ = �n
j=1T ′

j . Mutating (x′, Q ′) at x′
k we obtain a new cluster variable (x′

k)
∗ . Let

T ′ = � j 	=k T ′
j , and let X∗ be the unique indecomposable object in C with X∗ 	� T ′

k = X such that T ′ � X∗
is a cluster-tilting object. Then the cluster variable xX∗ = (x′

k)
∗ has a T -denominator if each summand Ti

of T is compatible with the exchange pair (X, X∗).

Note that (c) is used as an induction step in [BMR2] for showing that cluster variables have
T -denominators. Also, in [BMR2] it is shown that in (c) the cluster variable xX∗ = (x′

k)
∗ has a T -

denominator if and only if each summand Ti of T is compatible with the exchange pair (X, X∗), but
we shall not need this stronger statement.

Proposition 1.7. (See [BMR2].) Let H be a tame hereditary algebra, and let M be an indecomposable excep-
tional object in C . Then M is exchange compatible if and only if EndC (M) � k.

2. Tame hereditary algebras

In this section we review some facts about tame hereditary algebras, cluster categories and cluster
algebras.

We fix a connected extended Dynkin quiver Q . The category mod kQ of finite dimensional
modules over the tame hereditary algebra H = kQ is well understood; see [R]. Let τ denote the
Auslander–Reiten translate. All indecomposable kQ -modules X are either preprojective, i.e. τm X is
projective for some m � 0; preinjective, i.e. τ−m X is injective for some m � 0; or regular, i.e. not
preprojective or preinjective.
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The Auslander–Reiten quiver of H consists of:

(i) the preprojective component, consisting exactly of the indecomposable preprojective modules;
(ii) the preinjective component, consisting exactly of the indecomposable preinjective modules;

(iii) a finite number d of regular components called non-homogeneous (or exceptional) tubes,
T1, . . . , Td;

(iv) an infinite set of regular components called homogeneous tubes.

For a fixed tube T , there is a number m, such that τm X = X for all indecomposable objects in T .
The minimal such m is the rank of T . If m = 1 then T is said to be homogeneous.

We will also use the following facts about maps in mod H . Let P (respectively, I and R) be
preprojective (respectively, preinjective and regular) indecomposable modules, and R ′ a regular in-
decomposable module with T R 	= T R ′ . Then we have that HomH (I, R) = HomH (I, P ) = HomH (R, P ) =
HomH (R, R ′) = 0.

3. The transjective component

We will call an indecomposable object in the cluster category transjective if it is not induced by a
regular module. Note that the transjective objects form a component of the Auslander–Reiten quiver
of C . One of our aims is to show that every transjective object has a T -denominator for tame heredi-
tary algebras. In this section, we show that for this it is sufficient to find one transjective cluster-tilting
object all of whose summands have a T -denominator. Note that the results in this section do not re-
quire H to be tame, but hold for all finite dimensional hereditary algebras.

Remark 3.1. We remark that, given a finite set of indecomposable transjective objects in the cluster
category, we can, by replacing the hereditary algebra H with a derived equivalent hereditary algebra,
assume that all of the objects in the set are preprojective [BMRRT, 3.3]. We shall make use of this in
what follows.

We start with the following observation

Lemma 3.2. Assume (X, τ X) is an exchange pair.

(a) The AR-triangle τ X → E → X → is an exchange triangle.
(b) Any exceptional object M is compatible with the exchange pair (X, τ X).

Proof. Part (a) is well known. By [BMRRT, 7.5], we know that Ext1
C (X, τ X) � k when (X, τ X) is an

exchange pair. Hence, the AR-triangle must be isomorphic to the exchange triangle.
For part (b) we can assume that τ X → E → X → is induced by an almost split sequence in

mod H ′ with C H = C H ′ , by Remark 3.1. Then we use lemma [BMR2, 5.1] to obtain that HomC (M, )

applied to the AR-triangle τ X → E → X → gives an exact sequence. The claim then follows from
Proposition 1.6. �

The following summarizes some facts that will be useful later.

Proposition 3.3. Let H be a hereditary algebra and U a tilting H-module.

(a) If U is a tilting module such that U 	� H then there is an indecomposable direct summand Ui of U which
is generated by U = U/Ui .

(b) Furthermore, if U = U/Ui generates Ui , and B → Ui is the (necessarily surjective) minimal right add U -
approximation of Ui and

0 → U∗ → B → Ui → 0 (5)

is the induced exact sequence in mod H then the H-module U � U ∗ is a tilting module in mod H.
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(c) The exact sequence (5) induces an exchange triangle in C H .
(d) If U is preprojective, then so is U ∗ .

Proof. Part (a) is a theorem of Riedtmann and Schofield [RS]. Part (b) is a special case of a theorem
by Happel and Unger [HU]. Part (c) is contained in [BMRRT] and part (d) is obvious. �

The following is also well known and holds for any finite dimensional hereditary algebra H . Note
that for H of finite representation type, all modules are by definition preprojective.

Lemma 3.4. For every preprojective tilting module U in mod H there is a finite sequence of preprojective tilting
modules

U = W0, W1, W2, . . . , Wr = H,

and exact sequences

0 → M∗
j → B j → M j → 0 (6)

with B j → M j a minimal right add W j/M j -approximation of the indecomposable direct summand M j of W j ,
and

W j+1 = (W j/M j) � M∗
j .

Proof. We use the fact that the preprojective component is directed, so there is an induced partial
order on the indecomposable modules, generated by X � Y if Hom(X, Y ) 	= 0. For the above exchange
sequences we have M∗

j � M j . The result now follows directly from Proposition 3.3. �
Next we consider transjective exchange pairs.

Lemma 3.5. Let (X, X∗) be an exchange pair, where both X and X∗ are transjective. Then any regular inde-
composable exceptional M is compatible with (X, X∗).

Proof. We choose a hereditary algebra H ′ derived equivalent to H such that both X and X∗ corre-
spond to preprojective H ′-modules (see Remark 3.1). Hence one of the exchange triangles, say

X∗ → B → X →
is induced by a short exact sequence, by [BMRRT]. It is clear that the middle term B is also induced
by a preprojective module. Note that we have C H � C H ′ .

We want to show that we get a short exact sequence

0 → HomC
(
M, X∗) → HomC (M, B) → HomC (M, X) → 0. (7)

Since there is a path of H ′-maps from X∗ to X in the preprojective component of H ′ , and this
component is directed, we have that there is no H ′-map X → τ X∗ . Hence the non-zero map X → τ X∗
induced from the exchange triangle is an F ′ = F H ′ -map. Any map M → X is also an F ′-map, using
that there are no H ′-maps from regular objects to preprojective objects. But any composition of two
F ′-maps is zero. Hence every map M → X will factor through B → X , so the sequence (7) is right
exact.

Assume there is a map M → X∗ . Then this map must be an F ′-map. Assume the composition
M → X∗ → B is zero, so that M → X∗ factors through τ−1 X → X∗ .
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M

τ−1 X X∗ B X

Then both maps M → τ−1 X and τ−1 X → X∗ are F ′-maps, and hence the composition is zero. Hence
the map M → X∗ is zero, and we have shown left-exactness of (7). This finishes the proof by Propo-
sition 1.6. �

A slice in mod H (see [R]), is a tilting module V with a hereditary endomorphism ring. Note that
EndC (V ) is hereditary if and only if EndH (V ) is hereditary by [ABS].

Lemma 3.6. Assume there is a slice V = �i V i such that each indecomposable direct summand V i has a T -
denominator. Then every transjective indecomposable object has a T -denominator.

Proof. This follows from combining Lemma 3.2 with Proposition 1.6. �
Lemma 3.7. Assume there is a transjective cluster-tilting object U = �i U i such that each indecomposable
direct summand Ui has a T -denominator. Then there is a slice V = �i V i such that each indecomposable direct
summand V i has a T -denominator.

Proof. We choose a hereditary algebra H ′ derived equivalent to H , so that all the Ui are preprojective
modules in mod H ′ and hence U is a preprojective tilting module in mod H ′ (see Remark 3.1).

It is clear that each W j in Lemma 3.4 is a cluster-tilting object in C H , and that the object H ′ forms
a slice in C H . Also it is clear that the short exact sequences (6) are exchange triangles in C H = C H ′ ,
with transjective end-terms. So the claim follows from Propositions 1.6 and 1.7 and Lemma 3.5. �

We can now state the main result of this section.

Proposition 3.8. Assume that there is a transjective cluster-tilting object U = �i U i such that each inde-
composable direct summand Ui has a T -denominator. Then every transjective indecomposable object has a
T -denominator.

Proof. This follows directly from combining Lemmas 3.6 and 3.7. �
4. Wings

For this section assume that H is a tame hereditary algebra. We state some properties and results
concerning regular objects in the cluster category of H .

Recall that a module M over an algebra A is known as a brick if it is exceptional and EndA(M) = k.
In fact, it is known that if A is hereditary, every exceptional A-module is a brick. We say that an
object M in the cluster category C is a C -brick if M is exceptional with EndC (M) = k.

For an indecomposable exceptional regular module M , we can consider the full subcategory WM

of the abelian category TM , where the objects are all subfactors of M formed inside TM . This is called
the wing of M . The indecomposable objects in WM form a full subquiver of the AR-quiver shaped
as a triangle with vertices given by the unique quasi-simple with a non-zero map to M , the unique
quasi-simple which M has a non-zero map to, and M itself.

Suppose that q.l. M = t . We consider WM as an abelian category equivalent to mod Λt , where
Λt is the hereditary algebra given as the path algebra of a quiver of Dynkin type At , with linear
orientation; see [R]. The module M is a projective and injective object in WM , and a tilting object
in WM has exactly t indecomposable direct summands.
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The following lemma summarizes some well-known facts, including the fact that there are bricks
in the cluster category of H which are not C -bricks.

Lemma 4.1. Let M, N be regular exceptional indecomposable modules in a tube T of rank t + 1 > 1 in C H .

(a) [BMR2] The object M is not a C -brick if and only if q.l. M = t.
(b) Any cluster-tilting object in C H contains at most one object from each tube which is not a C -brick.
(c) If q.l. M = t then the following are equivalent:

(i) HomH (M, N) 	= 0;
(ii) dim HomH (M, N) = 1;

(iii) dim HomC (M, N) = 2;
(iv) N /∈ Wτ M .

Proof. For (c), see [R] for the fact that dim HomH (M, N) � 1, and the fact that HomH (M, N) 	= 0 if
and only if HomH (N, τ 2M) 	= 0 if and only if N /∈ Wτ M . We have

HomC (M, N) = HomH (M, N) � HomD
(
M, τ−1N[1])

and

HomD
(
M, τ−1N[1]) � D HomD

(
N, τ 2M

)
,

so the equivalence in (c) follows and (a) follows.
Part (b) is well known and easy to see. �
The following is well known by [St].

Lemma 4.2. Assume that a cluster-tilting object T in C H has a regular summand M. Then the summands of T
lying in WM form a tilting object in WM .

We recall the notion of a Bongartz complement [Bo]:

Lemma 4.3. Let N be a partial tilting module with no projective direct summands. Then there exists a comple-
ment E, known as the Bongartz complement of N, with the following properties:

(a) The module E satisfies the following properties:
(B1) Ext1

H (N, A) = 0 implies Ext1
H (E, A) = 0 for any A in mod H.

(B2) HomH (N, E) = 0.
(b) If a complement E ′ of a partial tilting module X satisfies (B1) and (B2), then E ′ � E, where E is the

Bongartz complement.

Proof. See [Ha]. �
We are especially interested in the Bongartz complements of certain regular modules.

Lemma 4.4. Let X = Xt be an exceptional regular indecomposable module with q.l. X = t. For i = 1, . . . , t −1,
let Xi be the regular indecomposable exceptional module such that there is an irreducible monomorphism
Xi → Xi+1 . Then there is a preprojective module Q̃ such that:

(a) The Bongartz complement of X = Xt is X1 � · · · � Xt−1 � Q̃ .
(b) The Bongartz complement of X̂ = X1 � · · · � Xt−1 � Xt is Q̃ .
(c) All partial tilting modules Y such that Y is a tilting object in W X have Bongartz complement Q̃ .
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Proof. For (a), first note that Ext1
H (X, τ A) = 0 while Ext1

H (A, τ A) 	= 0 for any indecomposable mod-
ule A which is either preinjective or regular with T A 	= T X . Hence by (B1) the summands in Q̃ are
either preprojective or regular and lie in T X . The property (B2) shows that any regular summand of
the Bongartz complement E of X must be in Wτ X , by Lemma 4.1. The fact that E is a complement
implies that any regular summand must be in W X ′ , where X ′ → X is an irreducible monomorphism,
since an object Z in Wτ X \ W X ′ has Ext(X, Z) 	= 0. We claim that for any indecomposable regular
summand E ′ of E there is a monomorphism E ′ → X . Assume E ′ is an indecomposable regular sum-
mand of E . Then, if E ′ is in W X ′ , but there is no monomorphism to X , the module τ E ′ will satisfy
Ext1(X, τ E ′) = 0, while Ext1(E ′, τ E ′) 	= 0, a contradiction to (B1). Since X � E is a cluster-tilting ob-
ject in C , it follows from Lemma 4.2 that all indecomposable regular objects in the tube of X with
monomorphisms to X are summands of E .

Part (b) is easily verified, noting that (B1) and (B2) are satisfied.
For (c) we show that if a module A satisfies Ext1

H (Y , A) = 0, then it satisfies Ext1
H ( X̂, A) = 0. Then

it follows that Ext1
H (Q̃ , A) = 0, which implies that Q̃ satisfies (B1); (B2) is clearly satisfied.

To see that Ext1
H ( X̂, A) = 0 we use that W X is equivalent to modΛt , where Λt is the path al-

gebra of the Dynkin quiver At with linear orientation. Now let Yi be a direct summand in Y which
is generated by Y /Yi , and consider the exact sequence 0 → Y ∗ → B → Y → 0, where B → Y is
the minimal right add Y /Yi -approximation. Then Ext1

H (Y ∗, A) = 0, since we have an epimorphism
Ext1

H (B, A) → Ext1
H (Y ∗, A). Iterating this sufficiently many times, which is possible by Lemma 3.4, we

get that Ext1
H ( X̂, A) = 0. �

Lemma 4.5. Let X1, . . . , Xt = X be as in Lemma 4.4. Then there is preprojective module Q such that:

(a) All partial tilting modules Y such that Y is a tilting object in W X have complement Q .
(b) Q generates X.

Proof. Let Q̃ be as in Lemma 4.4, and let r be the rank of the tube containing X . We have
that Q = τ−kr Q̃ is sincere for k large enough; see [PA]. Since τ r preserves T , (a) follows from
Lemma 4.4(c) (but note that it may no longer be the case that Q is the Bongartz complement). Let
Y1 = X, Y2, . . . , Yt be exceptional regular indecomposable modules such that there is an irreducible
epimorphism Yi → Yi+1 for all i. By (a), Q is a complement of Y1 � · · · � Yt . Hence X = Y1 is a
complement of U = Q � Y2 �· · ·� Yt . Since Q is sincere, so is the almost complete tilting module U .
By [HU], U has exactly two nonisomorphic indecomposable complements, Z and Z ′ , and there is a
short exact sequence

0 → Z → U ′ → Z ′ → 0

where Z → U ′ is a minimal left add(U )-approximation in mod H . Thus exactly one of Z , Z ′ is isomor-
phic to X ; we claim it is Z ′ . Since Q is preprojective, HomA(X, Q ) = 0. Since the module maps from
X to the Yi all factor through Yt−1, the minimal left add(U )-approximation of X is a non-zero map
X → Yt−1 and is therefore not a monomorphism. It follows that Z ′ ∼= X and thus that U generates X .
Since HomA(Yi, X) = 0 for 2 � i � t (from the structure of the tube containing X ), we see that Q
generates X as required. �
Lemma 4.6. Let T be a tube of rank t + 1 and M an exceptional object in T which is not a C -brick. Let X = Xs

be an exceptional indecomposable with q.l. X = s � t.

(a) There is a complement N of X in W X all of whose summands lie in Wτ M .
(b) The partial tilting module X � N has a preprojective complement Q which generates X.

Proof. See Fig. 1 for a pictorial representation of this lemma. We can assume X /∈ Wτ M , since other-
wise the result follows directly from Lemma 4.5.
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Fig. 1. A complement N of X in W X with summands (indicated by ◦) in Wτ M : see Lemma 4.6(a).

For (a) consider the relative projective tilting object in W X given by X1 � · · · � Xs−1 � Xs , with
q.l. X j = j. If Xs−1 /∈ Wτ M , consider the non-split exact sequence 0 → Xs−1 → X → X ′

s−1 → 0. We
claim that X ′

s−1 is in Wτ M . For this, apply HomH (M, ) to the above exact sequence. Since by
assumption HomH (M, Xs−1) 	= 0, we have that HomH (M, Xs−1) → HomH (M, X) is surjective. The
map (Ext1

H (M, Xs−1) → Ext1
H (M, X)) � (D HomH (Xs−1, τ M) → D HomH (X, τ M)) is a monomorphism,

since

HomH (X, τ M) → HomH (Xs−1, τ M)

is an epimorphism. The last statement follows since τ M is not a factor of Xs−1.
We also claim that X ′

s−1 is a complement of X1 � · · · � Xs−2 � Xs in W X . This follows from the
fact that the map Xs−1 → X is a minimal left add X1 � · · · � Xs−2 � Xs-approximation, together with
Proposition 3.3.

Now, if necessary, we exchange Xs−2 using the minimal add X1 � · · · � Xs−3 � X ′
s−1 � Xs-

approximation Xs−2 → X . The same argument as above shows that the cokernel of this map gives
us a complement in Wτ M . We iterate this at most s − 1 times, until we obtain a complement

N = X1 � · · · � Xk � X ′
k+1 � · · · � X ′

s−1

for X in W X , with 0 � k � s − 1, all of whose summands lie in Wτ M , as required.
Since X � N is a tilting object in W X , part (b) follows immediately from Lemma 4.5. �

5. The main result

In this section, we show the main theorem. The proof will follow from a series of lemmas.
Throughout this section, let T be a cluster-tilting object in the cluster category C H of a tame hered-
itary algebra H . We assume that T has a summand which is not a C -brick. We have the following
preliminary results.

Lemma 5.1. Let Z be an exceptional indecomposable regular module. Let X � Y be a tilting object in W Z , with
X indecomposable. Assume U � X � Y is a tilting module in mod H, where U has no preinjective summands.

(a) Let B → X be the minimal right add Y -approximation in W Z and assume there is an exchange sequence
0 → X∗ → B → X → 0 in W Z . Then B → X is a right add U � Y -approximation.

(b) Let X → B ′ be the minimal left add Y -approximation in W Z and assume there is an exchange sequence
0 → X → B ′ → X∗ → 0 in W Z . Then X → B ′ is a left add U � Y -approximation.

Proof. We prove (a), the proof of (b) is similar. Let U = U p � Ur where U p is preprojective and Ur is
regular. By assumption Ur has no summands in W Z .

We have HomH (U p, B) → HomH (U p, X) is surjective since Ext1
H (U p, X∗) � D HomH (τ−1 X∗, U p) =

0.
We claim that HomH (Ur, B) → HomH (Ur, X) is also surjective. For this note that by the AR-

structure of the tube, there is an indecomposable direct summand B0 in B such that the restriction
B0 → X is surjective. Let U ′

r be a summand in Ur such that HomH (U ′
r, X) 	= 0. By assumption
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HomH (U ′
r, τ X) = 0, since HomH (U ′

r, τ X) � D Ext1(X, U ′
r). Hence any map U ′

r → X is either an epi-
morphism or a monomorphism. Since U ′

r is not in W Z , it is also not in W X , and it follows that any
non-zero map U ′

r → X is an epimorphism, and hence factors through B0 → X , and the claim follows.
Hence B → X is a minimal right add(U � Y )-approximation. This completes the proof of (a). �
Lemma 5.2. Let T be a tube such that T has a summand M, lying in T . Assume q.l. M is maximal among the
direct summands of T in T . By Lemma 4.2, we have that addτ T ∩ Wτ M = addτ T ′ for a tilting object τ T ′
in Wτ M . Let T = T ′ � T ′′ . Then we have:

(a) All tilting objects in Wτ M are complements of τ T ′′ .
(b) All objects in Wτ M have a T -denominator.

Proof. Note that there is a hereditary algebra H ′ , with C H ′ = C H , such that τ T ′′ as an H ′-module has
only regular and preprojective direct summands (see Remark 3.1). Assume q.l. M � t , and that the
rank of T is t + 1. Let U = τ T ′ = τ N1 � · · · � τ Nt−1 � τ M be the tilting object in Wτ M .

Using Proposition 3.3 and Lemma 3.4, we have that all tilting objects in Wτ M can be reached from
U by a finite number of exchanges, given by exchange sequences in Wτ M . Using Lemma 5.1 these
exchange sequences are also exchange sequences in mod H ′ and hence in C H ′ = C H . This shows (a).
For (b) it suffices to show that each such exchange pair is compatible with T . Consider the exchange
triangle

X ′ → X → X ′′ → . (8)

By Proposition 1.7, the pair (X ′, X ′′) is compatible with all summands in T which are C -bricks. It
is also compatible with any regular summand T j of T with TT j 	= T , since Hom(T j, ) vanishes on all
terms of the sequence. By Lemma 4.1(a) we only need to consider compatibility with summands of T
which lie in T and have quasilength t . By Lemma 4.1(b), T has at most one such summand. Since M
is assumed to have maximal quasilength amongst indecomposable direct summands of T in T , if T
has such a summand, it must be M . But, since the exchange triangle (8) lies inside Wτ M , we see that
Hom(M, ) vanishes when applied to (8). This finishes the proof of (b). �
Lemma 5.3. Let X be an exceptional regular indecomposable object of C which is a C -brick.

(a) An exchange pair (X, Z) is compatible with any regular object M for which either M is a C -brick, or
TM 	= T X , or X ∈ Wτ M′ , where M ′ → M is an irreducible monomorphism.

(b) There is an exchange triangle of the form Y → Q � X ′ → X → where X ′ → X is an irreducible monomor-
phism in case q.l. X > 1 and X ′ = 0 otherwise, with the property that Y and Q are transjective.

Proof. (a) If M is a C -brick then this holds by Proposition 1.7. For the other cases note that
Hom(M, X) = 0 = Hom(M, τ−1 X), and hence when Hom(M, ) is applied to the exchange triangle
Z → Q ′ → X →, one obtains a short exact sequence.

For (b), let X1, . . . , Xt = X be regular exceptional indecomposable modules such that there is an ir-
reducible monomorphism Xi → Xi+1 for all i. Let Q be the preprojective complement of X1 �· · ·� Xt

provided by Lemma 4.5, and let U = Q � X1 � · · · � Xt−1. Consider the minimal right add U -
approximation U ′ → X (as H-module). Since Q generates X , so does U , so the approximation is
surjective, and we have a short exact sequence 0 → Y → U ′ → X → 0 and thus an induced approxi-
mation triangle, Y → U ′ → X → in C . Since all maps from Xi to X (with 1 � i � t − 1) factor through
a non-zero map Xt−1 → X (taking X0 = 0), X ′ = Xt−1 is the only regular summand of U ′ and the
other summands are preprojective. Since no non-zero map Xt−1 → X is surjective, while U ′ → X is
surjective, U ′ must have a preprojective summand, and it follows that Y is preprojective. �

We now deal with the transjective objects.
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Proposition 5.4. All transjective objects have a T -denominator.

Proof. By Proposition 3.8 it is sufficient to show that there is one transjective cluster-tilting object all
of whose indecomposable direct summands have T -denominators. Without loss of generality we can
assume that T has at least one indecomposable direct summand which is not a C -brick.

Assume T = Q � R , where Q is transjective and R is regular. Then, using Lemma 4.2, there
are indecomposable summands M1, . . . , Mz of R such that each summand of R lies in one of the
wings WMi . We choose a minimal such set of summands. Since Ext1

C (Mi, A) 	= 0 for any object A
whose wing overlaps WMi , any two of the WMi must be either equal or disjoint.

By definition, all summands of τ T have T -denominators. By Lemma 5.2, we can, for each i, replace
the summands of τ T in Wτ Mi with the indecomposable objects in the tube of Mi which have a
monomorphism to τ Mi . We obtain a new cluster-tilting object U = (�z

i=1τ Mi) � U ′ all of whose
indecomposable direct summands have T -denominators.

Suppose M1 has quasilength t and let N1, N2, . . . , Nt = M1 be the indecomposable objects in TM1

with monomorphisms to M1, where q.l.(Ni) = i for all i. Then we can write U = (�t
i=1τ Ni) � Y . We

claim that, via a sequence of exchanges, the τ Ni can be replaced by transjective summands Q i which
have T -denominators. When repeating this for M1, M2, . . . , Mz , we will end up with a transjective
cluster-tilting object having T -denominators as required.

We exchange τ M1 with a complement (τ M1)
∗ , via the exchange triangles:

(τ M1)
∗ → B → τ M1 →, τ M1 → B ′ → (τ M1)

∗ → .

Claim. The object (τ M1)
∗ is transjective.

If (τ M1)
∗ is not induced by an H-module, it is induced by the shift of a projective module, and

we are done. So we can assume that (τ M1)
∗ is induced by a module. Then one of these two exchange

triangles must arise from a short exact sequence of modules.
If it is the first, then clearly HomH (X, τ M1) = 0 for any regular summand X of U not in TM1 .

But if X lies in TM1 and not in Wτ M1 , again HomH (X, τ M1) = 0 since the wings Wτ Mi do not
overlap (and q.l.(Mi) is less than the rank of its tube for all i). Let N0 = 0. Since τ Nt−1 does not
generate τ Nt = τ M1, it follows that B has a non-zero preprojective summand, and hence that (τ M1)

∗
is preprojective.

If it is the second, then clearly HomH (τ M1, X) = 0 for any regular summand X of U not in TM1 .
But if X lies in TM1 and not in Wτ M1 , again HomH (τ M1, X) = 0 since the wings Wτ Mi do not overlap.
Since HomH (τ M1, τ N j) = 0 for all j, it follows that B ′ has a non-zero preinjective summand, and
hence that (τ M1)

∗ is preinjective.
Hence, in either case, (τ M1)

∗ is transjective. We next show that (τ M1)
∗ has a T -denominator, by

considering two cases:
Case I: We assume first that End(M1) = k, i.e. M1 is a C -brick.
Every summand of T in T = TM1 is a C -brick (by the choice of the Mi ), so by Lemma 5.3(a) we

obtain that the exchange pair (τ M1, (τ M1)
∗) is compatible with all summands of T , and hence that

(τ M1)
∗ has a T -denominator by Proposition 1.6. We then repeat this procedure for τ Nt−1, . . . , τ N1.

Case II: End(M1) 	= k, i.e. M1 is not a C -brick. Arguing as above, we see that we can exchange τ M1
with a transjective object (τ M1)

∗ . M1 is compatible with the exchange pair (τ M1, (τ M1)
∗) by defi-

nition. The other direct summands in T are either C -bricks, or they are in other tubes. In both cases
they are compatible with (τ M1, (τ M1)

∗). Hence T is compatible with that exchange pair. So (τ M1)
∗

has a T -denominator by Proposition 1.6. We can then exchange the other summands τ Nt−1, . . . , τ N1
with transjectives by Lemma 5.3(b). By the last assertion of Lemma 5.3(a), each exchange pair is com-
patible with M1. As in Case I, they are also compatible with the other direct summands of T . Hence,
we obtain a transjective cluster-tilting object having a T -denominator, and we are done. �
Lemma 5.5. Let T be a tube such that each direct summand of T lying in T is a C -brick, or such that T has
no summands in T . Then each exceptional indecomposable object in T has a T -denominator.
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Proof. Let X be an exceptional indecomposable object in T . We prove the lemma by induction on
the quasilength of X .

If q.l. X = 1, then by Lemma 5.3(b) there is an exchange triangle Y → Q → X → with Q and
Y transjective. By Proposition 1.7, we need only show that (Y , X) is compatible with any regular
non-C -brick summand M of T . But this follows from Lemma 5.3.

Now assume that any exceptional indecomposable object Y of quasilength less than t has a T -
denominator. We want to show that the result also holds for the exceptional indecomposable X with
q.l. X = t . For this we use Lemma 5.3. �

It now remains to deal with the exceptional objects which are in Wτ M for a non-C -brick sum-
mand M of T . Here Wτ M denotes the complement of the wing Wτ M inside the tube TM (i.e. the
indecomposable objects in TM which are not in Wτ M ). For this the following lemma is crucial.

Lemma 5.6. For each indecomposable exceptional object X∗ in Wτ M , there are exchange triangles

X∗ → B → X →
and

X → B ′ → X∗ →
such that

(i)

max
(
dim Hom(M, B),dim Hom

(
M, B ′))

= dim Hom
(
M, X∗) + dim Hom(M, X) − 1.

(ii) The object X and all indecomposable summands of the objects B and B ′ have T -denominators.
(iii) The object X is induced by a preprojective module.

Proof. By Lemma 4.6(a), there is an object N in W X∗ such that N � X∗ is a tilting object in the wing
W X∗ and all direct summands of N are in Wτ M .

By Lemma 4.6(b), we have that N � X∗ has a preprojective complement Q in mod H , such that
Q generates X∗ . Let R = Q � N and let B ′ → X∗ (respectively, X∗ → B) be the minimal right (re-
spectively, minimal left) add R-approximations of X∗ . We claim that the induced exchange triangles
satisfy (i)–(iii).

Consider the exchange triangle

X → B ′ → X∗ → .

Since Q generates X∗ in mod H , it is clear that this triangle is induced by a short exact sequence in
mod H , and hence X is induced by a preprojective module (showing (iii)), since X → B ′ is non-zero
and B ′ must have a preprojective summand as N doesn’t generate X∗ .

Apply Hom(M, ) to obtain the long exact sequence

(
M, τ−1 X∗) → (M, X) → (

M, B ′) → (
M, X∗) → (M, τ X).

We claim that every H-map τ M → X∗ factors through B ′ . This follows from the configuration
of M , N and X∗ in the Auslander–Reiten quiver of the tube, noting that HomH (τ M, N) 	= 0 if and
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Fig. 2. A summand B0 of N with HomH (τ M, B0) 	= 0: see proof of Lemma 5.6.

only if Hom(τ M, X∗) 	= 0 (if and only if N 	= 0). Fig. 2 displays this case, when N has a summand B ′
0

(occurring in B ′) with HomH (τ M, B ′
0) 	= 0; compare with Fig. 1. By [BMR2, Lemma 5.1] it follows that

(M, X) → (M, B ′) is a monomorphism.
We claim that dim coker((M, B ′) → (M, X∗)) = 1. By Lemma 4.1, we have that dim HomH (M, X∗) =

1 and it is clear that an H-map M → X∗ will not factor through B ′ , since N is in Wτ M , and hence
HomH (M, N) = 0, by Lemma 4.1.

By Lemma 4.1 the space of F -maps M → X∗ is also one-dimensional. We claim that such F -maps
will factor through B ′ . For this we consider two possible cases: the object X is either induced by a
projective H-module P or not. First assume that X is non-projective. Since the composition of two
F -maps is 0, it is clear that all F -maps M → X∗ will factor through B ′ → X∗ . Hence the claim follows
in this case. Now consider the case where X∗ is projective. Then the composition M → τ−1 X∗[1] →
τ−1(Pi[1])[1] is clearly zero, so the claim follows in this case.

We next want to show that when Hom(M, ) is applied to the second exchange triangle

X∗ → B → X →,

we do not obtain an exact sequence. The map X∗ → B decomposes into X∗ → Q 0 � N0, with Q 0
preprojective and N0 in Wτ M . Hence X∗ → Q 0 is an F -map. There is a non-zero F -map M → X∗ and
the composition M → X∗ → B will be zero since M → X∗ → Q 0 is the composition of two F -maps
and Hom(M, N0) = 0, since M ∈ Wτ M .

Hence we obtain (i), and (ii) follows using Lemmas 3.6 and 5.2(b), using the fact that X and
all indecomposable summands of B and B ′ are either transjective or in Wτ M , and noting that, by
Lemma 4.1(a), M has maximal quasilength amongst the direct summands of T in TM . �

The proof of the following is an adaptation of parts the proof of [BMRT, Prop. 3.1]. It completes
the proof of our main result, Theorem A.

Proposition 5.7. Let T be a tube such that T has a non-C -brick summand M, lying in T . Then each object in
Wτ M has a diminished T -denominator.

Proof. Let X∗ be an indecomposable object in Wτ M . By Lemma 5.6 there is an indecomposable object
X and exchange triangles

X∗ → B → X →

and

X → B ′ → X∗ →

such that Lemma 5.6 holds.
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We have [BMR1] that

xX xX∗ = xB + xB ′ . (9)

Assume M = Tl . We need to discuss two different cases.
Case I: Suppose that neither X nor X∗ is isomorphic to τ Ti for any i. Let B = B0 � B1, where no

summand of B0 is of the form τ Ti for any i, and B1 is in addτ T . Similarly, write B ′ = B ′
0 � B ′

1. Let
tB0 denote

∏
tY where the product is over all indecomposable direct summands Y of B0; similarly

write tB ′
0
. Note that tY is defined in Definition 1.2.

We then have xB = f B0 yB1
tB0

and xB ′ = f B′
0

yB′
1

tB′
0

.

Let m = lcm(tB0 ,tB′
0
)

tB0
and m′ = lcm(tB0 ,tB′

0
)

tB′
0

. We then have:

(xX∗) = xB + xB ′

xX
= ( f B0myB1 + f B ′

0
m′ yB ′

1
)/ f X

lcm(tB , tB ′)/t X
,

using that tB = tB0 since HomC (Ti, τ T j) = 0 for all i, j, and similarly tB ′ = tB ′
0
.

Since M = Tl is a summand in T , we have by Lemma 5.6 that

max
(
dim Hom(Tl, B),dim Hom

(
Tl, B ′))

= dim Hom
(
Tl, X∗) + dim Hom(Tl, X) − 1.

For any other summand of T , say Ti with i 	= l, we have that Ti is compatible with (X, X∗), and hence

max
(
dim Hom(Ti, B),dim Hom

(
Ti, B ′))

= dim Hom
(
Ti, X∗) + dim Hom(Ti, X).

We thus obtain:

t Xt X∗ =
∏

ydim HomC (Ti ,X)+dim HomC (Ti ,X∗)

i

= yl ·
∏

ymax(dim HomC (Ti ,B),dim HomC (Ti ,B ′))
i = yl · lcm(tB , tB ′).

Hence

xX∗ = ( f B0myB1 + f B ′
0
m′ yB ′

1
)/ f X

t X∗/yl
. (10)

We have that m and m′ are coprime, by definition of least common multiple. Since B and B ′ have
no common direct summands [BMR1, 6.1], yB1 and yB ′

1
are coprime. Suppose that m and yB ′

1
had a

common factor yi . Then we would have a summand Z of B ′
0 such that HomC (Ti, Z) 	= 0, and τ Ti was

a summand of B ′ . But then

Ext1
C (Z , τ Ti) � D HomC (τ Ti, τ Z) � D HomC (Ti, Z) 	= 0.

This contradicts the fact that B ′ is the direct sum of summands of a cluster-tilting object. Therefore
m and yB ′

1
are coprime, and similarly m′ and yB1 are coprime. It follows that myB1 and m′ yB ′

1
are

coprime.
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Since all indecomposable summands of B and B ′ have T -denominators, it follows (see Defini-
tion 1.2) that f B0 (ei) > 0 and f B ′

0
(ei) > 0 for each i ∈ {1,2, . . . ,n}. It is clear that (myB1 )(ei) � 0 and

(m′ yB ′
1
)(ei) � 0. Using that myB1 and m′ yB ′

1
are coprime, it follows that these two numbers can-

not simultaneously be zero, so ( f BmyB1 + f B ′m′ yB ′
1
)(ei) > 0. Hence f BmyB1 + f B ′m′ yB ′

1
satisfies the

positivity condition. By assumption, f X also satisfies the positivity condition.
By the Laurent phenomenon [FZ1, 3.1], xX∗ is a Laurent polynomial in y1, y2, . . . , yn . Clearly t X∗/yl

is also a Laurent polynomial. Hence u = ( f BmyB1 + f B ′m′ yB ′
1
)/ f X = xX∗ t X∗

yl
is also a Laurent polyno-

mial. Since u is defined at ei for all i, it must be a polynomial. By the above, u satisfies the positivity
condition.

We have that yl divides t X∗ = ∏
ydim HomC (Ti ,X∗)

i , since dim HomC (Tl, X∗) = 2. Hence we get that
t X∗/yl is a monomial. This finishes the proof in case (I).

Case II: Assume that X � τ Ti for some i. Note that i 	= l, since X and hence Ti is transjective, while
Tl is regular.

Since Ext1
C (Tr, Ts) = 0 for all r, s, we have that X∗ 	� τ T j for any j.

Using Proposition 1.6 and Lemma 5.6, we have

dim HomC (T j, X) + dim HomC
(
T j, X∗)

= max
(
dim HomC (T j, B),dim HomC

(
T j, B ′)) + ε j,

where

ε j =
{

1 if j = i or j = l,

0 otherwise.

As in case (I), but using that xX = yi (as X = τ Ti ), we obtain the expression

xX∗ = ( f B0myB1 + f B ′
0
m′ yB ′

1
)

lcm(tB , tB ′)yi
.

Using lcm(tB , tB ′ ) = t Xt X∗ y−1
i y−1

l , we get

xX∗ = ( f B0myB1 + f B ′
0
m′ yB ′

1
)

t X∗/yl
.

As in case (I), we get that the numerator satisfies positivity and is a polynomial, and that t X∗ y−1
l is a

monomial. The proof is complete. �
6. An example

We give a small example illustrating the main theorem.
Let Q be the extended Dynkin quiver

2 3

1 4

and let H = kQ be the path algebra. Then H is a tame hereditary algebra where the AR-quiver has
one exceptional tube T , which is of rank 3. The (exceptional part of) the AR-quiver of T is as follows,
where the composition factors (in radical layers) of indecomposable modules are given.
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Let Pi = Hei denote the indecomposable projective H-modules. Let T = T1 � T2 � T3 � T4 =
τ−1 P4 � τ−1 P1 � 3 � 13

4
. It is easily verified that this is a cluster-tilting object. The encircled modules

in the above figure are those which are in Wτ T4 .
For each exceptional object Y in the tube T , we give the dimension vector of HomC (T , Y ) as a

EndC (T )op-module. Note that HomC (T , τ T3) = 0 = HomC (T , τ T4).

∗ 1102 1122

0010 ∗ 1112 0010

We consider the initial seed {x1, . . . , x4} where xi = xτ Ti . We give the corresponding cluster vari-
ables xY (with most of the numerators skipped).

x4
∗

x1x2x4

∗
x1x2x2

3x4

x4+1
x3

x3
∗

x1x2x3x4
x4+1

x3

We observe that the denominators of these cluster variables can be computed from the dimension
vectors of the corresponding modules over EndC (T ), as described by our main theorem.
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