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Abstract 

Rigid body impact models have been used in a number of racket and bat sports to better understand how physical 
properties such as mass, moment of inertia and balance point can affect ball rebound speed. Cricket is sport whereby 
players can select their preferred bat with a wide range of different physical properties. No previous studies have 
attempted to validate the use of rigid body impact models in cricket, and player choices are typically made through 
intuition with little consideration of impact mechanics. This study measured the performance of three different cricket 
bats in freely suspended impact tests, and compared the results to predictions made by a rigid body model. Ball 
rebound speed was measured using high speed video on impacts locations across the blade. The physical properties of 
the different bats were measured and used as the input for the rigid body model predictions. It was found that for 
impact locations close to the bat’s centre of mass, the rigid body model worked well, but some discrepancies were 
found as the impact location moved away from the centre of mass. These discrepancies were believed to be caused by 
the large vibrations evident during the impacts (a clear violation of the model’s rigid body assumption) and the 
erroneous method that was employed to measure the bats coefficient of restitution. It was concluded that using a rigid 
body model to describe the impact of a cricket ball with a cricket bat is valid as a first approximation and that it has 
significant value in terms of exploring how changing a bat’s physical properties may affect its performance. 
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1. Introduction 

The game of cricket has evolved over the last 40 years with the introduction of new, shorter formats 
(e.g. one day, Twenty20). Consequently, the cricket bat has seen many innovations in an attempt to allow 
the batsmen to produce results in keeping with changing tactical demands. For example, the shorter game 
requires the batsman to score faster and strike more powerful shots more often. Anecdotally, many 
players choose lighter bats for long test matches and heavier bats for the more attacking roles required in 
one day matches and Twenty20 games. 
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Other than experience and personal preference, currently there is no method for a player to select an 
appropriate bat that will produce optimum results for a particular format of the game. Cricketers would be 
keen to know how their performance might change for bats of varying physical characteristics, such as 
mass, balance point and moment of inertia. As well as affecting the efficiency of the ball-bat impact, 
these physical properties also affect the amount of effort required by the batsman to swing the bat, and to 
control it during the swing [1].  

Rigid body models have been used extensively to predict equipment behaviour in sporting disciplines 
such as tennis [2, 3] and baseball [4]. Researchers have produced rigid body models of the bat/racket to 
predict how performance will change with different physical characteristics thereby providing insights for 
design optimization and innovation. Rigid body models assume that the material from which the 
implement is made is uniform throughout, and is infinitely stiff. They are unable to account for energy 
losses that occur from deformation and vibration. Nonetheless, rigid body models have been proven to be 
effective in sport applications, and provide a solid platform from which more complex models can be 
developed.  

Previous studies have investigated the cricket bat’s inertial and vibration characteristics [5] and 
methods such as finite element analysis and modal models have been also been used to investigate design 
performance [6]. However, no previous authors have attempted to model the cricket ball-bat impact 
through rigid body techniques, despite its widespread use in other sports. It appears that authors have 
adopted complex modeling techniques before first considering more simple approaches.  

Therefore, the purpose of this study is to apply a rigid body model to a range of different cricket bats, 
and to then attempt to validate the model’s accuracy through experiment.  

2. The model  

The model using in this research is adapted from the work of Brody on tennis ball-racket impacts [2]. 
It uses the principles of conservation of linear and angular momentum to determine the velocity of the 
cricket ball after impact with a freely suspended cricket bat. The rebound velocity of a ball after impact is 
commonly used as measure of performance for freely suspended impacts and is therefore the parameter of 
primary concern [7, 8]. The model is one dimensional assuming that all impacts will occur on the central 
axis and no twisting will occur in the polar plane. By conservation of linear momentum, 

 
        (1) 

 
where mb is the mass of the ball, M is the mass of the bat, vb and v’b are the initial and final ball 

velocities, respectively and V and V’ are the initial and final bat speeds, respectively, measured at the 
centre of mass (COM). 

Conservation of angular momentum is described by the equation; 
 

         (2) 
 

where I is the moment of inertia about the COM,  and ’ are the angular velocities of the bat before 
and after impact, and z is the distance from the COM to the impact location. 

The bat velocity at the impact point, VIP, is; 
 

          (3) 
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Using the definition of the coefficient of resitution; 
 

          (4) 

 
where V’IP is the velocity of the impact point of the bat after impact, it is possible to combine 

equations 1 to 3 to solve for the final ball velocity, 
 

      (5) 

 
where e is the coefficient of restitution. 

For a freely suspended bat, terms involving V and  will become zero, so the equation 5 reduces to; 
 

.        (6) 

3. Determining model parameters 

The rigid body model uses a set of fixed parameters that describe the physical properties of the bat. 
These parameters are bat mass, moment of inertia about the COM, coefficient of restitution, and the 
location of the COM. By knowing these parameters the model is able to predict the rebound velocity of 
the ball at any known impact location along the blade.  

The moment of inertia was found by using methods similar to those described by Brody [9]. A rod was 
attached to the end of the handle of the bat. The rod was placed on parallel knife edges which allowed the 
free swing of the bat, and the time period of one oscillation was determined from measuring 10 
oscillations and calculating the mean. The bat was released from angles no larger than 10° so that small 
angle approximation applied. The moment of inertia about the handle end can be found using,  

 

          (7) 
 

where mb is the mass of the bat, g is the acceleration due to gravity, T is the period of oscillation and d 
is the distance from the handle end to the centre of mass. However, this method provides the moment of 
inertia about the handle end, and not about the COM as required. To rectify this, the parallel axis theorem 
was used to translate the moment of inertia to the axis desired. 

Bat mass, and the location of its centre of mass were measured using bespoke equipment developed by 
the Centre for Sports Engineering Research at Sheffield Hallam University. The apparatus is able to 
measure mass to within 0.0001 kg and the location of COM to within 0.0001 m. 

The coefficient of restitution was determined by firing a bola practice cricket ball at the freely 
suspended bat. The ball was launched using a bowling machine and was targeted on the bat’s centre of 
mass. The ball’s inbound velocity, rebound velocity and the bat’s recoil velocity were all measured using 
high speed video techniques and the coefficient of restitution was calculated using the equation below;  
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          (8) 

 
where, V’ is the recoil velocity of the bat’s centre of mass. 

4. Validation experiments 

The rigid body model was evaluated by conducting impact experiments on three, brand new, high 
quality cricket bats with a range of physical properties. The physical properties of the bats were 
ascertained using the methods described in the previous section, and are summarized in Table 1. 

 

Table 1. A summary of the physical properties of the three cricket bats tested. Centre of mass location is measured from the end of 
the handle 

 Mass (kg) Centre of mass location (m) Moment of inertia (kgm2) Coefficient of restitution 

Bat 1 1.175 0.491 0.0652 0.511 

Bat 2 1.161 0.527 0.0558 0.519 

Bat 3 1.090 0.518 0.0544 0.509 

 
The bats were freely suspended on a rigid frame and supported by a pin at the end of the handle. Bola 

practice cricket balls of average mass 80 grams were launched at the cricket bats using a Bola bowling 
machine. A Phantom v4 high speed video system was positioned perpendicular to the impact plane to 
measure the inbound and rebound velocity as well as the impact location. A second high speed video 
system was positioned behind the bowling machine in the same orientation as the impact plane to 
determine whether the balls struck the bats in the centre of their blades. Impacts that did not strike the bat 
in the centre of the blade were discarded as they would require additional degrees of freedom to model. 
The experimental setup allowed for the height of the bat to be incrementally changed such that impacts 
could be measured at various locations along the blade. The resulting high speed video footage was 
calibrated and manually digitized using bespoke software. The speed of the bowling machine remained 
fixed throughout testing and the ball impact velocity averaged 27.7 ms-1 with a standard deviation of 0.3. 
Approximately 25 successful impacts were recorded on each bat.  

5. Results 

Figure 1 shows comparisons between the experimentally measured ball rebound velocities and the 
predicted rebound velocities from the rigid body model for the three different cricket bats. All three plots 
show a generally good agreement between the experimentally measured ball rebound velocities and the 
predicted rebound velocities. The experimental results show Bat 1 to have the highest maximum ball 
rebound velocity, and this is matched by the model. Equally, the experimental data shows Bat 2 to 
perform better during impacts towards its toe, and this is also matched by the model.  

For each bat, the maximum rebound velocity occurs at the centre of mass. As the impact location 
moves away from the centre of mass, the ball rebound velocity diminishes rapidly due to a reduction in 
the bat’s effective mass. Each bat has a subtly different modeled profile due to its different mass, centre 
of mass location, moment of inertia, and coefficient of restitution. As the coefficient of restitution was 
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similar for all three bats it is not surprising that the heaviest bat (Bat 1) was found to possess the 
maximum predicted rebound velocity. 

In all three cases, there is a better agreement at the higher rebound velocities (impacts close to the 
centre of mass) as compared to the lower rebound velocities (impacts at a distance away from the centre 
of mass). The good agreement at impacts close to the centre of mass is to be expected as the coefficient of 
restitution was measured at this point. For impacts away from the centre of mass, the model tends to over 
predict the rebound velocity of the ball.  
 
 
 
 

   
 
  
 
 
 
 

Bat 1    Bat 2    Bat 3 

Fig. 1. A comparison of experimentally measured ball rebound velocities and the rigid body model predictions for all three cricket 
bats 

6. Discussion 

In these experiments, the coefficient of restitution was determined by firing a ball at the centre of mass 
of the freely suspended bat. As Cross describes in his work on rigid body models [10], the coefficient of 
restitution changes depending on the ball impact location on a freely suspended bat or racket. In this 
instance, the coefficient of restitution that was measured is likely to be lower than its true value since it 
will have been somewhat affected by the large anti-node vibrations that occur at the centre of mass of a 
cricket bat. With hindsight it would have been more appropriate to measure the coefficient of restitution 
by rigidly clamping the bat in a suitable bespoke frame. 

Despite the erroneous method that was employed to measure the bats’ coefficient of restitution, the 
rigid body model performs remarkably well. When analyzing the high speed video footage it is evident 
that the bat undergoes significant vibration during impact with large amplitude. It is therefore somewhat 
surprising that the rigid body model works as well as it does. Presumably the elastic properties of wood 
allows for vibrations and deformations of the system without causing significant losses of energy. 
Therefore, the rigid body approximation ‘works’ since the vibrations of the bat do not considerably 
reduce the ball rebound velocity.  

This study validates the rigid body method as a first approximation for the cricket ball-bat impact and 
opens the door for the method to be used as a tool to explore how changing a bat’s physical properties 
will affect its overall performance. However, the model does not account for how the player will 
inevitably find it harder to swing a heavier bat, or a bat with a larger moment of inertia. Understanding 
how different players are able to swing bats with different physical properties is an essential, and yet 
missing piece of the equation if one is to be able to find the optimum bat characteristics for a particular 
style of play. Understanding the relationship between a cricket bat’s physical properties and swing speed 
is the focus of future research. 
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7. Conclusions 

The experimental results reported in this paper demonstrate that using rigid body models to describe 
the impact of a cricket ball with a cricket bat is a valid first approximation. Generally good agreement 
was found between experimental results and model predictions. The method serves as a valid and 
potentially useful tool for exploring how changing a bat’s physical properties will affect its overall 
performance. 
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