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ABSTRACT 

Local and global bounds for ratios of norms, and minimal and maximal norms, are 
constructed for pairs and ensembles of quadratic norms on ~k, with corresponding 
results for Mahalanobis distance functions. These support envelopes for distributions 
of certain quadratic forms in Gaussian variates. Applications are noted in the use 
of quadratic classification rules and in assessing hit probabilities in ballistic systems. 
© 1997 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

Let M be a positive definite real k × k matrix. Numerous applications 
utilize norms of the type IMI M = (x' Mx)  1/2, together with the corresponding 
metric Du(x ,y )  = [~x - yllM. In the form A~(x,y) = [(x - 0 Y ~ ' * - l ( x  - 

0)] l/z, this is the Mahalanobis (1936) generalized distance between an 
observation x ~ R k k and the centroid 0 ~ R of a k-dimensional Gaussian 
distribution having information matrix M and dispersion matrix ~ -- M-1.  
For further historical details and references see Pillai (1985). In this study we 
develop local bounds for ratios of norms, and we construct minimal and 
maximal norms, for pairs and ensembles of quadratic norms on R k. These 
findings in turn support envelopes for distributions of quadratic forms in 
Gaussian ensembles on R k and for certain mixtures over these. Applications 
are noted in the use of  zero-mean classification rules, and in evaluating hit 
probabilities in ballistic systems under nonstandard conditions. 
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2. PRELIMINARIES  

2.1. Notation 
Designate by R k and Rk+ the Euclidean k-space and its positive orthant, 

and by Rk(0) and Rk+(0) the corresponding sets excluding 0. Let  Sk, S~, and 
S~ comprise the symmetric, the positive semidefinite, and the positive 
definite real k × k matrices; P~ and A -  1 are the transpose and inverse of  A; 
A 1/2 ~ S~ is the symmetric root o f A  E S~; and Sp(z 1 . . . . .  z~) c R k is the 
linear span of  vectors {z 1 . . . . .  z r} in R k. Special arrays include the unit vector 
1 k = [1, 1 . . . . .  1] ~ R k, the identity matrix I k of  order  k, and the collection 
D~ c S~- comprising diagonal matrices of  the type Diag(a 1 . . . . .  ak). 

Take (R k+, >/) to be ordered  such that x >~ y in R k if and only if { x~/> Yi; 
1 ~< i ~< k}. Moreover,  (Sk, ~ t )  is ordered  as in Loewner  (1934) such that 
A ~L B if and only i f A  - B ~ S~, with A >'L B whenever  A - B ~ S~. Let  
A and B be positive definite, and consider pairs {(%, qi); 1 ~< i ~< k} satisfy- 
ing {(A - %B)¢I~ --- 0; 1 ~< i ~< k}. Then  with D,  t = Diag{T1 . . . . .  Tk) con- 
taining the ordered  roots of  ~k - TBI = 0, we have the spectral decomposi- 
tion B-1/2AB -1/2 = PD_ P',  whereas the respective vectors are related as 
{q~ = B-1/2p~; 1 ~< i ~</~. Clear lyA ~L B i f and  onlyi f{% >i 1; 1 <<. i <<. k}, 
whereas B ~L A corresponds to {Ti ~< 1; 1 ~< i ~< k}. Otherwise at least one 
of two positive integers ( r ,  s) exists such that 

{T1 t> "'" >~ T, > Tr+l = 1 . . . . .  Tr+, > T,+s+l >/ "'" >~ Tk > 0}. 

(9..1) 

Corresponding to these are subspaces Rl = Sp(ql  . . . . .  qr ) ,  R2 = 
Sp(qr+ 1 . . . . .  qt+s) ,  and R 3 = Sp(qr+s + 1 . . . . .  Ilk), at most two of which may 
be empty. Specifically, if neither A ~L B nor  B ~L A, then R z alone is 
empty if and only if there are no unit roots. 

2.2. Spectral Matrix Bounds 
We seek bounds for matrices in (S~-, ~L )" But since (S~, ~L ) is not a 

lattice (Halmos, 1958, p. 142), there is no greatest lower bound (glb) or least 
upper  bound (lub) for (A, B) in (S~, ~L )" Nonetheless, we may construct 
spectral lower and upper  bounds on recalling that (R~,  >t) is a lattice with 
g l b x A y a n d l u b x v y f o r ( x , y )  i n R  k , w h e r e x A y = [ x  l a y 1  . . . . .  x k A 
Yk]' and x v y = [x I v Yl . . . .  , x k v Yk]', with x i A y~ = min(xi,  y~), 1 ~< i 
~< k, and x i v y~ = max(xi, Yi), 1 ~< i ~< k. See Vulikh (1967), for example. 
On imbedding D~ in (Rk+, ~>), we infer that (D~,  ~L ) is itself a lattice with 
D o A D b = Diag(a 1 A b 1 . . . . .  a k A b k) and I ~  a V D b = Diag(a 1 V 
b 1 . . . . .  a k v .bk), for D o = Diag(a 1 . . . . .  a k) and I)~ = Diag(b 1 . . . . .  bk). 
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Since A and B may be recovered from B-1/2AJ3  -1 /2  = PD~P' as A = 
B1/2PDvP'B 1/2 and B = B1/2pIkP'BI/2, we accordingly define matrices 
A A B = B1/2p(D~ A Ik)P'B 1/z and A V B = B1/ZP(Dv V Ik)P'B 1/2 as 
the spectral glb and the spectral lub, respectively, for (A, B) in (S~-, ~L )- It 
follows constructively that A A B ~L {A, B} ~L A V B on (S~-, ~a ). Fur- 
ther details are given in Jensen (1993). 

2.3. Basic Distributions 
Probability density function and cumulative distribution function are 

abbreviated as pdf and cdf; .~(Y) designates the law of distribution of 
Y ~ Rk; and Nk(0, ~ )  denotes the nonsingular Ganssian law on R k having 
mean 0, dispersion matrix ~ ~ S], and Gaussian measure Gk(.; 0, ~).  Let 
C(k)  comprise the compact convex sets in •k that are symmetric under 
reflection through 0 ~ Rk; let { txt(.); t ~ r} be an ensemble of probability 
measures on Rk; and suppose that measures {Urn('), VM(')} can be found such 
that vm(A) <~ {/~t(A);  t ~ 7"} ~< I~M(A) for each A ~ C(k). Then E,,(') is 
called a stochastic minorant, and vM(,) a stochastic majorant, for the 
ensemble {/xt(.); t ~ 7-}. For further details see Jensen (1993). 

Standard distributions on RI+ include the cdf G(t; m) of the central 
chi-squared (X 2) distribution having m degrees of freedom, and the cdf 
F(t;r, s) of the central Snedecor-Fisher F-distribution having (r, s) degrees 
of freedom. Further classes arise as follows. Suppose that .9~(U) = Nk(0, Ik); 
let Z = alU ~ + ... +akU~; denote by Fk(z; a 1 . . . . .  a k) its cdf; and generate 
the class F(k)  = {Fk(-; a 1 . . . . .  ak); [a I . . . . .  a k] ~ ~k(O)} of all such cdFs on 
~1 as a = [a I . . . . .  a k ] ranges over ~k(O). In particular, Fo(k) c F(k)  is the 
subclass of distributions on RI+ as a ranges over Rk+(0). Series expansions and 
other properties of distributions in Fo(k) are developed in Johnson and Kotz 
(1970), and expressions in closed form are given in Bock and Solomon (1988) 
for the case k = 2; see also Mathai and Provost (1992). A basic property is 
that distributions in F(k)  increase stochastically in each {ai; 1 ~< i ~< k}, i.e., 
for each fixed z, Fk(z; a 1 . . . . .  a k) is a decreasing function of each {ai; 
1 ~< i ~< k}, so that Fk(z; a I . . . . .  a k) is order-reversing when considered as a 
function on (R k, >/) with z fixed. Connections to standard distributions 
follow on noting that Fk(t/a; a . . . . .  a) = G(t; k) for F~(z; a . . . . .  a) ~ Fo(k ), 
with a > 0. 

3. BOUNDS FOR NORMS 

We construct bounds on ratios of norms, and minimal and maximal 
norms, for pairs (11" IIA, I1" lira), including (1) A ~L B, (2) B ~L A, and (3) 
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neither  A ~ B nor B ~L A, as special cases. Our  principal findings follow, 
where  some of  R1, Re, R 3 may be empty  as noted. 

THEOREM 1. Let II • IIA and I1" lIB be quadratic norms on R k, and let 
{7~ >/ "'" >/ Yk > 0} be the ordered roots of IA - TBI = 0. Then the follow- 
ing bounds apply whenever the indicated subspaces are nonempty: 

(i) y~/e ~< IIxlIA/ItxlIB ~< ~/1/2 for every x E ~k; 
(ii) %l/e ~< IklIA/I~xlIB ~< ,/1/e for every x E R 1 = Sp(ql  . . . . .  qr);  

(iii) IkllA/IkllB = 1 for every x ~ R e = Sp(qr+l  . . . . .  qr+~); and 
~,l/e for every x ~ R 3 = Sp(qr+~+~, (iv) 3,~/2 ~< IlxllA/llxll~ ~< Tr+s+l 

• .. ,q~). 

Proof. Conclusion (i) restates standard variational propert ies of  the 
generalized Rayleigh quotient x ' A x / x '  Bx. As proofs for (ii)-(iv) run parallel, 
we focus on conclusion (ii). Beginning with B-1/ZAB - l / e =  PDvP'= 
~]~=lYiP,P'i, let L 1 = Sp(p1 . . . . .  P r ) ,  L2 = SP(p~+I . . . . .  Pr+s ), and L 3 = 
Sp(Pr+s+ 1 . . . . . .  Pk), corresponding to (2.1). I f  u ~ L 1 has unit length, then u 
can be represented  as u = c l p  1 + ... +Crp r such that e ' e  = 1 with e ' =  
[ C  1 . . . . .  Cr]. W e  now infer  that  u ' B - 1 / 2 A B - 1 / Z u  = (E~=lciPi) '  

k t r r e (~]~= 17jPjPj)(Y"i= 1 cipi) = ~,i= 1 ci yi from the orthonormall ty of  P. Clearly 
we have 7r ~< u ' B - 1 / 2 A B - 1 / 2 u  ~< TI; moreover,  equality is achieved on the 
right at c '  = [1, 0 . . . . .  0] and on the left at c '  = [0 . . . . .  0, 1]. Conclusion (ii) 
now follows because the spanning vectors are related through {qi  = B - 1 / 2 p i ;  
1 ~< i ~< k} as noted, so that Sp(p1 . . . . .  p r  ) = S p ( q l  . . . . .  q r ) .  Conclusions 
(iii) and (iv) follow similarly, to complete  our  proof. • 

To construct minimal and maximal norms for (11" IIA, I1" 118), and eventu- 
ally for ensembles  of  such norms, define rim(X) = [x'(A A B)x] 1/2 and ~u(x)  
= [x'(A V B)x] 1/2. The  following result is basic. 

THEOREM 2. Let A A B and A V B be the spectral glb and lub for 
(A, B) in (S~, ~L ), and consider the norms ~?m(') = I1" IIA ̂  B and f lu( ' )  = I1" 
I IA v B. Then the following bounds apply: 

(i) nm(X) ~ {IkllA, IkllB} ~< r iM(x) fo r  each x ~ ff~k; 
(ii) ~?m(X) = ItxlIB and IkllA = riM(x) for each x ~ R1; 

(iii) rim(X) = IkllB = ILxlIA = n ~ ( x ) f o r  each x ~ R2; and 
(iv) nm(X) = IIxlIA and IlxllB = ~M(x) for each x ~ R 3. 

Proof. Conclusion (i) follows constructively, since Ikllc 1> I~xllu for every 
x e Rk if and only if G ~L H on (S~, ~L)" As arguments  supporting 
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conclusions (ii)-(iv) are similar, we focus on (ii), inferring as in the proof for 
Theorem l(ii) that x ~ R 1 if and only i fx  = clq 1 + " "  + C r q  r = B-1/2(clp 1 
+ "'" + ¢ r P r )  for some e' = [c l . . . . .  Cr]. It follows from the orthonormality 
of {P1 . . . . .  Pk} that for x ~ R 1, x'(A A B)x can be written as 

(r) 
x ' ( A A B ) x =  cip, B-1/2B1/2P(D~,AIk)P 'B1/2B-I /2  E c i p ,  

i =  \ i = 1  

= ~(TiA 1)c~= ~c~=x'Bx (3.1) 
i = 1  i = 1  

to prove the first assertion of conclusion (ii). The second assertion follows 
similarly with x'(A v B)x = Eri=l c~i2/i = x'Ax for x ~ R 1. Parallel arguments 
establish conclusions (iii) and (iv), to complete our proof. • 

We have actually proved much more. Let {F(t); t ~ z} be a bounded set 
in (S~, ~L)  such that 0 "<L Fm ~L F( t )  ~L FM for every t ~  ~. If  we now 
generate the corresponding ensemble {1[" [Ir(t); t ~ ~} of norms on R k, then 
without further proof we have the following bounds. 

COaOLLaRY 2.1. Let {11" IIr.~; t ~ r)  be an ensemble of norms on R k 
such that 0 "<a Fm ~L {F(t); t ~ r} ~L FM, and let ~?m(') = II'llrm and 
nM(') = I1" IIrM. Then the inequalities 

rim(X) < {Ib~llr~t~; t c r} < ~M(X) (3.2) 

hold uniformly for every x ~ •k. 

4. STOCHASTIC BOUNDS 

Our developments support stochastic bounds for distributions of quadratic 
forms in Gaussian ensembles and mixtures. These arise in linear statistical 
inference, in large-sample theory, in tests for categorical data, in the ballistic 
analysis of weapons systems, in the detection of signals from noise, in the 
study of bone lengths determined in vivo using x-ray stereography, and 
elsewhere. For further details and references see Johnson and Kotz (1970), 
Jensen and Solomon (1972, 1994), and Mathai and Provost (1992), for 
example. 
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We next construct bounds for certain cdf's in Fo(k) in terms of other 
members of the class. Consider the forms {Y'AY, Y'BY} such that .~(Y) = 
Nk(O, ~ )  with ~ ~ S~-; equivalently consider {V = U '~U,  W = U'IIU} such 
that ~, = ~ / ~ A ~  1/~, l~ = ~ / ~ B ~  ~/~, and .~(U) = N~(O, I~); and observe 
that Sa(V) =Sa(~IU~ + "" + ~kU~) and Sa(W) =Sa(tolU( + "" +tokU~Z), 
with ~ i> -.. >/~k > 0 and to~ >/ "" >/tok > 0 as the ordered eigenvalues 
of ~ and gl, respectively. Accordingly, designate their edits as 
Fv(., ~ . . . . .  ~k) and Fw(.; to~ . . . . .  ~k), and observe that. both belong to 
Fo(k). Finally let ~m and ~u be vectors in $~ comprising the ordered 
eigenvalues {6ml i> ... >/ ~m~ > 0} and { / ~  >/ "" >~ /~M~ > 0} of ~ A 
and "~ v i~, respectively. The following envelopes for cdFs in Fo(k) are 
basic. 

THEOnEM 3. Consider definite forms V = Y'AY and W = Y'BY such 
that Sa(Y) = Nk(O, ~); let V = [T1 . . . . .  Tk] be the ordered roots of ~ - TBI 
= 0; and let 6 = [~1 . . . . .  ~k], to = [to1 . . . . .  tok], 8m = [8m1 . . . . .  $mk], and 
~u = [8Ul . . . . .  $uk] comprise the ordered eigenvalues of ~ = ~l/2A~,l/z ,  
l~ = ~I/ZBY~I/e, ~ A ~ ,  and ~, v l~, respectively. Then the following 
bounds apply. 

(i) G(t/ tozTl;  k) <<. F w ( t / T l ;  to) <<. Fv(t; ~) <~ Fw( t /Tk ;  to) <~ 
G(t/tokTk; k) for every t ~ R 1 ; 

(ii) Fk(t; to V ~) <~ {Fv(t; ~), Fw(t; to)} ~< Fk(t; to A ~) for every t 
RI+ ; and 

(iii) G(t /Su l ;  k) <~ Fk(t; 8 M) <~ {Fv(t; ~), Fw(t; to)} ~< Fk(t; ~m) <<. 
G(t/$mk; k) for every t ~ RI+. 

Proof. Let U = Ii,-1/2Y, so that Sa(U) = Nk(O, Ik). To see conclusion 
(i), use variational properties of the generalized Rayleigh quotient z ' ~ z / z ' I I  z 
as in Theorem l(i) to infer that Tkz '~z  ~< z'~,z ~< Tlz ' l~z holds pointwise 
in z ~ R k. Then P ( U ' ~ U  <<. t) <<. P(U'glU <~ t /Tk)  follows by inclusion, so 
that Fv(t; 6) <~ Fw(t /Tk;  to), and similarly for Fw(t/T1; to) <<. Fv(t; 6), 
giving the three inner inequalities of conclusion (i). The outer inequalities on 
the left and right of (i) follow on replacing to by tollk and oJklk, respec- 
tively, then using the monotonicity of Fw(t; to 1 . . . . .  tok) and the fact that 
Fw(t; to . . . . .  to) = G(t/to; k), to complete a proof for conclusion (i). Con- 
clusion (ii) follows directly from the monotonicity of Fk(t; a 1 . . . . .  ak), to- 
gether with the ordering to A 6 -<< {to, 6} ~< to V 6 on (Rk+, >~). Conclusion 
(iii) follows on noting that z ' (~  A gl)z ~< {z'~z, z'glz} ~< z ' (~  V gl)z holds 
pointwise for z ~ $ ~, and then proceeding by inclusion as in the proof for (i). 
That P(U'( -~- A I I )U ~< t)  = F~(t; $m) follows as usual on diagonalizing ~--, 
A ~ ,  and similarly that P(U' (~  V I I )U ~< t) = F~(t; $u). The outer in- 
equalities in (iii) follow from steps used in the proof for (i), to complete our 
proof. • 
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Theorem 3 as stated pertains to different quadratic forms defined on the 
same probability space, namely, Nk(0 , ~) .  A dual problem considers a given 
quadratic form under different Gaussian measures as follows. Let V = Y'CY 
and W = Z'CZ such that _W(Y)= Nk(O , W) and .W(Z)= Nk(0 , F). Using 
routine arguments we now infer that . ~ ( V ) = . ~ ( U ' - - ' U )  and . ~ ( W ) =  

Sa(U'IlU),  with -~ = x l t l / ~ C ~ l / 2  and ~ = F1/2CF1/~, such that .~(U) = 
Nk(0, Ik). This is in the form of Theorem 3 with ~ = Ik, where A = 
xltl/2CXltl/2 = ~ and B = F1/~CF1/2 = II .  Theorem 3 now applies verba- 
tim with {~/~ >1 .-- >t ~A} as the ordered roots of L A - T B [ = 0 =  
l a l t l /~cw1/z  _ 7F1/~CF~/~I. 

Theorem 3(iii) may be extended to include Gaussian ensembles on $~ 
and mixtures over these. Let {G~(.; F(t));  t ~ z} consist of zero-mean 
Gaussian measures on $~ bounded in dispersion such that F m ~L {F(t); 
t ~ ~'} ~L FM for Some (I'm, F M) in S~-, and let M(~') be the collection of 
probability measures over ~'. Under measurability conditions we consider 
mixtures of the type 

= f f k ( ' ;  r ( t ) )  (4.1) 

over {Gk(.; F(t));  t ~ r} with mixing distribution/~(.) ~ M(r) .  
For fixed A ~ S~, let {x(t) = [ a l ( t )  . . . . .  ak(t)] comprise the ordered 

roots of [A - a(t)[F(t)]-l[ = 0 for each t ~ % and let V(t) = Y'AY be such 
that .W(Y)= Nk(O, F(t)).  We infer as before that the cdf of V(t) is 
Fk(u; oL(t)) for each t ~ 1". For the case that .o~a(Y) is a mixture as in (4.1), 
we argue conditionally to conclude that the unconditional cdf of V = Y'AY is 
the mixture 

e(  = fTe ( t ) ) t ). (4.2) 

Bounds for the ensemble {Fk(v; or(t)); t ~ 0-}, and for mixtures over 
these of the type {F(u;/x); b~ ~ M(T)} as in (4.2), are considered next. To 
these ends let a ( t ) =  [a l ( t )  . . . . .  ak(t)] comprise the ordered roots of 
LA - a(t)[F(t)]-ll = 0 as before, and let ~m = [8ml . . . . .  8mk ] and ~M = 
[8M1 . . . . .  8Mk] comprise the ordered roots of LA - 8[Fm]-l[ = 0 and LA - 
8 [ I 'u ] - l [  = 0, respectively. The following bounds are basic. 

THEOREM 4. Consider the definite form V( t )= Y'AY with _W(Y) 
{Nk(0, F(t));  t ~ r} such that F m ~L {I'(t); t ~ Z} ----<L FM forsome (Fm, F u )  
in S~, and let {Fk(u; or(t)); t ~ r} be the corresponding ensemble of cdf's for 

t T}. 
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(i) Then bounds for the ensemble of cdf's for {_9"(V(t)); t ~ r} are given 
by 

Fk(v; 8 u )  <~{Fk(v;Ot(t));t~r}<~Fk(u;~m) (4.3) 

for each v ~ RI+ . 
(ii) Under mixtures of type (4.1) yielding cdf's of type (4.2), bounds for 

the ensemble of cdf's for Sa(V ) are given by 

Fk(u;Su) ~ { e ( u ; / ~ ) ;  /z( ')  ~ M(z )}  <~Fk(U;8~) (4.4) 

for each u ~ RI+ and t*(') ~ M(r). 

Proof. Given two Gaussian measures Gk(.; ~ )  and G~('; 11) on R k, it is 
known that Gk(A; ~--) >1 Gk(A; 1)) for every A ~ C(k) if and only if 11 aL 
~,. For sufficiency see Anderson (1955), and for necessity see Jensen (1984). 
It follows directly from the boundedness of {F(t); t ~ r} that Gk('; F m) is a 
Gaussian majorant, and Gt(.; lP u )  is a Ganssian minorant, for the bounded 
ensemble {Gk(.; F(t)); t E r}. The set A(u) = {¥ ~ Rk; ¥ 'A¥ ~ v} clearly 
belongs to C(k) for each p/> 0, since A is positive definite, whereas the cdfs 
for V = Y'A¥ under various Gaussian measures are given by Fk(v; a(t)) = 
Gk(A(u); F(t)), Fk(v; ~m)  = Gk(A(v); Fm) , and Fk(v; ~u)  = 
Gk(A(v); F u).  Conclusion (i) follows immediately. Since these hounds hold 
pointwise for each t ~ T under the integral (4.2) independently of /z ( . )  
M(r),  conclusion (ii) now follows also, to complete our proof. • 

5. APPLICATIONS 

We next consider selected topics in applications. 

5.1. Classification 
An object x ~ ~k is to be assigned to one of two populations P and Pa 

characterized as Nk(l~. 1, ~,) and Nk(It 2, l l ) ,  having prior probabilities rr 1 and 
rr 2, respectively. Using Mahalanobis (1936) distances, the standard rule 
assigns x to P= whenever 

- A (x, > (5.1) 

and to Pa otherwise, where ~ = [rr l, rr z ] and c(~,  ~/) = ln(Tr21~l/rqlg~l) 
= ln(~r21Dvl/rrl), with D v = Diag(T1 . . . . .  "Yk) containing the ordered roots 
of I-" - 3'~1 = 0. It is instructive to examine the difference [A2a(x , p.~) -- 
A~(x, i~1)] as x varies over R k. For further details regarding classification 
problems of these types, see McLachlan (1992), especially Section 3.2. 
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We examine properties of the foregoing rule under one or more of the 
conditions C 1 : ]tl. 1 = ~ L 2 ,  C 2 : 71" 1 = 71"2, and C 3:1~1 = I~1, corresponding 
respectively to equal means, equal prior probabilities, and equimodular 
dispersion matrices. Classification under C 1 is called the zero-mean discrimi- 
nation problem, since I~ 1 - I~ 2 = O. In particular, under C I - C  3 we see that 
c(~,  ~/) = 0, so that classification then rests exclusively on the Mahalanobis 
(1936) distances from x to the common centroid in R k of the two popula- 
tions. 

Now assume condition C 1 : ~1 = ~2 = ~, say, and let Q(x; ~, ~ ,  1"/) = 
A2a(x, I ~ ) -  A~(x, i~). To examine its behavior as x varies, write 
p(x; I ~, ~,  ~ )  = A~a(x, ~)[1 - A~(x, ~) /A~(x ,  D)], then apply Theorem 1 
to infer that bounds of the type 

A~(x, ~ ) (1  -- Tu) ~< Q(x; 1~, ~ ,  1-/) ~< A~(x, I~)(1 - ~/L) (5.2) 

apply with (Ta, Tu) and x ~ R k chosen suitably. In particular, Theorem 1(i) 
applies uniformly for every x ~ •k with (Ta, Tv) = (Tk, T1). Whether x is 
closer to P~ or to Pa in their respective metrics depends on where x falls in 
~k. If x ~ R 1, Theorem l(ii) shows that (5.2) applies uniformly for x ~ R 1 
with (TL, ~/v) = (%, T1). The difference is negative, since both bounds are 
negative, so that x ~ R 1 is closer to Pa than to P~. In a similar manner 
Theorem l(iv) shows that (5.2) holds uniformly for x ~ R 3 with (3~L, ~/u) = 
('Yk, 7r+s+l)" Since both bounds are positive, we conclude that x ~ R 3 is 
closer to P.- than to P~. Finally, Theorem l(iii) asserts that x ~ R z is 
equidistant from P_ and Pa for any x ~ R e. In practice, such outcomes of 
themselves cannot distinguish between the populations P.- and Pa under the 
condition C 1 : I~ 1 = I~ 2. 

We next study problems of misclassification. Let P(l12) be the probability 
of misclassifying x into e~ when in fact x ~ Pa,  and similarly let e(211) be 
the probability of misclassifying x ~ Pr. into Pa. It suffices to consider a 
canonical form through an elementary transformation x ~ z taking P_ and 
en  into PD~ and eIk as characterized by Nk({}l,I)~)and Nk(l}z,Ik), 
respectively, where D.~ = Diag(T1 . . . . .  Tk) contains the ordered roots of 
I~ - 71"/I = 0 as before. Under condition C 1 where t} 1 = 1}2 = [01 . . . . .  0k]' 
= 0, say, the expression Q(x; ~, ~,, 1~) in (5.2) transforms into 

k 
Q(z ;0 ,~ / )  E 7 , -  1 = - - ( z , -  0,) (5.3) 

i = 1 T~ 

The classification rule assigning x to Pz equivalently assigns z to PD~ 
whenever Q(z; 0, ~/) > c(~,  ~)  with c('n, ,/) as defined following (5.1). 
From earlier developments it follows that e(l12) = e(Q(z; 0, "t) > c(~ ,  "t) 
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V(z) = I k) and that P(211) = P(Q(z;  0, ~/) < c(vt,  ~ )  IV(z) = D~).  To  pro- 
ceed  we apply distribution theory for quadratic forms in Gaussian variates, 
starting with the vector  [ a l  . . . . .  ak] = [(~/1 - 1)/~/1 . . . . .  (Tk -- 1)/3tk] • Ob-  
serve that {a l  ~> "'" ~> ak}. Generally, as in (2.1), there  are r values of  
{T1/> ~/2 >/ "'" >/ Tk} greater  than, s values equal to, and h = k - r - s 
values less than unity. Accordingly, Q(z; 0, ~/) is an indefinite form of  rank 
d = k - s. Now let ot 1 = [ a  1 . . . . .  a t ] ;  let ot z = [ O t r + s +  1 . . . . .  O~k]; and write 
ot = [or 1, et2]. Similarly, with [/31 . . . . .  /3k] = [(Tl - 1) . . . . .  ( '/k -- 1)], let I~ 1 
= [/31 . . . . .  /3r]; let 132 = [/3~+~+ 1 . . . . .  /3k]; and write I~ = [1~1,132]. F rom 
developments  in Section 2.3 it is now clear that 

e ( 1 1 2 )  = 1 - ( 5 . 4 )  

and 

P(211) = Fd(c ( ~r, ~/); I~). ( 5 . 5 )  

These cd f s  clearly belong to F(d) with d = k - s, where  s is the n u m b e r  of  
unit roots in (2.1). Indefinite forms of  these types have been  studied by 
Gurland (1955) and others; see Johnson and Kotz (1970) and Mathai and 
Provost (1992) for fur ther  details and references.  

Fur ther  bounds may be  constructed using monotonici ty of  functions in 
F(d). Owing to the monotonicity of  Fd(t; ~1, az)  as (al,  ~2) vary with t 
fixed, and since {a  I 1> .-. /> ak}, we infer that 

Fd(t; Olllr, Olr+s+llh) ~ Fd(t; a 1, a2) <~ Fd(t; Olrlr, Olklh) , (5.6)  

SO that lower and upper  bounds on P(112) are given by 

1 - Fa(t*; a~l~,  a k l h )  ~< P ( l l2 )  ~< 1 - Fd( t* ;  a l l ~ ,  a r+~+ l lh )  (5.7)  

when evaluated at t* = c ( ~ ,  ~/). Similar arguments  apply for P(211). Since 
the values o f / 3  are also ordered  as /31 >~ "'" >//3k, we obtain bounds on 
P(211) as given by 

Fd(t*',/311r,/3r+s+llh) "-.< P(211) <~Fd(t*;/3rlr,/3klh) (5.8)  

when evaluated at t* = c(vt,  ~/). 
Observe that these bounds all have the structure P(alU~U 1 - a2U~U e ~< 

t* )  or its complement ,  where  U = [U~,U~]'  such that U 1 ~ R r, U 2 ~ R h, 
and S"(U) = Na(O, Ia). In  what  follows we invoke conditions C1-C3, under  
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which c(vt,  ~,) = 0. Then  we find that  P ( a l U ; U  1 - a2U'2U 2 <~ O) = 
P(hU'IU1/rU'2U 2 <~ ha~/ra 1) = F(ha2/ral;  r, h) using the appropriate  
Snedecor-Fisher  distribution. In short, we have shown that Fd(0; a l l  r, a21 h) 
= F(haz/ral ;  r, h). These  facts may be  substi tuted into (5.7) and (5.8) to 
give lower and uppe r  bounds  for P(1E)  and e(211) in terms of  standard 
P-distributions. In particular, we obtain 

1 - F(--hOtk//rOZr; r, h)  <~ P( l [2 )  <~ 1 - F(-hotr+s+l/ /rot l ;  r ,  h)  (5.9)  

and 

F( -h~Sr+s+l/r~l;  r, h)  <~ e(211) < F( - h ~ J r f l r  ; r ,  h ) .  (5.10) 

To illustrate the bounds in (5.9) and (5.10), we consider cases where  
k = 5, s = 1, and r = h = 2. The  natural  parameters  of  the prob lem are 
solutions ~, = [T1 . . . . .  Tk] of  the equat ion I-~ -- T i l l  = 0. A variety of  
choices for these are listed in Table 1 along with lower and upper  bounds for 
the misclassification probabilities P(1E)  and e(211) using (5.9) and (5.10). It  
is clear that  the spread be tween  the bounds for P(l12) narrows as the 
e lements  of  [ a  1 . . . . .  a r ] and [a t+s+  1 . . . . .  a k] become  more  homogeneous  
within each pair  of  brackets,  and similarly for bounds on P(211) in terms of  
the homogenei ty  of  [/31 . . . . .  /3 r] and [ flr+s+l . . . . .  ilk]" Moreover,  the mis- 
classification probabilities themselves become  smaller with greater  spread 
be tween  [or 1 . . . . .  a r] and [a r+s+  1 . . . . .  a k] for the case of  P(l[2), and 
be tween  [/31 . . . . .  fir] and [/3r+~+ 1 . . . . .  /3 k ] for the case of  P(211). 

TABLE 1 
BOUNDS FOR P(112) AND P(2 I1) UNDER CONDITIONS C 1 - C  3 FOR CASES WHERE 

k = 5 ,  s =  l, A N D r = h = 2  

P(112) P(211) 

TI T2 T3 T4 T5 Lower Upper Lower Upper 

2 2 1 0.50 0.50 0.3333 0.3333 0.3333 0.3333 
4 2 1 0.50 0.50 0.3333 0.4286 0.1429 0.3333 
4 2 1 0.50 0.40 0.2500 0.4286 0.1429 0.3750 
3 2 1 0.50 0.10 0.0526 0.4000 0.2000 0.4737 
5 2 1 0.50 0.20 0.1111 0A444 0.1111 0.4444 
6 5 1 0.20 0.10 0.0816 0.1724 0.1379 0.1837 
4 4 1 0.10 0.10 0.0769 0.0769 0.2308 0.2308 
5 4 1 0.20 0.10 0.0769 0.1667 0.1667 0.2308 
7 6 1 0.10 0.05 0.0420 0.0870 0.1304 0.1597 
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5.2. Ballistics 
In ballistics let X ~ R 3 be the point of impact of a projectile subject to 

chance disturbances owing to errors in initial velocity, local turbulence, 
precipitation, variations in air pressure, topography at point of impact, and 
other extraneous circumstances. Often X is modeled as a Gaussian vector 
having some mean point of impact I~ ~ ~3 and dispersion matrix ~.  If r is 
the effective radius of the weapon on impact and if B(r)  is the ball of radius 
r centered at 0 ~ ~3, then the probability of a kill is given by G3(B(r); ~ )  
on translation to the origin. Details are given in Eckler and Burr (1972), for 
example. Noting that such models are often overly simplistic, Gilliland (1968) 
considered more general distributions having convex level sets as in Anderson 
(1955). 

We suppose instead that dispersion characteristics of the trajectory and 
ultimate point of impact may vary with weather, range, and topography at 
impact. For example, increasing the range alone may serve to dilate the 
dispersion matrix when other factors are held fLxed. Even if impacts are 
scattered spherically in a plane normal to the trajectory, the pattern tends to 
elongate along the path as the plane at impact deviates from normal to the 
path. Dispersion characteristics thereby may vary with local topography at 
impact. In short, in practice it often is realistic to suppose that dispersion 
parameters ~ belong to some bounded ensemble {F(t); t ~ ~'}. Bounds on 
kill probabilities for such ensembles derive from Theorem 4 as in (4.3) with 
A = I k. If the actual errors tend to behave stochastically as a mixture over 
some Gaussian ensemble {G3(.; F(t)); t ~ ~-} to mimic disturbances over a 
random environment, then Theorem 4(ii) gives bounds for kill probabilities in 
such mixtures as in (4.4). Such bounds may be useful in practice in determin- 
ing whether those probabilities exceed a threshold value germane to assessing 
further courses of action. It is of interest to note that the Gaussian bounds of 
Theorem 4 apply for certain mixtures having star-shaped contours, in contrast 
with distributions having convex contours as in Gilliland (1968). Properties of 
such mixtures are largely unknown, and no doubt the distributions themselves 
are quite complicated. Nonetheless, stochastic bounds as in (4.4) apply for all 
such bounded mixtures. 
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