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A.bstract- -This  paper deals with a non-homogeneous queueing model to describe the performance 
of A multi-terminal system subject to random breakdowns. All random variables involved here are 
indepeadcmt and exponentially distributed. Although the stochastic process describing the system's 
behaviour is A Markov chain, the number of states becomes vm-y large. The main contribution of this 
paper is a recursive computational approach (see (5)) to solve the steady-state equations concerning 
the problem. It further generalizes the homogeneous model treated in [1]. In equilibrium, the main 
performance characteristics of the system are obtained. Finally, some numerical results illustrate the 
problem in question. 

1. I N T R O D U C T I O N  

This paper deals with the analysis of a queueing system, which may be used as a model of a 
real life system, consisting of n terminals connected with a Central Processor Unit (CPU). The 
user at the terminal i has exponentially distributed think times with rate ~ and generates jobs 
with processing time being exponentially distributed with rate Pi. The service rule at the CPU 
is First-In, First-Out (FIFO). Let us suppose that the operational system is subject to random 
breakdowns stopping the service at the terminals and at the CPU. The failure-free operation times 
of the system are exponentially distributed random variables with rate a. The restoration times 
of the system are assumed to be exponentially distributed random variables with rate ft. The 
busy terminals are also subject to random breakdowns not affecting the system's operation. The 
failure-free operation times of busy terminals are supposed to be exponentially distributed random 
variables with rate 7~ for the terminal i. The repair times of the terminal i are exponentially 
distributed random variables with rate Ti. The breakdowns are serviced by a single repairman 
providing pre-emptive priority to the system's failure. We assume that each user generates only 
one job at a time, and he waits at the CPU before he starts thinking again, that is, the terminal 
is inactive while waiting at the CPU, and it can't break down. All random variables involved 
here are independent of each other. 

As it can easily be seen, this model is a generalization of the classical 'machine interference 
problem' discussed, among others, in [2-4]. In recent years, finite-source models in different forms 
have been effectively used, for example, for mathematical description of a multiprogrammed 
computer system (see [1,5-8]). 

This paper further generalizes the homogeneous model discussed in [1]. Using a similar com- 
putational approach as in [1], the steady-state equations are recursively solved. In equilibrium, 
the main performance of the system, such as the mean number of jobs residing at the CPU, the 
mean number of functional terminals, the expected response time of jobs, and utilizations are 
obtained. Finally, some numerical results illustrate the problem in question. 
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2. T H E  M A T H E M A T I C A L  M O D E L  AND A C O M P U T A T I O N A L  A P P R O A C H  

Let us introduce the following random variables: 

I f ,  if the operating system is failed at time t, 
X(t)  = 0, otherwise. 

Y(t) = the number of failed terminals at time t, 

YI(t)  = the failed terminals' indices at time t in order of their failure, 

or 0 if Y(t) = O, 
Z(t) = the number of jobs residing at the CPU at time t, 

ZI(t) = the indices of jobs staying at the CPU at time t in order of the 

generation of their request, or 0 if Z(t) = O. 

It is easy to see that  the process 

M(t) = (X(O , V(t), Z(t), VI(t),  ZZ(t)) 

is a five-dimensional Markov chain with state space 

S = ( ( q ; k ; s ; i l , . . . , i k ; j l , . . . , j , ) ,  q = O ,  1; k = O , . . . , n ;  

where 

s=O,...,n-k), 

( i l , . . . ,  i~) is a permutation of k objects from the numbers 1 , . . . ,  n or O, if k = O, 
( j l , . . . ,  j0) is a permutation of s objects from the remaining n - k numbers or O, if s = O. 

The event (q; k; s; i l , . . . ,  ik ; J l , . . . ,  J,)  denotes that  the operating system is in state X(t) = q, 
there are k failed terminals with indices i l , . . . ,  ik, and there are s jobs with indices j l , . . . ,  j ,  at 
the CPU. 

It can easily be seen that  the dimension of the state space is 

" (k+ l)n! 
dim(S) = 2 ~ =  Tff- k'~)! " 

Let us denote the steady-state distribution of (M(t),  t _> O) by 

p(q; i l . . .  i t ; i x , . . .  , j , )  -- 

= lim p(X(t) = q;Y(t) = k;YI( t)  = i l , . . ,  ik;Z( t )= s;ZI(t)  = Jx , . . . , j , ) ,  
~ -..* 00 

which exists and is unique (see [2-4]) if all the rates are positive. As usual, using the notion of 
probability flow, the global balance equations for p(q; il ... i t ; i x , . . . ,  j , )  are as follows 

E (~r+Tr))p(O; i l , . . . , i k ; j l , . . . , j , )  (¢~ + 1"ix + PJx -[- 

= t i p ( 1 ; i l , . . . , i ~ ; j l , . . . , j , )  

+ E (rvp(O;r, i l , . . . , i k ; j l , . . . , j , ) +  E 
r ¢ i z  , . . . , i k  r ¢ i x , . . . , i l  
r#jl , . . . j ,  r#ja,...j, 

+ ~'ik p(O; 11, . . . ,  ik-1;j l , . . .  , j ,)  + )% p(O; i l , . . .  , i k ; j l , . . . ,  J , -1) ,  

for all i x , . . . , i t ;  j l , . . . , j , ;  k = O , . . . , n ;  s = O , . . . , n -  k, 

t i p ( 1 ; i l , . . . , i t ; j l , . . . , j , )  = ap(O; i l , . . . , i t ; j l , . . . , j , ) ,  
for all i1 , . . .  , i t ;  J l , - . .  ,Ja; k -- 0 , . . .  ,n; s = 0 , . . .  ,n  - k, 

t,,. h ;  r, jo)) (x) 

(2) 

where the probabilities of  meaningless events and coefficients are defined to  be zero. 
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For k - 0 and s - 0 ih (and j , )  are not defined, so, e.g., 7ik p ( 0 ; i l , . . .  , i k - 1 ; j l , . . .  , j , )  has no 
meaning, so it is defined to be zero. We have: 

or+ (Ai + 7,1 p(O;O;O)=~p(1;O;O)+y'p,p(O;O;il+~rip(O;i;O). 
"= i=1  i=1  

This system will he simpler if we substi tute equation (2) to equation (1). Namely, we have 

(ri, q-pj, + E (~r+Tr))P(O;i1,...,ik;j1,...,j,) 
r~i1,...,ih 
r#j~,...j, 

-- E (rrp(O;r, i l , . . . , ik;jl , . . . , j ,)+ ~ prp(O;il,...,ik;r, j l , . . . , j ,))  
r # i l , . . . , i k  r # i l , . . . , i k  r#yl,...,y, r#yl ..... y, 

+ 7ik p(O; i1,..., ik-x;jx,... , j , )  + ~j. p(O; i l , . . . ,  ik;jl,... , j , -1 ) ,  

for all i x , . . . , i k ;  J l , . . . , j , ;  k = O , . . . , n ;  s = O , . . . , n - -  k, 

/~p(1; i l , . . . ,  ik;jl,... ,j,) = cr p(O; ix , . . . ,  i~;jl,... , j , ) ,  

for all i x , . . . , i } ;  j x , . . . , j , ;  k = O , . . . , n ;  s = O , . . . , n -  k. 

(3) 

(4) 

Our aim is to solve this system subject to the normalization condition 

1 n n - - k  

y~ ~ p(q,k,s)= 1, 
q=O k=O s=O 

where 

p(q,k,s) = E E p(q;il,...,i,;jt,... , j , ) ,  

V~ : The set of all ( i1 , . . . ,  ik) (as defined above), 

V.' n-k :The  set of all ( j l , . . .  , j , )  (as defined above). 

In principle, this system of linear equations can easily be solved by standard computational 
methods. However, we must take into consideration that  the unknowns are probabilities, and 
therefore, in the case of large state space, the round-off errors may have considerable effect on 
them (see [4,7,9,10]). In the following, an efficient recursive computational approach is given for 
determining the steady-state probabilities. 

3. T H E  R E C U R S I V E  S O L U T I O N  

Let Y(m)  denote the vector of the stationary probabilities for the states where the operating 
system is working. There are k failed terminals, and I - m - k job is waiting at the CPU 
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((/c = 0 , . . . , m ) ,  m - -  0 , . . . , n ) .  That  is, 

Y-(m) = 

p(0; 1, . . . ,  m - 1, m; 0) 

p ( 0 ; 1 , . . . , m -  1,m + 1;0) 

p ( 0 ; n , . . . , n -  m +  1;0) 

p ( 0 ; 1 , . . . , m -  1;m) 

p ( 0 ; 1 , . . . , m -  1 ; m +  1) 

p ( 0 ; n , . . . , n -  m - l - 2 ; n -  m +  1) 

p(0;  0; n , . . . ,  n - m + 1) 

In other words, the elements of Y-(m) are ordered as follows 

(1) For k : m and I = 0, the stationary probabilities are in the increasing order of indices. 
(2) For k = m -  1 and l = 1, the stationary probabilities are in the increasing order of 

indices. 

(m + 1) For k = 0 and i = m, the stationary probabilities are in the increasing order of indices. 

Similarly, let Z(m)  denote the vector of stationary probabilities alike Y-(m), hut for the states, 
where the operating system is failed. From the definition, it can be seen easily that  the dimension 
of Y-(m) and Z ( m )  is ( m +  1)n!/(n - m)k  

Using these notations equations (3) and (4) can be written in matrix form as 

Y(0) = C(0) Y(1), 
Y.(j) - C ( j )  Y ( j  + 1) + D( j )  Y ( j  - 1), 

Y_(n)  = D ( n )  Y__.(n - 1), 
Z_(j) = F ( j )  Y-(j), j = 0 , . . . ,  n. 

j =  1 , . . . , n -  1, 

(i) 
(ii) 

(iii) 
(iv) 

The dimension of the matrices are d(j)  = (j  + 1)n!/(n - j )k  

F( j )  : d( j )  × d(j) ,  

C( j )  : d(j)  × d(j- t-1) ,  

D( j )  : d(j)  × d ( j -  1). 

The elements of the matrices can be obtained from the equations (3) and (4). Now we have the 
following theorem. 

THEOREM. The solution of  the equations (i)-(iv) is 

Y_(j)= L(j)Y-(j-1), j - 1 , . . . , n ,  

Z_(j) = F(j)Y-(j) ,  j = 0 , . . . ,  n, 
(5) 

where L(n) =- D(n),  L( j )  -= (Z - C( j )  L ( j  + 1))-XD(j),  j = 1 , . . . ,  n - 1, 
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so the system of  equations can be solved uniquely up to a mult ipl icat iw constant, which can be 
obtained from the normalization condition. 

PROOF. 

From (iv) we get Z( j )  - F ( j )  Y.(j),  j - 0 , . . . ,  n. 

By using (iii) we obtain Y(n) = D(n)  Y ( n  - 1), 

which yields Y(n) = L(n)  Y ( n  - 1). 

Assuming that  Y__(j + 1) = L(j + 1)Y__.(j), from (ii) we have 

Y_(j) = C( j )  L ( j  + 1) Y__.(j) + D(j )  Y_..(j - 1). 

By simple calculation, we obtain that  

( I  - C ( j ) L ( j  + 1)) Y_.(j) = D(j)Y__(j - 1), 

Y ( j )  = ( I  - C ( j ) L ( j  + 1 ) ) - I D ( j ) Y ( j  - 1), 

Y_(j) - L ( j )  Y ( j  - 1). 

Start ing the recursion with any initial value, we can calculate without normalizat ion-- the 
f ( q ; i l , . . .  , i k ; j l , . . .  , j , )  elements of Y~(m), Z~(m) (m = 0 , . . .  ,n) .  The  steady-state probabil- 
ities can be obtained from Y~(m), Z~(m) (m = 0 , . . . ,  n), by using the normalization condition as 
follows 

Y(m)  = I . - k  Y'(O) Y'(m),  
)"~q=o )"~=o Y~,=o E i ,  ..... i ,¢v2 E j ,  ..... joeeO_, f ( q ; Q , . . . , i k ; j l , . . . , j , ) - -  

z_(m) = 1 . - k  Z ' (0)  Z,(m), 

~'~.q=o )"~=o ~'~,=o )"~i, ..... ikeV.k )"~j, ..... j . e V : _ ,  ld(q;ix,...,ik;jt, . . . ,  j , )  - -  

m ~ O , . . . , B .  

. 

Let us introduce the following notation: 6(i, j )  = 0, 

The  steady-state characteristics: 
(These characteristics will be calculated in Tables 1-3.) 

(i) Mean number  of jobs residing at the CPU: 

P E R F O R M A N C E  M E A S U R E S  

if i = j,  

otherwise. 

1 11 n - - k  

-ffJ = E E E sp(i,k,s). 
i=0 k=O s=O 

(ii) Mean number  of functional terminals: 

1 n n - k  

i=0 k=O #=0 

(iii) Mean number of busy terminals: 

n n - k  

~, = ~ ~ (,,- k- s)p(o, k, ~). 
k=O m=O 
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(iv) Utilization of repairman: 

n n - k  n n - k  

Ur "- E E p ( 1 , k , s ) +  E E p(O,k,s). 
k=O s=O k = l  s=O 

(v) Utilization of CPU: 

(vi) Utilization of terminal i 

n--1 n - k  

U o , u  = p(0, k,s) .  
k=0 s = l  

/ i  = 1, . . . ,n/:  

~.~  n - k  k 

Ui = E E (1-6( i ,  ir)-~f( i , jv))p(O;i l , . . . , ik; j t , . . . , js) .  
k=O s=O r = l  v = l  

(vii) Expected response time of jobs for terminal i / i  = 1 , . . . ,  n/ :  

Es----O E S = l  ~(i, j r ) p ( q ; i x , . . . , i k ; j l , . . . , j s )  

,~,U, 

5. N U M E R I C A L  RESULTS 

The algorithm generating these characteristics was implemented in FORTRAN'77 on an IBM 
P C / A T  at the Institute of Mathematics, University of Debrecen, Hungary. The following prop- 
erties of the involved matrices has greatly improved the calculations. 

(a) Each row of the matrix D(k ) / k  = 1,. . . ,  n~ has maximum two non-zero elements, so it is 
useful to store the non-zero elements and the column indices of these elements. It is true 
for the matrix L(n) too, since L(n) = D(n). 

(b) The matrix F(k) /k = 0, . . . ,  n~ contains non-zero elements only in the main diagonal, 
and these values are the same constant: a / f / .  

(c) The matrix equation (i) can be used to test the solution, because it is not used by the 
algorithm. 

Ez amp le s 

CASE 1. Failure-free system (See [11, p. 123]). 

n = 4 ¢~ = 0 .0001  f / =  9999.0 
~j = 2.186 gs = 4.0 Ucpu = 0.903 

Table 1. 

i ~ m ~ ~-~ Ui T~ 
1 0.500 0.900 0.0001 9999.0 0.383 3.229 

2 0.400 0.700 0.0001 9999,0 0.416 3.506 

3 0.300 0.600 0.0001 9999.0 0.469 3.771 

4 0.200 0.500 0.0001 9999.0 0.546 4.155 

This case can be used to test the results and to approximate a failure-free system described 
in [11]. The difference between these results and the ones in [11] is less than 0.01 for all calculated 
characteristics. 

CASE 2. Terminal failure. 

n - 4 c~ = 0 .0001  /3 --- 9999,0 
~ j  = 1 . 8 7 6  ~ g = 2 . 6 4 5  Ucpu:0.63 
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Table 2. 
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1 0.500 0.900 0.3200 0.4500 0.291 2.196 

2 0.400 0.700 0.171)0 0.3400 0.364 2.289 
3 0.300 0.600 0.2200 0.5000 0.375 2.574 
4 0.200 0.500 0.1600 0.3000 0.427 2.866 

In  th is  example ,  we can see how t e r m i n a l  fa i lures  inf luence the  pe r fo rmance  measures .  T h e  
response  t imes  and  the  n u m b e r  of  good  t e rmina l s  are  less t h a n  in Case  1. T h a t  is, the  s y s t e m  
works  as  if  t he re  were less t e rmina l s .  

CAsE 3. C P U  fai lure.  
n = 4 a = 0.25 /~ = 0.45 

~ j = 2 . 1 8 6  ~ g = 4 . 0  U C p u = 0 . 5 8 1  

Table 3. 

i ~i ~ 7~ r~ Ui T~ 
1 0.500 0.900 0.0001 9999.0 0.245 5.021 
2 0.400 0.700 0.0001 9999.0 0.268 5.444 
3 0.300 0.600 0.0001 9999.0 0.301 5.771 
4 0.200 0.500 0.0(301 9999.0 0.351 6.463 

I f  we compare  these  resu l t s  wi th  Case  1, i t  can be  seen t h a t  the  fa i lure  of  the  C P U  increases  
t he  response  t imes  and  decreases  the  u t i l i za t ions ,  as one can expec t .  
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