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B. Mond and I. Smart (J. Math. Anal. Appl. 136 (1988), 325–333) defined a kind
of invexity and discussed the duality and sufficiency in scalar control problems with
such invexity. D. Bhatia and P. Kumar (J. Math. Anal. Appl. 189 (1995), 676–692)
defined another kind of invexity, corresponding generalized invexity, and discussed
the duality for multiobjective control problems with such generalized invexity. In
this paper, the duality results for multiobjective control problems with Mond and
Smart’s generalized invexity are discussed. © 2001 Academic Press
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efficient solution; duality.

1. INTRODUCTION

Recently, quite a few authors discussed duality for multiobjective varia-
tional problems with different generalized convexity or generalized invexity,
such as [1, 3, 6–8, 10–13, 16]. Most of them considered the Wolfe type and
Mond–Weir type duals for multiobjective variational problems.

The General dual concept or an equivalent was introduced in some
papers, such as [5, 14, 15, 17] for conventional multiobjective mathematical
programming and in [10] for multiobjective variational problems.
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Bhatia and Kumar [2] discussed multiobjective control problems with
ρ-pseudoinvexity, ρ-strictly pseudoinvexity, ρ-quasiinvexity, or ρ-strictly
quasiinvexity. Nahak and Nanda [12] discussed efficiency and duality for
multiobjective variational control problems with (F–ρ)-convexity. The
objective functionals and constraint functionals in both papers were dif-
ferent. In the present paper, we discuss duality for multiobjective control
problems with the same objective functionals and constraint conditions as
in [2], but with the invexity defined in [9].

2. NOTATIONS AND PRELIMINARIES

Let I = �t0� tf � be a real interval, and let fi: I × Rn × Rm → R�i =
1� 2� � � � � p�, gj: I ×Rn ×Rm → R�j = 1� 2� � � � � l�, and hk: I ×Rn ×Rm →
R�k = 1� 2� � � � � n� be continuously differentiable functions. Denote by X
the space of piecewise smooth functions x: I → Rn, with the norm �x� =
�x�∞ + �Dx�∞ and by U the space of piecewise continuous control func-
tions u: I → Rm with the norm �u�∞, where the differentiation operator D
is given by

u = Dx ⇔ x�t� = x�t0� +
∫ t

t0

u�s�ds�

where x�t0� is a given boundary value. Denote the partial derivatives of fi
with respect to t� x, and u, respectively, by fit , fix, and fiu such that

fix =
(

∂fi
∂x1

�
∂fi
∂x2

� � � � �
∂fi
∂xn

)T

� fiu =
(

∂fi
∂u1

�
∂fi
∂u2

� � � � �
∂fi
∂un

)T

�

i = 1� 2� � � � � p, where T denotes the transpose operator. The partial deriva-
tives of the vector functions g and h are similarly defined, using n× l matrix
and n× n matrix, respectively.

Consider the multiobjective control problem (VCP)

min
∫ tf

t0

f �t� x� u�dt =
( ∫ tf

t0

f1�t� x� u�dt� � � � �
∫ tf

t0

fp�t� x� u�dt
)

subject to x�t0� = α� x�tf � = β� (1)

ẋ = h�t� x� u�� t ∈ I� (2)

g�t� x� u� = �g1�t� x� u�� � � � � g1�t� x� u��T ≤ 0� t ∈ I� (3)
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For any partition ����′� of �1� 2� � � � � l�, i.e., �
⋃

�′ = �1� 2� � � � � l�,
�
⋂

�′ = φ, we propose two types of general duals for (VCP):

(VCD1)

max
( ∫ tf

t0

�f1�t� y� ν� + µ�t�T�g��t� y� ν��dt� � � � �
∫ tf

t0

�fp�t� y� ν�

+µ�t�T�g��t� y� ν��dt
)

subject to y�t0� = α� y�tf � = β� (4)

p∑
i=1

λifiy�t� y� ν� + gy�t� y� ν�µ�t� + hy�t� y� ν�γ�t� + γ̇�t� = 0� t ∈ I� (5)

p∑
i=1

λifiν�t� y� ν� + gν�t� y� ν�µ�t� + hν�t� y� ν�γ�t� = 0� t ∈ I� (6)

∫ tf

t0

γ�t�T �h�t� y� ν� − ẏ�dt ≥ 0� (7)

∫ tf

t0

µ�t�T�′g�′ �t� y� ν�dt ≥ 0� (8)

µ�t� ≥ 0� t ∈ I� (9)

λi ≥ 0� i = 1� 2� � � � � p�
p∑
i=1

λi = 1� (10)

where µ�t�� denotes the ��� column vector function with the component
indices in �, and similar notations have the same meanings.

(VCD2)

max
(∫ tf

t0

�f1�t�y�ν�+µ�t�T�g��t�y�ν�+γ�t�T �h�t�y�ν�− ẏ��dt�����
∫ tf

t0

�fp�t�y�ν�+µ�t�T�g��t�y�ν�+γ�t�T �h�t�y�ν�− ẏ��dt
)

subject to y�t0�=α�y�tf �=β� (11)
p∑
i=1

λifiy�t�y�ν�+gy�t�y�ν�µ�t�+hy�t�y�ν�γ�t�+γ̇�t�=0� t∈I� (12)

p∑
i=1

λifiν�t�y�ν�+gν�t�y�ν�µ�t�+hν�t�y�ν�γ�t�=0� t∈I� (13)
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∫ tf

t0

µ�t�T�′g�′ �t�y�ν�dt≥0� (14)

µ�t�≥0� t∈I (15)

λi≥0� i=1�2�����p�
p∑
i=1

λi=1� (16)

Remark. When � = �1� 2� � � � � l�, �′ = φ, (VCD1) is just (WVCD) in
[2], and when � = φ, �′ = �1� 2� � � � � l�, (VCD2) is just (MVCD) in [2].

Definition 1 [4]. A feasible solution (x∗� u∗) for (VCP) is said to be
an efficient solution for (VCP) if for all feasible solutions (x� u),∫ tf

t0

fi�t� x� u�dt ≤
∫ tf

t0

fi�t� x∗� u∗�dt� ∀i ∈ �1� 2� � � � � p�

⇒
∫ tf

t0

fi�t� x� u�dt =
∫ tf

t0

fi�t� x∗� u∗�dt� ∀i ∈ �1� 2� � � � � p��

Definition 2 [9]. If there exist vector functions η�t� x� x∗� ẋ� ẋ∗� u� u∗�
∈ Rn, with η = 0 at t if x�t� = x∗�t�, and ζ�t� x� x∗� ẋ� ẋ∗� u� u∗� ∈ Rm

such that for the scalar function h�t� x� ẋ� u� the functional H�x� ẋ� u� =∫ tf
t0

h�t� x� ẋ� u�dt satisfies

H�x�ẋ�u�−H�x∗�ẋ∗�u∗�

≥
∫ tf

t0

[
ηThx�t�x∗�ẋ∗�u∗�+dηT

dt
hẋ�t�x∗�ẋ∗�u∗�+ζThu�t�x∗�ẋ∗�u∗�

]
dt�

then H is said to be invex in x∗� ẋ∗, and u∗ on �t0� tf � with respect to η
and ζ.

Definition 3. If for all x ∈ X and u ∈ U ,∫ tf

t0

[
ηThx�t�x∗�ẋ∗�u∗�+ dηT

dt
hẋ�t�x∗�ẋ∗�u∗�+ζThu�t�x∗�ẋ∗�u∗�

]
dt≥0

⇒H�x�ẋ�u�≥H�x∗�ẋ∗�u∗��
then H is said to be pseudoinvex in x∗� ẋ∗, and u∗ on �t0� tf � with respect
to η and ζ.

Definition 4. If for all x ∈ X, x �= x∗, and u ∈ U ,∫ tf

t0

[
ηThx�t�x∗�ẋ∗�u∗�+ dηT

dt
hẋ�t�x∗�ẋ∗�u∗�+ζThu�t�x∗�ẋ∗�u∗�

]
dt≥0

⇒H�x�ẋ�u�>H�x∗�ẋ∗�u∗��
then H is said to be strictly pseudoinvex in x∗� ẋ∗, and u∗ on �t0� tf � with
respect to η and ζ.
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Definition 5. If for all x ∈ X and u ∈ U ,

H�x� ẋ� u� ≤ H�x∗� ẋ∗� u∗�

⇒
∫ tf

t0

[
ηThx�t� x∗� ẋ∗� u∗� + dηT

dt
hẋ�t� x∗� ẋ∗� u∗�

+ ζThu�t� x∗� ẋ∗� u∗�
]
dt ≤ 0�

then H is said to be quasiinvex in x∗� ẋ∗, and u∗ on �t0� tf � with respect to
η and ζ.

Definition 6. If for all x ∈ X, x �= x∗, and u ∈ U ,

H�x� ẋ� u� ≤ H�x∗� ẋ∗� u∗�

⇒
∫ tf

t0

[
ηThx�t� x∗� ẋ∗� u∗� + dηT

dt
hẋ�t� x∗� ẋ∗� u∗�

+ ζThu�t� x∗� ẋ∗� u∗�
]
dt < 0�

then H is said to be strictly quasiinvex in x∗� ẋ∗, and u∗ on �t0� tf � with
respect to η and ζ.

3. THE DUALITY BETWEEN (VCP) AND (VCD1)

Theorem 1 (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD1), ∫ tf

t0
�fi�t� y� ν� + µ̄�t�T�g�×

�t� y� ν��dt is strictly quasiinvex at �ȳ� ν̄� on X × U with respect to η and
ζ, and

∫ tf
t0

γ̄�t�T �h�t� y� ν� − ẏ�dt and
∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt are quasiinvex
at �ȳ� ν̄� on X × U with respect to the same η and ζ, then the following
cannot hold simultaneously,

∫ tf

t0

fi�t� x̄� ū�dt ≤
∫ tf

t0

[
fi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�

]
dt�

∀i ∈ �1� 2� � � � � p�� (17)

∫ tf

t0

fi�t� x̄� ū�dt<�=
∫ tf

t0

[
fi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�

]
dt�

for some j ∈ �1� 2� � � � � p�� (18)
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Proof. Suppose to the contrary that (17) and (18) hold for some feasible
�x̄� ū� for (VCP) and some feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD1), then by (3),
(9), and (17),

∫ tf

t0

[
fi�t� x̄� ū� + µ̄�t�T�g��t� x̄� ū�

]
dt

≤
∫ tf

t0

[
fi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�

]
dt� ∀i ∈ �1� 2� � � � � p��

By the strictly quasiinvexity of
∫ tf
t0
�fi�t� y� ν� + µ̄�t�T�g��t� y� ν��dt, when

�x̄� ū� �= �ȳ� ν̄�,
∫ tf

t0

{
ηT �t� x̄� ū� ȳ� ν̄��fiy�t� ȳ� ν̄� + g�y�t� ȳ� ν̄�µ̄�t���

+ ζT �t� x̄� ū� ȳ� ν̄��fiν�t� ȳ� ν̄� + g�ν�t� ȳ� ν̄�µ̄�t���
}
dt < 0�

i ∈ �1� 2� � � � � p�� (19)

Multiply each equation of (19) by λ̄i ≥ 0, i = 1� 2� � � � � p, and add them
together;

∫ tf

t0

{
ηT �t� x̄� ū� ȳ� ν̄�

[ p∑
i=1

λ̄ifiy�t� ȳ� ν̄� + g�y
�t� ȳ� ν̄�µ̄�t��

]

+ ζT �t� x̄� ū� ȳ� ν̄�
[ p∑

i=1

λ̄ifiv�t� ȳ� ν̄� + g�ν�t� ȳ� ν̄�µ̄�t��
]}

dt < 0� (20)

By (2) and (7),

∫ tf

t0

γ̄�t�T �h�t� x̄� ū� − ˙̄x�dt ≤
∫ tf

t0

γ̄�t�T �h�t� ȳ� ν̄� − ˙̄y�dt�

The quasiinvexity of
∫ tf
t0

γ̄�t�T �h�t� y� ν� − ˙̄y�dt implies that

∫ tf

t0

[
ηT �t� x̄� ū� ȳ� ν̄�hy�t� ȳ� ν̄�γ̄�t� +

dηT

dt
�−En×n�γ̄�t�

+ ζT �t� x̄� ū� ȳ� ν̄�hν�t� ȳ� ν̄�γ̄�t�
]
dt ≤ 0� (21)

Integrate
∫ tf
t0
�dηT/dt��−En×n�γ̄�t�dt by parts;

−
∫ tf

t0

dηT

dt
γ̄�t�dt = −ηT γ̄�t��tft0 +

∫ tf

t0

ηT ˙̄γ�t�dt =
∫ tf

t0

ηT ˙̄γ�t�dt�
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By (21), we obtain∫ tf

t0

�ηT �t� x̄� ū� ȳ� ν̄��hy�t� ȳ� ν̄�γ̄�t� + ˙̄γ�t��

+ ζT �t� x̄� ū� ȳ� ν̄�hν�t� ȳ� ν̄�γ̄�t��dt ≤ 0 (22)

By (3), (8), and (9),∫ tf

t0

µ̄�t�T�′g�′ �t� x̄� ν̄�dt ≤
∫ tf

t0

µ̄�t�T�′g�′ �t� ȳ� ν̄�dt�

It follows from the quasiinvexity of
∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt that∫ tf

t0

�ηTg�′y�t� ȳ� ν̄�µ̄�t��′ + ζTg�′ν�t� ȳ� ν̄�µ̄�t��′ dt ≤ 0� (23)

Add (20), (22), and (23);∫ tf

t0

{
ηT �t�x̄�ū�ȳ�ν̄�

[ p∑
i=1

λifiy�t�ȳ�ν̄�+g�y�t�ȳ�ν̄�µ̄�t��

+g�′y�t�ȳ�ν̄�µ̄�t��′ +hy�t�ȳ�ν̄�γ̄�t�+ ˙̄γ�t�
]

+ζT �t�x̄�ū�ȳ�ν̄�
[ p∑
i=1

λ̄ifiν�t�ȳ�ν̄�+g�ν�t�ȳ�ν̄�µ̄�t��

+g�′ν�t�ȳ�ν̄�µ̄�t��′ +hν�t�ȳ�ν̄�γ̄�t�
]}

dt

=
∫ tf

t0

{
ηT �t�x̄�ū�ȳ�ν̄�

[ p∑
i=1

λifiy�t�ȳ�ν̄�+gy�t�ȳ�ν̄�µ̄�t�

+hy�t�ȳ�ν̄�γ̄�t�+ ˙̄γ�t�
]
+ζT �t�x̄�ū�ȳ�ν̄�

×
[ p∑
i=1

λ̄ifiν�t�ȳ�ν̄�+gν�t�ȳ�ν̄�µ̄�t�+hν�t�ȳ�ν̄�γ̄�t�
]}

dt<0�

which contradicts (5) and (6).

Remark. From the proof of Theorem 1 we can obtain that (17) and (18)
cannot hold simultaneously if

∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt is strictly quasiinvex at
�ȳ� ν̄� on X × U with respect to the same η and ζ and

∫ tf
t0
�fi�t� y� ν� +

µ̄�t�T�g��t� y� ν��dt and
∫ tf
t0

γ̄�t�T �h�t� y� ν� − ẏ�dt are quasiinvex at �ȳ� ν̄�
on X × U with respect to the same η and ζ, or

∫ tf
t0

γ̄�t�T �h�t� y� ν� − ẏ�dt
is strictly quasiinvex at �ȳ� ν̄� on X × U with respect to the same η and ζ
and

∫ tf
t0
�fi�t� y� ν�+ µ̄�t�T�g��t� y� ν��dt and

∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt are quasi-
invex at �ȳ� ν̄� on X ×U with respect to the same η and ζ.
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Theorem 2 (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD1), one of the functionals∫ tf
t0
�∑p

i=1 λ̄ifi�t� y� ν� + µ̄�t�T�g��t� y� ν��dt,
∫ tf
t0

γ̄�t�T �h�t� y� ν� − ẏ�dt, on∫ tf
t0

µ̄�t�T�′g�′ �t� y� v�dt is strictly quasiinvex at �ȳ� ν̄� on X × U with respect
to η and ζ and the other two are quasiinvex, then (17) and (18) cannot hold
simultaneously.

Proof. Assume to the contrary that (17) and (18) hold simultaneously
for some feasible �x̄� ū� for (VCP) and some feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for
(VCD1). Multiply each equation of (17) by λ̄i ≥ 0� i = 1� 2 � � � � p, and add
them together,

∫ tf

t0

p∑
i=1

λ̄ifi�t� x̄� ū�dt ≤
∫ tf

t0

[ p∑
i=1

λ̄ifi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�
]
dt�

By (3) and (9),

∫ tf

t0

[ p∑
i=1

λ̄ifi�t� x̄� ū� + µ̄�t�T�g��t� x̄� ū�
]
dt

≤
∫ tf

t0

[ p∑
i=1

λ̄ifi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�
]
dt�

The left part of the proof is similar to the proof of Theorem 1.

Theorem 3 (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD1), ∫ tf

t0

{∑p
i=1 λ̄ifi�t� y� ν� +

µ̄�t�T g�t� y� ν� + γ̄�t�T �h�t� y� ν� − ẏ�}dt is strictly pseudoinvex at �ȳ� ν̄� on
X ×U with respect to η and ζ, then (17) and (18) cannot hold simultaneously.

Proof. Multiply (5) from the left-hand side with ηT ; then take integra-
tion from t0 to tf on both sides,

∫ tf

t0

ηT

[ p∑
i=1

fiy�t� ȳ� ν̄�λ̄i + gy�t� ȳ� ν̄�µ̄�t� + hy�t� ȳ� ν̄�γ̄�t� + ˙̄γ�t�
]
dt = 0�

Integrate
∫ tf
t0

ηT ˙̄γ�t�dt by parts;

∫ tf

t0

{
ηT

[ p∑
i=1

fiy�t� ȳ� ν̄�λ̄i + gy�t� ȳ� ν̄�µ̄�t� + hy�t� ȳ� ν̄�γ̄�t�
]

−dηT

dt
γ̄�t�

}
dt = 0�
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∫ tf

t0

{
ηT

[ p∑
i=1

λ̄ifiy�t� ȳ� ν̄� + gy�t� ȳ� ν̄�µ̄�t� + hy�t� ȳ� ν̄�γ̄�t�
]

+ dηT

dt

[ p∑
i=1

λ̄ifiẏ�t� ȳ� ν̄� + gẏ�t� ȳ� ν̄�µ̄�t�

+ �h�t� ȳ� ν̄� − ˙̄y�ẏ γ̄�t�
]}

dt = 0� (24)

Multiply (6) from the left-hand side with ζT , and then take integration from
t0 to tf on both sides;

∫ tf

t0

ζT

[ p∑
i=1

λ̄ifiν�t� ȳ� ν̄� + gv�t� ȳ� ν̄�µ̄�t� + hν�t� ȳ� ν̄�γ̄�t�
]
dt = 0� (25)

Add (24) and (25);∫ tf

t0

{
ηT

[ p∑
i=1

λ̄ifiy�t� ȳ� ν̄� + gy�t� ȳ� ν̄�µ̄�t� + hy�t� ȳ� ν̄�γ̄�t�
]

+ dηT

dt

[ p∑
i=1

λ̄ifiẏ�t� ȳ� ν̄� + gẏ�t� ȳ� ν̄�µ̄�t� + �h�t� ȳ� ν̄� − ˙̄y�ẏ γ̄�t�
]

+ ζT

[ p∑
i=1

λ̄ifiν�t� ȳ� ν̄� + gν�t� ȳ� ν̄�µ̄�t� + hν�t� ȳ� ν̄�γ̄�t�
]}

dt = 0 (26)

By assumption,∫ tf

t0

{ p∑
i=1

λ̄ifi�t� x̄� ū� + µ̄�t�T g�t� x̄� ū� + γ̄�t�T �h�t� x̄� ū� − ˙̄x�
}
dt

>
∫ tf

t0

{ p∑
i=1

λ̄ifi�t� ȳ� ν̄� + µ̄�t�T g�t� ȳ� ν̄� + γ̄�t�T �h�t� ȳ� ν̄� − ˙̄y�
}
dt�

By (2), (3), (7), and (8),∫ tf

t0

[ p∑
i=1

λ̄ifi�t� x̄� ū�
]
dt >

∫ tf

t0

{ p∑
i=1

λ̄ifi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�
}
dt�

It follows obviously that (17) and (18) cannot hold simultaneously.

Theorem 4 (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD1),

∫ tf
t0
�fi�t� y� ν� +

µ̄�t�T�g��t� y� ν��dt is strictly pseudoinvex at �ȳ� ν̄� on X × U with respect
to η and ζ and

∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt and
∫ tf
t0

γ̄�t�T �h�t� y� ν� − ẏ�dt are
quasiinvex at �ȳ� ν̄� on X × U with respect to η and ζ, then (17) and (18)
cannot hold simultaneously.
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Proof. Similar to the first part of the proof of Theorem 3, we obtain
(26). It follows from (26) that

∫ tf

t0

{
ηT

[ p∑
i=1

λ̄ifiy�t� ȳ� ν̄� + g�y�t� ȳ� ν̄�µ̄�t��
]

+ dηT

dt

[ p∑
i=1

λ̄ifiẏ�t� ȳ� ν̄� + g�ẏ�t� ȳ� ν̄�µ̄�t��
]

+ ζT

[ p∑
i=1

λ̄ifiν�t� ȳ� ν̄� + g�ν�t� ȳ� ν̄�µ̄�t��
]}

dt

= −
∫ tf

t0

[
ηTg�′ y�t� ȳ� ν̄�µ̄�t��′ + dηT

dt
g�′ ẏ�t� ȳ� ν�µ̄�t��′

+ ζTg�′ν�t� ȳ� ν̄�µ̄�t��′

]
dt

−
∫ tf

t0

{
ηThy�t� ȳ� ν̄�γ̄�t� +

dηT

dt
�h�t� ȳ� ν̄� − ˙̄y�ẏ γ̄�t�

+ ζThν�t� ȳ� ν̄�γ̄�t�
}
dt (27)

By (2), (3), (7), (8), and (9),∫ tf

t0

µ̄�t�T�′g�′ �t� x̄� ū�dt ≤
∫ tf

t0

µ̄�t�T�′g�′ �t� ȳ� ν̄�dt�
∫ tf

t0

γ̄�t�T �h�t� x̄� ū� − ẋ�dt ≤
∫ tf

t0

γ̄�t�T �h�t� ȳ� ν̄� − ˙̄y�t��dt

By the quasiinvexity of
∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt and
∫ tf
t0

γ̄�t�T �h�t� y� ν� −
ẏ�dt�

∫ tf

t0

[
ηTg�′ y�t� ȳ� ν̄�µ̄�t��′ + dηT

dt
g�′ ẏ�t� ȳ� ν̄�µ̄�t��′

+ ζTg�′ν�t� ȳ� ν̄�µ̄�t��′

]
dt ≤ 0 (28)

and ∫ tf

t0

{
ηThy�t� ȳ� ν̄�γ̄�t� +

dηT

dt
�h�t� ȳ� ν̄� − ˙̄y�ẏ γ̄�t�

+ ζThν�t� ȳ� ν̄�γ̄�t�
}
dt ≤ 0� (29)
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Substitute (28) and (29) into (27);

∫ tf

t0

{
ηT

[ p∑
i=1

λ̄ifiy�t� ȳ� ν̄� + g�y�t� ȳ� ν̄�µ̄�t��
]

+ dηT

dt

[ p∑
i=1

λ̄ifiẏ�t� ȳ� ν̄� + g�ẏ�t� ȳ� ν̄�µ̄�t��
]

+ ζT

[ p∑
i=1

λ̄ifiν�t� ȳ� ν̄� + g�ν�t� ȳ� ν̄�µ̄�t��
]}

dt ≥ 0�

By assumption,

∫ tf

t0

[ p∑
i=1

λ̄ifi�t� x̄� ū� + µ̄�t�T�g��t� x̄� ū�
]
dt

>
∫ tf

t0

[ p∑
i=1

λ̄ifi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�
]
dt�

By (3) and (9),

∫ tf

t0

[ p∑
i=1

λ̄ifi�t� x̄� ū�
]
dt >

∫ tf

t0

[ p∑
i=1

λ̄ifi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�
]
dt�

It follows obviously that (17) and (18) cannot hold simultaneously.

Theorem 5 (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD1),

(i) λ̄i > 0� i = 1� 2� � � � � p�
(ii) for each i ∈ �1� 2� � � � � p�� ∫ tf

t0
�fi�t� y� ν� + µ̄�t�T�g��t� y� ν��dt is

pseudoinvex at �ȳ� ν̄� on X ×U with respect to η and ζ;

(iii)
∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt and
∫ tf
t0

γ̄�t�Th��t� y� ν� − ẏ�dt are quasi-
invex at �ȳ� ν̄� on X ×U with respect to η and ζ,

then (17) and (18) cannot hold simultaneously.

Proof. It is similar to the proof of Theorem 4.
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For the strong duality theorem, some results about scalar optimal control
will be needed. Consider one scalar optimal control problem as follows:

(CP)

min
∫ tf

t0

f �t� x� u�dt

s�t� ẋ = h�t� x� u�
g�t� x� u� ≤ 0�

where f� g, and h are as defined earlier.

Lemma 1 (Kuhn–Tucker Necessary Optimality Conditions). If �x0� u0�
∈ X × U�X being the space of continuously differentiable state function
x � I → Rn such that x�t0� = α� x�tf � = β and is equipped with the norm
�x� = �x�∞ + �Dx�∞ and U being the space of piecewise continuous con-
trol functions u� I → Rm with the uniform �u�∞ solves (CP), if the Frechet
derivative �D−Hx�x0� u0�� is surjective, and if the optimal solution �x0� u0�
is normal, then there exist piecewise smooth µ0� I → Rl and γ0 � I → Rn

satisfying, for all t ∈ I�

fx�t� x0� u0� + gx�t� x0� u0�µ0�t� + hx�t� x� u�γ0�t� + γ̇0�t� = 0

fu�t� x0� u0� + gu�t� x0� u0�µ0�t� + hu�t� x� u�γ0�t� = 0�

µ0�t�T g�t� x0� u0� = 0

µ0�t� ≥ 0�

Lemma 2 (Chankong and Haimes). �x0� u0� is an efficient solution for
(VCP) if and only if �x0� u0� solves Pk�x0� u0� for all k = 1� 2� � � � � p� where
Pk�x0� u0� is defined as

min
∫ tf

t0

fk�t� x� u�dt

s�t� x�t0� = α� x�tf � = β

ẋ = h�t� x� u�
g�t� x� u� ≤ 0∫ tf

t1

fj�t� x� u�dt ≤
∫ tf

t1

fj�t� x0� u0�dt

for all j ∈ �1� 2� � � � � p�� j �= k.
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Theorem 6 (Strong Duality). Let �x0� u0� be an efficient solution for
(VCP) and if all the constraint qualifications of Lemma 1 for Pk�x0� u0�
for at least one k ∈ �1� 2� � � � � p� hold, then there are nonnegative λ0 ∈ Rp,
piecewise smooth µ0 � I → Rl and γ0 � I → Rn such that �x0� u0� λ0� µ0� γ0�
is feasible for (VCD1) and µ0�t�T g�t� x0� u0� = 0, and if any one of the weak
duality theorems holds between (VCP) and (VCD1), then �x0� u0� λ0� µ0� γ0�
is efficient for (VCD1).

Proof. As pointed out in [8], Pk�x0� u0� is a hybrid constrained opti-
mal control problem and the Lagrangian multipliers with respect to∫ tf
t1

fj�t� x� u�dt ≤ ∫ tf
t1

fj�t� x0� u0�dt� j ∈ �1� 2� � � � � p�� j �= k are con-
stants in the corresponding optimal control problem without constraint.
By Lemma 1 and the assumption in the theorem, there are nonnegative
λ̄ ∈ Rp−1 and piecewise smooth µ̄0 � I → Rl and γ̄0 � I → Rn, such that

fkx�t� x0� u0� +
p∑

j=1
j �=k

λ̄jfjx�t� x0� u0� + gx�t� x0� u0�µ̄0�t�

+hx�t� x0� u0�γ̄0�t� + ˙̄γ0�t� = 0�

fku�t� x0� u0� +
p∑

j=1
j �=k

λ̄jfju�t� x0� u0� + gu�t� x0� u0�µ̄0�t�

+ hu�t� x0� u0�γ̄0�t� = 0�

µ̄0�t�T g�t� x0� u0� = 0�

µ̄0�t� ≥ 0�

Dividing the above formulas by 1 +∑p
i=1� i �=k λ̄i, we obtain

p∑
i=1

λifix�t� x0� u0� + gx�t� x0� u0�µ0�t� + hx�t� x0� u0�γ0�t� + γ̇0�t� = 0�

p∑
i=1

λifiu�t� x0� u0� + gu�t� x0� u0�µ0�t� + hu�t� x0� u0�γ0�t� = 0�

µ0�t�T g�t� x0� u0� = 0�

µ0�t� ≥ 0�
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where

λi = λ̄i

/(
1 +

p∑
i=1
i �=k

λ̄i

)
� i �= k� λk = 1

/(
1 +

p∑
i=1
i �=k

λ̄i

)
�

µ0�t� = µ̄0�t�
/(

1 +
p∑
i=1
i �=k

λ̄i

)
� γ0�t� = γ̄0�t�

/(
1 +

p∑
i=1
i �=k

λ̄i

)
�

Then �x0� u0� λ0� µ0� γ0� is a feasible solution for (VCD1) and with
µ0�t�T g�t� x0� u0� = 0. It is easy to show that if any of weak duality
theorems holds between (VCP) and (VCD1), then �x0� u0� λ0� µ0� γ0� is
efficient for (VCD1).

4. DUALITY BETWEEN (VCP) AND (VCD2)

We state the following duality theorems 1′–6′ without proof that can be
proved as in (VCD1).

Theorem 1′ (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD2),

∫ tf
t0
�fi�t� y� ν� +

µ̄�t�T�g��t� y� ν� + γ̄�t�T �h�t� y� ν� − ẏ��dt is strictly quasiinvex at �ȳ� ν̄� on
X × U with respect to η and ζ and

∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt are quasiinvex at
�ȳ� ν̄� on X ×U with respect to the same η and ζ, then the following cannot
hold simultaneously,

∫ tf

t0

fi�t� x̄� ū�dt ≤
∫ tf

t0

�fi�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄�

+ γ̄�t�T �h�t� ȳ� ν̄� − ˙̄y��dt� for all i ∈ �1� 2� � � � � p�� (30)

∫ tf

t0

fj�t� x̄� ū�dt<�=
∫ tf

t0

�fj�t� ȳ� ν̄� + µ̄�t�T�g��t� ȳ� ν̄� + γ̄�t�T

×�h�t� ȳ� ν̄� − ˙̄y��dt� for some j ∈ i ∈ �1� 2� � � � � p�� (31)

Theorem 2′ (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD2), one of the func-
tionals

∫ tf
t0
�∑p

i=1 λ̄ifi�t� y� ν� + µ̄�t�T�g��t� y� ν� + γ̄�t�T �h�t� y� ν� − ẏ��dt on∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt is strictly quasiinvex at �ȳ� ν̄� on X × U with respect
to η and ζ and the other is quasiinvex at �ȳ� ν̄� on X ×U with respect to the
same η and ζ, then (30) and (31) cannot hold simultaneously.
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Theorem 3′ (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD2),

∫ tf
t0
�∑p

i=1 λ̄ifi�t� y� ν�
+µ̄�t�T g�t� y� ν� + γ̄�t�T �h�t� y� ν� − ẏ��dt is strictly pseudoinvex at �ȳ� ν̄� on
X ×U with respect to η and ζ, then (30) and (31) cannot hold simultaneously.

Theorem 4′ (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible �ȳ� ν̄� λ̄� µ̄� γ̄� for (VCD2),

∫ tf
t0
�fi�t� y� ν� +

µ̄�t�T�g��t� y� ν� + γ̄�t�T �h�t� y� ν� − ẏ��dt �i = 1� 2� � � � � p� is strictly pseu-
doinvex at �ȳ� ν̄� on X × U with respect to η and ζ and

∫ tf
t0

µ̄�t�T�′g�′×
�t� y� ν�dt is quasiinvex at �ȳ� ν̄� on X × U with respect to the same η and
ζ, then (30) and (31) cannot hold simultaneously.

Theorem 5′ (Weak Duality). Assume that for all feasible �x̄� ū� for
(VCP) and for all feasible (ȳ� ν̄� λ̄� µ̄� γ̄) for (VCD2),

(i) λ̄i > 0� i = 1� 2� � � � � p�
(ii) for each i ∈ �1� 2� � � � � p�� ∫ tf

t0
�fi�t� y� ν� + µ̄�t�T�g��t� y� ν� +

γ̄�t�T �h�t� y� ν� − ẏ��dt, is pseudoinvex;
(iii)

∫ tf
t0

µ̄�t�T�′g�′ �t� y� ν�dt is quasiinvex,
then (30) and (31) cannot hold simultaneously.

Theorem 6′ (Strong Duality). Let �x0� u0� be an efficient solution for
(VCP) and let all the constraint qualifications of Lemma 1 for Pk�x0� u0� for
at least one k ∈ �1� 2� � � � � p� hold, then there are nonnegative λ0 ∈ Rp and
piecewise smooth µ0 � I → Rl and γ0 � I → Rn such that �x0� u0� λ0� µ0� γ0�
is feasible for (VCD2) and µ0�t�T g�t� x0� u0� � = 0, and if any one of weak
duality theorems holds between (VCP) and (VCD2), then �x0� u0� λ0� µ0� γ0�
is efficient for (VCD2).
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