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Abstract

The minimum rank of a graph G is defined as the smallest possible rank over all symmetric matrices
governed by G. It is well known that the minimum rank of a connected graph is at least the diameter of
that graph. In this paper, we investigate the graphs for which equality holds between minimum rank and
diameter, and completely describe the acyclic and unicyclic graphs for which this equality holds.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The minimum rank of a graph has now become an important research stream within the realm
of combinatorial matrix theory – especially arising in an inverse eigenvalue problem for graphs
[7,8].

Additionally, minimum rank of graphs has been developed as a separate topic from the
aforementioned inverse eigenvalue problem, and this notion continues to be of interest (see, for
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example [1,4,5,9]). The reader is also encouraged to consult the recent survey paper [6] for current
information regarding many aspects of this minimum rank problem for graphs.

To this end, if G = (V , E) is a graph without loops, then we let S(G) denote the collection of
real symmetric matrices A = [aij ] such that for i /= j , aij /= 0 if and only if {i, j} ∈ E. Evidently,
aii plays no role relative to the graph G. Then we define the minimum rank of a graph G as

mr(G) = min{rank(A) : A ∈ S(G)}.
The number of vertices (order) of G will be denoted by |G|. It is obvious that 1 � mr(G) �

|G| − 1, whenever G does not consist of isolated vertices. Also note that, since the minimum rank
of a disconnected graph is equal to the sum of the minima ranks of its connected components, we
will restrict our study to connected graphs.

A related dual notion is that of the maximum multiplicity of a graph. For a given graph G, we
let M(G) denote the maximum possible multiplicity of an eigenvalue λ of A with A ∈ S(G). It
is also clear that for any graph G on n vertices

M(G) + mr(G) = n. (1)

It is because of (1) that the minimum rank and maximum multiplicity of a graph can be viewed
as dual notions. In fact, in the case of trees (connected acyclic graphs) this duality was exploited,
to some degree, to establish an important equation (see Theorem 1 below) for M(T ), where T is
a tree.

For a graph G, a collection � of vertex-disjoint paths, each of which is an induced subgraph
of G, that covers all the vertices of G is referred to as a path cover of G. The cardinality of a path
cover is the number of paths in the path cover. The path cover number of a graph G, denoted by
P(G), is the minimum cardinality of all path covers of G, and a path cover is called minimal if
it contains P(G) paths. We note that an isolated vertex counts as a path in P(G). A vertex v in
G is called doubly terminal if there exists a minimal path cover having a path consisting of the
single vertex v. Alternatively, v is called simply terminal if v is not doubly terminal while being
the endpoint of a path in some minimal path cover of G.

The next result, proved in [8], has been the genesis of numerous works on minimum rank (see
[2,3]).

Theorem 1. For a tree T , M(T ) = P(T ).

Consequently, the minimum rank of a tree is easy to calculate. However, for general graphs
beyond trees this is no longer the case. Of course many properties about minimum rank are known
and the minimum rank of many classes of graphs are known, but a complete understanding of
minimum rank is nowhere near complete (see [1–4,6,7]). In the papers [2,3] one quantity that
turned out to be useful was the notion of the rank-spread of a vertex. Given a graph G and an
induced subgraph H of G, we let G − H denote the subgraph of G induced by the vertices in G

that are not in H . Specifically, if v is a vertex of G, then G − v is the subgraph obtained from
G by removing vertex v. Then, for a fixed vertex v in G, the rank-spread of v in G is given by
rv(G) = mr(G) − mr(G − v). It is not difficult to verify that 0 � rv(G) � 2.

We include, for clarity of exposition, some necessary terms from graph theory. If G is a graph,
then degG(v) is the degree of v in G (i.e., the number of edges in G incident with v). If P is a
path, then the length of P is the number of edges in P . The distance between two vertices u, v in
a connected graph G is defined as the length of the shortest path joining u and v, and is denoted
by d(u, v). For a connected graph G, the diameter of G is given by
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diam(G) = max
u,v

d(u, v).

Observe that diam(G) is at most the length of the longest induced path in G, and if G is acyclic,
then diam(G) is the length of the longest induced path in G. Along similar lines, the girth of a
graph G is defined as the number of edges in the smallest induced cycle in G.

It is well known and not difficult to verify that mr(G) � diam(G), and that mr(G) is at least the
girth of G minus two. Our main purpose is to characterize the graphs for which mr(G) = diam(G).

We close the introduction with an outline of the paper. In the next section, we focus on a special
class of trees for which the minimum rank equals the diameter. From this, we move on to more
general graphs and special path covers, and finish with a complete characterization of the trees
and unicyclic graphs for which minimum rank coincides with diameter.

2. Centipedes

A tree T is called a centipede if T consists of a path P plus (possibly) one or more edges (legs)
attached to the nonterminal vertices (joints) of P (see Fig. 1). A path is thus a “leg-less” centipede.
Note that the diameter of a centipede is simply the length of P . We will call P a diametrical path
of the centipede. In general, an induced path Q is called a diametrical path for G if its length is
equal to the diameter of G. We say that a centipede is regular if no two consecutive joints both
have legs, and irregular otherwise.

We begin with a characterization of regular centipedes that will be vital to our understanding
of trees for which the minimum rank equals the diameter.

Proposition 2. Let C be a centipede with diametrical path P. Then the following statements are
equivalent:

(i) C is regular;
(ii) P belongs to some minimal path cover of C;

(iii) P(C) = |C| − diam(C);
(iv) mr(C) = diam(C).

Proof. (i) implies (ii): Let � be a minimal path cover for a regular centipede C whose associated
diametrical path P has vertices u1, u2, . . . , um, where u1 and um are terminal vertices. Since u1
is a terminal vertex, there is some path P1 in the collection � that starts at u1 and includes the
vertices u1, u2, . . . , uk . Now if k = m, then we are done, otherwise k < m and we deduce that
the vertex uk+1 does not belong to P1. Since C is regular, at most one of uk , uk+1 has legs, and,
bearing in mind that � is a minimal path cover, it follows that exactly one of uk, uk+1 has legs.
Assume first that uk has legs with endpoints x1, x2, . . . , xr , and that xr belongs to P1. In this case
(see Fig. 2), since uk+1 does not have any legs, it follows that uk+1 is the endpoint of some other
path P2 in �. If we let P ′

1 be the path obtained from P1 by deleting the vertex xr , and P ′ is the path
obtained by joining P ′

1 and P2 with the edge uk, uk+1 (Fig. 3), then, by replacing P1 and P2 with

Fig. 1. A centipede.
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Fig. 2. The path cover with P1 and P2.

Fig. 3. The path cover with P ′ and xr .

P ′ and xr , we obtain another minimal path cover of C. However, this new path cover contains
a path which includes more vertices (namely, at least u1, u2, . . . , uk, uk+1) than � did. Similar
reasoning applies if uk+1 has legs while uk does not. Repeating this process, we eventually arrive
at a minimal path cover of C that contains the path P .

(ii) implies (i): Assume that P belongs to a minimal path cover, that C is irregular, and that the
terminal vertices of P are a and b. Since P belongs to a minimal path cover, it is clear that the
remaining paths in this specified cover must be simply vertices. Now since C is irregular, there
are two adjacent joints u and v on P . Suppose that {u, x} and {v, y} are two legs of C and that
P1 (P2) is the part of P from from a to u (from b to v). Then replace the paths P, x, y in the
original path cover by the paths P1 + {u, x} and P2 + {v, y} to yield another path cover with a
fewer number of paths. Since this is a contradiction, we conclude that C must have been regular.

(ii) implies (iii): If the diametrical path P belongs to a minimal path cover, then, counting the
remaining vertices as paths of length zero, we have

P(C) = 1 + (|C| − (diam(C) + 1)) = |C| − diam(C).

(iii) implies (ii): If P does not belong to a minimal path cover, then P(C) is strictly less than
the cardinality of the path cover consisting of P and the isolated vertices that correspond to the
endpoints of the legs. Then P(C) < |C| − diam(C).

(iii) ⇐⇒ (iv): Since C is a tree, P(C) = M(C) = |C| − mr(C) and the result follows imme-
diately. �

3. Particular path covers

First, we would like to mention a few specific path covers that will be of use. For a graph G, a
path cover � consisting of a diametrical path plus the remaining vertices as paths of length zero
is called a diametrical path cover for G (see Fig. 4). Note that, from Proposition 2, a diametrical
path cover for a centipede C is minimal if and only if C is regular. For a regular centipede C, with
diametrical path P and corresponding diametrical path cover �, we can obtain another minimal
path cover �′ as follows: start at the left terminal vertex of the diametrical path P and, moving
left-to-right on P , at each vertex u of P that has degree greater than two, cut the edge {u, v}, where
v is the vertex to the right of u on P and add the edge {u, w}, where w is any vertex adjacent to
u that does not lie on P , to the path constructed thus far (see Fig. 5). Continuing in this manner,
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Fig. 4. Diametrical path cover for a centipede.

Fig. 5. LTR path cover.

Fig. 6. RTL path cover.

it follows that �′ has the same number of paths as �, and hence is also a minimal path cover for
C. We call this minimal path cover the left-to-right (LTR) path cover, and, similarly, we have the
right-to-left (RTL) path cover (Fig. 6).

We now examine more general graphs, but with an eye toward characterizing trees for which
the minimum rank equals the diameter. We first establish the relationship between graphs in which
the minimum rank equals the diameter and graphs in which a diametrical path cover is minimal.
This is based upon the relationship between path cover number and maximal multiplicity of a
graph.

Lemma 3. For any graph G

(i) if P(G) = M(G), then mr(G) = diam(G) if and only if any diametrical path cover is a
minimal path cover for G;

(ii) if P(G) > M(G), then mr(G) > diam(G);
(iii) if P(G) < M(G), then any diametrical path cover is not a minimal path cover for G.

Proof. First, note that the cardinality of any diametrical path cover is |G| − diam(G).
If P(G) = M(G), then any diametrical path cover is a minimal path cover if and only if

|G| − diam(G) = P(G) = M(G) = |G| − mr(G),

that is, if and only if diam(G) = mr(G), which proves (i).
If P(G) > M(G), then (ii) follows by

|G| − diam(G) � P(G) > M(G) = |G| − mr(G).

Finally, let P(G) < M(G), and suppose there is a diametrical path cover that is a minimal
path cover. Then

|G| − diam(G) = P(G) < M(G) = |G| − mr(G),

which implies mr(G) < diam(G), a contradiction. �
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For graphs whose minimum rank equals the diameter, we see that the property is, to a certain
extent, hereditary. More precisely, deletion of vertices that do not lie on the diameter does not
change the minimum rank nor the diameter.

Lemma 4. Let P be a diametrical path of G where diam(G) = mr(G), and let H be a set of
vertices that do not lie on P. Then

(i) mr(G − H) = mr(G);
(ii) if G − H is connected, then mr(G − H) = diam(G − H).

Proof. Let G1 be the connected component of G − H that contains P . Then

diam(G) � diam(G1) � mr(G1) � mr(G − H) � mr(G) = diam(G) (2)

and (i) follows.
If G − H is connected, then G1 = G − H , and hence (2) forces diam(G1) = mr(G1), from

which (ii) follows. �

An immediate consequence is the following corollary.

Corollary 5. Suppose G is a graph for which mr(G) = diam(G) and v is a vertex of G that does
not lie on some diametrical path of G. Then rv(G) = 0.

4. Acyclic and unicyclic graphs

We are now in a position to characterize trees for which equality holds between minimum rank
and diameter. Recall that a vertex v is said to be appropriate if there exist at least two pendant
paths from v, while v is called a peripheral leaf if v has degree 1 and its only neighbor has degree
no more than 2. Observe that it follows from [3, Propositions 4.1 and 4.3] that rv(G) = 2 for an
appropriate vertex, and rv(G) = 1 for a peripheral leaf.

Theorem 6. Let T be a tree. Then mr(T ) = diam(T ) if and only if T is a regular centipede.

Proof. If T is a regular centipede, then we have mr(T ) = diam(T ) by Proposition 2. So assume
that mr(T ) = diam(T ), and let P be a diametrical path of T , and W the set of vertices of T that
do not lie on P . By a similar argument to that given in [3, Lemma 5.1], it follows that if there is
a vertex of W of degree greater than 2, then W contains an appropriate vertex. By Corollary 5,
the vertices v ∈ W satisfy rv(T ) = 0, so they can be neither appropriate vertices, nor peripheral
leaves. In particular all vertices in W have degree at most 2. Moreover, W has no vertices of
degree two, since this would imply the existence of a peripheral leaf. Thus, all vertices in W have
degree one. Hence T is a centipede, and so by Proposition 2 it follows that T must be regular.
This completes the proof. �

We now wish to apply the results for trees to unicyclic graphs (for which equality exists between
minimum rank and diameter).

Theorem 7. Let U be a connected unicyclic graph satisfying mr(U) = diam(U). Then

(i) there is a vertex w in the unique cycle such that U − w is a regular centipede, and
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(ii) the cycle in U has length three or four and the vertices other than w that are on this cycle
lie on a diametrical path in U − w.

Proof. Let P be a diametrical path of U , and let � be the corresponding diametrical path cover.
Then there is at least one vertexw on the cycle that is not onP . SinceU is unicyclic,P(U) � M(U)

(see [3]). Moreover, since mr(U) = diam(U), it follows from Lemma 3 that P(U) = M(U), and
that � is a minimal path cover. Therefore, w cannot be connected to any vertex in U − P , as this
would lead to a path cover with fewer paths, and contradict the minimality of �. Thus, if we define
T = U − w, then T is connected and, by part (ii) of Lemma 4, we know that mr(T ) = diam(T ).
Thus, by Theorem 6, T is a regular centipede.

To demonstrate that (ii) holds, note that since w cannot be connected to a vertex in U − P , w

is adjacent to two vertices u and v that lie on P . In P , if the distance between u and v were more
than two, then we have a shorter path, namely u, w, v from u to v than that on P , contradicting
the fact that P is a diametrical path and completing the proof. �

Theorem 7 provides a necessary condition for a unicyclic graph to have minimum rank
equal to the diameter. Note that Lemma 3 implies that the path cover number must equal the
maximal multiplicity for these unicyclic graphs. Therefore, to study minimum rank, it is suffi-
cient to study the path cover number. We will start by considering the case in which the cycle
has length three in Lemma 8, while the case of length four will be studied in the following
Lemma 9.

Lemma 8. Let C be a regular centipede with associated diametrical path P and let u and v be
adjacent vertices of P. Append a new vertex w to u and v to obtain a unicyclic graph U. Then
P(U) = P(C) + 1 if and only if the degrees of both u and v are at most two in C.

Proof. If degC(u) � 2 and degC(v) � 2, then, in each minimal path cover of C, u and v are
contained in the same path (else, we could achieve a path cover for C with fewer paths by joining
the path containing u and the path containing v with the edge {u, v}). Let � be a minimal path
cover for U , and let Q be the path in � that contains w. Since u, v, w form a triangle, u and v

cannot both be in Q. Thus, w is an endpoint of Q or Q = {w}. Let �′ be the path cover of C

obtained from � by removing w from Q. Note that �′ cannot be a minimal path cover for C, as
u and v now fall in distinct paths. Therefore

P(C) < |�′| � |�| = P(U),

that is, P(U) = P(C) + 1.
Conversely, suppose, without loss of generality, that degC(u) � 3. Consider a LTR minimal

path cover � for C. We easily see (Fig. 5) that v is an endpoint of a path in �. Let �′ be the path
cover of U obtained from � by joining w and v. We then have

P(C) = |�| = |�′| � P(U),

that is, P(U) /= P(C) + 1. �

Lemma 9. Let C be a regular centipede with diametrical path P and let u, x, v be a subpath of
P, and assume degC(u) � degC(v). Append the vertex w to both u and v to obtain the unicyclic
graph U (of girth 4). Then P(U) = P(C) + 1 if and only if
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Fig. 7. Case I: degC(u), degC(x), degC(v) � 2.

Fig. 8. Case II: degC(u), degC(v) � 2 and degC(x) > 2.

(i) degC(u), degC(x), degC(v) � 2, or
(ii) degC(u) � degC(v) � 3; or

(iii) degC(u) � 3, degC(v) = 2, and degC(y) � 2, where y is the other vertex adjacent to v.

Proof. We prove this lemma by considering the following exhaustive cases. For each case a figure
is provided for clarity:

I. degC(u), degC(x), degC(v) � 2,
II. degC(u), degC(v) � 2 and degC(x) > 2,

III. degC(u) � 3 and

A. degC(v) = 1,
B. degC(v) = 2 and degC(y) � 3, where y is the other neighbor of v on P ,
C. degC(v) = 2 and degC(y) � 2,
D. degC(v) � 3.

Case I. Assume that degC(u), degC(x), degC(v) � 2 (see Fig. 7).
Clearly, u, x, v lie on the same path in any minimal path cover of C. Moreover, we also claim

that there is a minimal path cover � for U in which w is an isolated vertex. To verify this, suppose
to the contrary that w belongs to a path of positive length in every minimal path cover in U . Then
in any such path cover, x must be an endpoint of a path in that path cover. Assume, without loss of
generality, that w and v lie on the same path in this path cover. If, in addition, x lies on the same
path in this path cover, then delete the edge {w, v} and append the edge {u, x} to achieve a minimal
path cover with w isolated. Otherwise, delete the edge {w, v} and append the edge {x, v} to form
a minimal path cover with w as an isolated vertex. Hence, it follows that P(U) = P(C) + 1.

Case II. Assume that degC(u), degC(v) � 2 and degC(x) > 2 (see Fig. 8).
Consider the LTR minimal path cover � for C. By appending w to v in the path cover �, we

obtain a path cover for U of size P(C), and hence P(U) /= P(C) + 1.
Case III. Assume that degC(u) � 3. Thus, since C is regular, degC(x) = 2.
Subcase A. (degC(v) = 1) (see Fig. 9).
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Fig. 9. Case III-A: degC(u) � 3, degC(v) = 1.

Fig. 10. Case III-B: degC(u) � 3, degC(v) = 2, and degC(y) � 3.

Consider the LTR minimal path cover � for C. Since the path x, v is in �, we can append w

to v to obtain a path cover for U of size P(C). Again P(U) /= P(C) + 1.
Subcase B. (degC(v) = 2 and degC(y) � 3, where y is the other neighbor of v on P ) (see Fig.

10).
We need to consider here the following path cover: cover all the vertices to the left of x with

the paths of a LTR path cover, and all the vertices to the right of v with the paths of a RTL path
cover. Finally, cover x and v by an edge. It is easy to see that such a path cover is again minimal
for C. Now, at v, append w to the path containing v to obtain a path cover for U of size P(C),
and hence P(U) /= P(C) + 1.

Subcase C. (degC(v) = 2 and degC(y) � 2) (see Fig. 11).
Observe that any minimal path cover � for U must satisfy:

(a) w is an isolated vertex in �, or
(b) exactly one of the edges {u, w} or {w, v} is contained in some path in �, or
(c) both of the edges {u, w} and {w, v} are contained in some path in �.

If (a) holds, then obviously P(U) = P(C) + 1. If (b) holds, then w belongs to a path of positive
length in � and one can follow the argument in the proof of Case I to obtain P(U) = P(C) + 1.
If (c) holds, then x is an isolated vertex and we can add the edges {u, x} and {x, v} while removing
the edges {u, w} and {w, v} to obtain a minimal path cover for U for which w is an isolated vertex.
Thus, P(U) = P(C) + 1.

Subcase D. (degC(v) � 3) (see Fig. 12).
As in Subcase C, one can easily prove that there exists a minimal path cover for U that has w

as an isolated path. Hence, P(U) = P(C) + 1.
This completes the proof. �
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Fig. 11. Case III-C: degC(u) � 3, degC(v) = 2, and degC(y) � 2.

Fig. 12. Case III-D: degC(u) � degC(v) � 3.

Our main result for unicyclic graphs, namely a characterization of the unicyclic graphs whose
minimum rank equals the diameter, follows.

Theorem 10. Let U be a connected unicyclic graph. Then, mr(U) = diam(U) if and only if

(i) the cycle in U has length 3 or 4;
(ii) there is a vertex w on the cycle such that when this vertex is deleted from U we obtain a

regular centipede C, and the remaining vertices from the cycle lie on a diametrical path P

of C;
(iii) if the cycle has length 3, then degC(u) � 2 and degC(v) � 2, where u and v are the other

vertices from the cycle lying on P ;
(iv) if the cycle has length 4 and u, x, v is the subpath on P formed from the remaining vertices

on the cycle, where we can assume degC(u) � degC(v), then:
(i) degC(u), degC(x), degC(v) � 2, or

(ii) degC(u) � degC(v) � 3; or
(iii) degC(u) � 3, degC(v) = 2, and degC(y) � 2, where y is the other vertex adjacent

to v.

Proof. Let U be a unicyclic graph. If (i)–(iv) hold, then it follows from Lemmas 8 and 9 that
P(U) = P(C) + 1. Also, since the cycle of U has length 3 or 4, M(U) = P(U) [3, Corollary
5.3]. Hence

mr(U) = |U | − M(U)

= |U | − P(U)

= (|C| + 1) − (P (C) + 1)

= |C| − P(C)

= diam(C)

= diam(U).
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Conversely, assume that mr(U) = diam(U). From Lemma 3 we know that P(U) = M(U).
From the latter part of the argument above, it follows that P(U) = P(C) + 1. It then follows
from Lemmas 8 and 9 that (i)–(iv) hold. �

5. Future exploration

We close this paper with a brief summary of this work and a discussion of possible future
analysis. The main purpose of this note was to initiate the study of the graphs with certain extremal
values of minimum rank. Such probing seems justified, as a general description of mr(G) (in terms
of G) is probably a long way off.

Specifically, we have begun the study of the (connected) graphs G for which equality holds
in the general inequality mr(G) � diam(G). To this end, we described all of the acyclic and
unicyclic graphs G that satisfy mr(G) = diam(G).

A natural next step in this line of inquiry is to characterize more general graphs for which
this equality holds, or to restrict the minimum rank. For example, in the latter case, if mr(G) is 1
or 2, then, indeed, it follows that mr(G) = diam(G). On the other hand, restricting the diameter
does not seem to be worthy of consideration, as families of graphs with diameter 2 and arbitrary
minimum rank can be obtained easily.

In addition, another avenue for future exploration is to consider alternative graph parameters in
conjunction with minimum rank (e.g. girth, tree-width, minimum degree, etc.). We have started to
delve into these issues and related challenges in hopes of comprehending more about the minimum
rank problem in general.
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