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a b s t r a c t

A Roman dominating function of a graph G = (V , E) is a function f : V → {0, 1, 2}
such that every vertex with f (v) = 0 is adjacent to some vertex with f (v) = 2. The
Roman domination number of G is the minimum of w(f ) =


v∈V f (v) over all such

functions. Using a new concept of the so-called dominating couple we establish the Roman
domination number of the lexicographic product of graphs. We also characterize Roman
graphs among the lexicographic product of graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The concept of domination in graphs has been studied extensively andmany results are known as well as many different
variations and generalizations [10,11]. Through our investigation of the Roman domination in the lexicographic product of
graphs, the concept of the total domination naturally appears. In [13], several problems concerning the total domination
were proposed. One of them is the characterization of graphs that attain natural bounds for this type of domination (it is
known that the total domination number γt(G) of a graph G lies between γ (G) and 2γ (G)).

Several authors have presented a historical problem of defending the Roman Empire [1,17,18] and in connection with it,
Cockayne et al. defined the Roman domination [6]. They investigated properties of Roman dominating functions and Roman
graphs, i.e. graphs that satisfy γR(G) = 2γ (G). Two simple characterizations of these graphs were obtained, but the authors
suggest finding some families of Roman graphs. A constructive characterization of Roman trees is given in [12], for further
classes of Roman graphs we refer to [8]. The concept of Roman domination and related concepts still present an active area
of research, as recent papers show [9,19].

As many other graph invariants, domination has been studied on different graph products. In [16], authors gave
bounds for different graph invariants, including domination and total domination, for all four standard graph products
(Cartesian, strong, direct, lexicographic). They observed that the domination number in the lexicographic product of graphs
is multiplicative, i.e. for nontrivial graphs G and H

γ (G ◦ H) ≤ γ (G)γ (H).

This bound can be improved if G has no isolated vertex:

γ (G ◦ H) ≤ γt(G).

Recently, the results of [16] have been improved for direct product of graphs [3,15].
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One of the most important and widely studied problems on the domination concerns the Cartesian product. That is
the Vizing’s conjecture, which states that the domination number of the Cartesian product of two graphs is at least the
product of the domination numbers of the factors [2]. Since this conjecture remains unsolved, the authors focused on proving
Vizing’s-like results for other types of domination. Concerning the Roman domination, Wu shows in [20] that γR(G�H) ≥

γ (G)γ (H). On the Roman domination in the Cartesian products, some results are knownwhen the factors are paths [7], and
in the case of products C5k�C5m [8]. The last ones were proven to be Roman. However, no results on other graph products
(lexicographic, strong, direct) have been published.

The rest of the paper is organized as follows: first, definitions and known results needed in the sequel are given.
We characterize graphs with Roman domination number 2 and 3. In Section 2, the Roman domination number of the
lexicographic product of connected graphs is presented. In the last section, graphs attaining natural bounds for the Roman
domination number of the lexicographic product of graphs are characterized. Also, we show which lexicographic product
of graphs are Roman.

All graphs considered in this paper are nontrivial, finite and simple. LetG be a graph and v ∈ V (G). The open neighborhood
of v is the set N(v) = {u ∈ V (G) | uv ∈ E(G)}, and its closed neighborhood is the set N[v] = N(v) ∪ {v}.

For a graph G = (V (G), E(G)), a set D ⊆ V (G) is a dominating set if every vertex in V (G) \ D is adjacent to a vertex in D.
The domination number γ (G) is the minimum cardinality of a dominating set of G. A dominating set of cardinality γ (G) is
called aminimum dominating set, or a γ -set for short.

If each vertex of a dominating setD has a neighbor inD, thenD is called a total dominating set. The total domination number
γt(G) is the minimum cardinality of a total dominating set [5].

A Roman dominating function (RDF) of a graph G = (V , E) is a function f : V → {0, 1, 2} satisfying the condition
that every vertex u such that f (u) = 0 is adjacent to at least one vertex v with f (v) = 2. The weight of an RDF is the
value w(f ) =


v∈V (G) f (v). The minimum weight of an RDF on a graph G is called Roman domination number, denoted

by γR(G). Observe that an RDF f : V → {0, 1, 2} can be presented by an ordered partition f = (V0, V1, V2) of V , where
Vi = {v ∈ V |f (v) = i}.Wewill alsowriteV f

i when the function f is not clear from the context. Note that verticeswithweight
1 in an RDF serve only to dominate themselves. We say that a function f is a γR-function if it is an RDF and w(f ) = γR(G).

In [6], the authors noted that for a graph G of order n, γ (G) ≤ γR(G) ≤ 2γ (G) (where the equality in the lower bound
holds if and only if G = K n). In the same paper, the following properties of a γR-function are given.

Proposition 1.1 ([6]). Let f = (V0, V1, V2) be any γR-function of G. Then:

(i) a vertex of V1 is adjacent to at most one another vertex of V1,
(ii) no edge of G joins V1 and V2.

Another useful upper bound for the Roman domination number of a graph was established in [4].

Proposition 1.2 ([4]). If G is a graph of order n, then γR(G) ≤ n − ∆(G) + 1.

In [6], the authors show that if G is a graph of order n that contains a vertex of degree n − 1 (i.e. a universal vertex),
then γ (G) = 1 and γR(G) = 2. But even more can be said if the order of a connected graph is at least 2. Namely,
if γ (G) = 1 and u ∈ V (G) dominates G, then f = (V (G) \ {u} , ∅, {u}) is a γR-function of G since n ≥ 2. Also, if
f = (V (G) \ {u} , ∅, {u}) is a γR-function of G, then every vertex of V (G) \ {u} is adjacent to u, which implies that u is
of degree n − 1. If f = (V (G) \ {u, v} , {u, v} , ∅), which is the second possible γR-function of G of weight 2, then G ∼= K2
where both vertices are universal. Let us summarize the above:

Observation 1. Let G be a connected graph of order n ≥ 2. Then the following are equivalent:

(i) γ (G) = 1,
(ii) γR(G) = 2,
(iii) G contains a universal vertex.

Now, consider a connected graphG of order n ≥ 2with γR(G) = 3 and let f = (V0, V1, V2) be a γR-function ofG. If V2 = ∅,
then |V1| = 3 and clearly, n = 3. Since G is connected, G is isomorphic to K3 or P3, but γR(K3) = γR(P3) = 2, a contradiction.
Thus |V1| = |V2| = 1. Let u and v be vertices with f (v) = 2 and f (u) = 1 (note that uv ∉ E(G) by Proposition 1.1). Then all
vertices from V (G) \ {u, v} are adjacent to v, which implies ∆(G) = n − 2.

If we assume that ∆(G) = n − 2, then γR(G) ≤ n − (n − 2) + 1 = 3 (by Proposition 1.2), and Observation 1 implies
γR(G) ≥ 3. Thus γR(G) = 3. We established:

Observation 2. Let G be a connected graph of order n ≥ 2. Then γR(G) = 3 if and only if ∆(G) = n − 2.
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Fig. 1. Dominating couples of P7 .

The lexicographic product of graphs G and H is the graph G ◦ H with the vertex set V (G) × V (H) and the edge set:

E(G ◦ H) = {(a, x)(b, y) | ab ∈ E(G), or a = b and xy ∈ E(H)}.

For g ∈ V (G), the H-layer gH is defined as gH = {(g, h) ∈ V (G ◦ H) | h ∈ V (H)}. Similarly, the G-layer through h ∈ V (H)
is defined, and denoted hG. For a set A ⊆ V (G ◦ H) let projG(A) = {g ∈ V (G) | (g, h) ∈ A for some h ∈ V (H)}. The distance
between two vertices in the lexicographic product depends on whether they lie in the same copy of H:

dG◦H((g, h), (g ′, h′)) =

dG(g, g ′); if g ≠ g ′,
1; if g = g ′ and hh′

∈ E(H),
2; if g = g ′ and hh′

∉ E(H).

The aimof this paper is to explore the Roman domination number in the lexicographic product of graphs. All of our graphs
will be connected since, according to the definition, the Roman domination number of a disconnected graph is the sumof the
Roman domination numbers of its connected components. Also, G ◦ H is disconnected if and only if G is disconnected [14].

2. Roman domination number of the lexicographic product of graphs

If a graph G has no isolated vertex and H is an arbitrary graph, the upper bound for the domination number of G ◦ H ,
already observed in [16], is γt(G). Thus γR(G ◦ H) ≤ 2γ (G ◦ H) ≤ 2γt(G).

To observe that 2γ (G) is the lower bound for γR(G ◦ H) we need the following proposition.

Proposition 2.1. Let G and H be nontrivial connected graphs and f = (V0, V1, V2) a γR-function of G ◦ H with the minimum
cardinality of V1. Then projG(V2) is a dominating set of G.

Proof. Let f = (V0, V1, V2) be a γR-function of G ◦ H with the minimum cardinality of V1. Suppose that D = projG(V2)
is not a dominating set of G. Then there is a vertex g ∈ V (G) \ D such that none of its neighbors is in D. Therefore
NG[g] × V (H) ⊆ V0 ∪ V1. Moreover, all vertices in gH-layer belong to V1. Since H is connected it follows by Proposition 1.1
thatH is isomorphic toK2. Let V (H) = {h1, h2}. Now, definef on V (G◦H) by lettingf (a, b) = f (a, b) for any (a, b) ∈ V (G◦H)
except forf (g, h1) = 0 andf (g, h2) = 2. Obviouslyf is an RDF, the weight of which is the same as the weight of f . Hencef
is a γR-function with |V

f
1 | < |V f

1 |, a contradiction. �

Corollary 2.2. Let G and H be nontrivial connected graphs. Then 2γ (G) ≤ γR(G ◦ H).

Proof. Let f = (V0, V1, V2) be a γR-function of G ◦ H such that the cardinality of V1 is minimum. Since projG(V2) is a
dominating set of G by Proposition 2.1, we have γ (G) ≤ |projG(V2)|. Suppose that γR(G ◦ H) < 2γ (G). Then 2|V2| + |V1| <
2γ (G) ≤ 2|projG(V2)| ≤ 2|V2|, a contradiction. Hence 2γ (G) ≤ γR(G ◦ H). �

We observed that 2γ (G) ≤ γR(G◦H) ≤ 2γt(G), and wewill show in what follows that both bounds are sharp. Moreover,
it turns out that the lower bound is actually the exact value for the Roman domination number of G ◦ H in the case when
γR(H) = 2, and the upper bound is in fact the Roman domination number of G ◦ H for every H with γR(H) ≥ 4. To be able
to examine the case when γR(H) = 3 we introduce the following concept.

Let A, B ⊆ V (G). We say that an ordered couple (A, B) of disjoint sets A and B is a dominating couple of G if for every vertex
x ∈ V (G) \ B there exists a vertex w ∈ A ∪ B such that x ∈ NG(w). Note that (∅, B) is a dominating couple if and only if
B is a dominating set, and (A, ∅) is a dominating couple if and only if A is a total dominating set. Fig. 1 shows examples of
dominating couples for the graph P7. Grey and black circles represent vertices of A and B, respectively. The first dominating
couple is formed by an ordinary dominating set, the second by a total dominating set, while the last is a mixture of both
dominations.

Theorem 2.3. Let G and H be nontrivial connected graphs. Then

γR(G ◦ H) =

2γ (G); γR(H) = 2,
ζ (G); γR(H) = 3,
2γt(G); γR(H) ≥ 4,

where ζ (G) = min{2|A| + 3|B|; (A, B) is a dominating couple of G}.
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We will prove Theorem 2.3 in three separate propositions.

Proposition 2.4. Let G be a nontrivial connected graph and H a connected graph with γR(H) = 2. Then γR(G ◦ H) = 2γ (G).

Proof. Let G and H be connected graphs and γR(H) = 2. Let {h} be a γ -set of H and DG =

g1, . . . , gγ (G)


a γ -set of G. Then

f = (V (G ◦ H) \ {(gi, h)|g ∈ DG}, ∅, {(gi, h)|gi ∈ DG}) is an RDF of G ◦ H and w(f ) = 2γ (G). Thus γR(G ◦ H) ≤ 2γ (G) and
the equality γR(G ◦ H) = 2γ (G) follows from Corollary 2.2. �

Proposition 2.5. Let G be a nontrivial connected graph and H a connected graph with γR(H) ≥ 4. Then γR(G ◦ H) = 2γt(G).

Proof. Let G and H be nontrivial connected graphs. We already know that γR(G ◦ H) ≤ 2γt(G). Let f = (V0, V1, V2) be a
γR-function of G ◦ H (with the minimum cardinality of V1).

First, suppose γR(H) > 4. By Proposition 2.1, projG(V2) is a dominating set of G. Moreover, we claim that in this case
projG(V2) is a total dominating set of G. Suppose to the contrary that there exists g ′

∈ projG(V2) that is not adjacent to
any other vertex in projG(V2). This implies that every vertex in the g ′

H –layer is dominated within the layer (note that the
g ′

H-layer contributes at least 5 to the weight of f ). Let (g ′, h′) ∈ V (G ◦H) be such that f (g ′, h′) = 2 and definef on V (G ◦H)
byf (g ′, h′) = f (g ′, h′) = 2,f (g ′, h) = 0 for every h ∈ V (H) \ {h′

},f (g ′′, h′) = 2 for some g ′′
∈ V (G) such that g ′g ′′

∈ E(G),
andf (g, h) = f (g, h) for every other vertex in G ◦ H . It is straightforward to check thatf is an RDF, but its weight is less
than the weight of f , a contradiction. Thus in the case when γR(H) > 4, projG(V2) is a total dominating set of G. Hence
γR(G ◦ H) ≥ 2γt(G).

Now, assume that γR(H) = 4. If projG(V2) is a total dominating set of G, then again the result follows. So, suppose
that projG(V2) is not a total dominating set. But in this case we can construct a γR-functionf such that projG(V

f
2 ) is a

total dominating set in the following way. Let g ′ be a vertex from projG(V2) that is not adjacent to any other vertex in
projG(V2). Then every vertex in the g ′

H-layer is dominated within this layer and, since f is a γR-function of G ◦ H with
the minimum cardinality of V1, we infer |

g ′

H ∩ V f
2 | = 2 and |

g ′

H ∩ V f
1 | = 0. Let (g ′, h′) and (g ′, h′′) be the vertices with

f (g ′, h′) = f (g ′, h′′) = 2. We assignf (g ′, h′) = 2,f (g ′, h′′) = 0,f (g ′′, h′) = 2 where g ′g ′′
∈ E(G), andf (g, h) = f (g, h) for

every other vertex in G ◦ H . It is obvious thatf is an RDF and w(f ) = w(f ). Thus, also in the case when γR(H) = 4, we can
find a γR-functionf such that by projecting vertices (g, h) withf (g, h) = 2 on G, the total dominating set of G is obtained.
Hence, as in the previous case we conclude γR(G ◦ H) ≥ 2γt(G). �

Proposition 2.6. Let G be a nontrivial connected graph and H a connected graph with γR(H) = 3. Then

γR(G ◦ H) = min{2|A| + 3|B|; (A, B) is a dominating couple of G}.

Proof. Let (A, B) be a dominating couple of a nontrivial connected graph G. Letf = (V
f
0 , V

f
1 , V

f
2 ) be a γR-function of H with

w(f ) = 3. If |V
f
1 | = 3, thenf (h) = 1 for every h ∈ V (H) and sinceH is connected it is isomorphic to P3 orK3. But in both cases

this is a contradiction by Proposition 1.1(i). Hence |V
f
1 | = 1. Let V

f
1 = {h1} and V

f
2 = {h2}. We claim that f = (V f

0 , V
f
1 , V

f
2 ),

where V f
1 = B × {h1} and V f

2 = (A × {h2}) ∪ (B × {h2}), is an RDF of G ◦ H .
If g ∈ B, then it is obvious that all vertices in gH ∩ V f

0 are adjacent to some vertex from V f
2 . Now, let g ∈ V (G) \ B.

Since (A, B) is a dominating couple of G there exists g ′
∈ A ∪ B such that gg ′

∈ E(G). We infer (by the structure of
G ◦ H) that (g ′, h2) dominates every vertex in the gH-layer. It follows that f is an RDF and γR(G ◦ H) ≤ min{2|A| +

3|B|; (A, B) is a dominating couple of G}.
For the reversed inequality we need to prove that given a γR-function f = (V f

0 , V
f
1 , V

f
2 ) of G◦H there exists a dominating

couple (A, B) of G such that γR(G ◦ H) ≥ 2|A| + 3|B|.

First, we claim that if f is a γR-function of G ◦ H , then for every g ∈ G such that gH ∩


V f
1 ∪ V f

2


≠ ∅ only two options

exist: either |
gH ∩ V f

1 | = 1 and |
gH ∩ V f

2 | = 1 or |
gH ∩ V f

1 | = 0 and |
gH ∩ V f

2 | = 1.
Suppose that a gH-layer contains only vertices from V f

0 ∪ V f
1 . Then, using Proposition 1.1(ii), we infer that gH ⊂ V f

1 . Since
H is a connected graph with γR(H) = 3 we conclude again that H can only be isomorphic to P3 or K3, which is impossible
by Proposition 1.1(i). Thus, observe the case when the gH-layer contains at least one vertex from V f

2 . One can notice that as
soon as this layer contains another vertex from V f

2 or another two vertices from V f
1 , one can construct a new RDFf of smaller

weight by changing only function values of vertices from the gH-layer in such a way that this layer contributes only 3 to the
weight off . Thus the claim is proved.

Now, let A′
= {g ∈ V (G); |

gH ∩ V f
1 | = 0 and |

gH ∩ V f
2 | = 1} and B′

= {g ∈ V (G); |
gH ∩ V f

1 | = 1 and |
gH ∩ V f

2 | = 1}. We
claim that (A′, B′) is a dominating couple of G. Suppose to the contrary that there exists g ′

∈ V (G) \ B′ that is not adjacent
to any vertex from A′

∪ B′. We infer that then all vertices from the g ′

H-layer would have to be dominated within this layer,
which is impossible. Hence (A′, B′) is a dominating couple of G such that 2|A′

| + 3|B′
| ≤ w(f ) = γR(G ◦ H). �
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Fig. 2. Roman domination of a graph P7 ◦ P4 .

A dominating couple (A, B) for which the minimum in the above proposition is attained is called aminimum dominating
couple. For example, the last dominating couple of Fig. 1 yields a γR-function of P7 ◦ P4, which is depicted in Fig. 2. Here, in
the graph P7, grey and black circles represent vertices of A and B, respectively, while in the product P7 ◦ P4, grey and black
circles represent vertices of V f

1 and V f
2 , respectively.

3. Characterization of graphs that attain the natural bounds

Theorem 2.3 gives the exact Roman domination number of the lexicographic product of graphs. However, this number
is not always easy to compute, yet the bounds for it can easily be estimated. We already observed that γR(G ◦ H) ≤ 2γt(G).
Since γt(G) ≤ 2γ (G), we derive that for arbitrary nontrivial connected graphs G and H ,

γR(G ◦ H) ≤ 4γ (G).

This bound is sharp and it is easy to characterize graphs for which it is attained.

Proposition 3.1. Let G and H be nontrivial connected graphs and let γR(H) ≥ 4. Then γR(G ◦ H) = 4γ (G) if and only if
γt(G) = 2γ (G).

Proof. Assume that G and H are connected graphs and γR(H) ≥ 4. If γt(G) = 2γ (G), then the result γR(G ◦ H) = 4γ (G) is
a direct corollary of Theorem 2.3. For the converse, let γR(G ◦ H) = 4γ (G). By Theorem 2.3, γR(G ◦ H) = 2γt(G), therefore
γt(G) = 2γ (G). �

Observe that in the case when γR(H) = 3, the upper bound 4γ (G) can be improved. Let D = {g1, g2, . . . , gγ (G)} be a
dominating set of G and let (V (G)\{h1, h2}, {h1}, {h2}) be a γR-function ofH . Then (V0,D×{h1},D×{h2}) is an RDF of G◦H .
Thus for γR(H) = 3 we obtain γR(G ◦ H) ≤ 3γ (G).

By Corollary 2.2, γR(G ◦ H) ≥ 2γ (G). We also know that this bound is sharp; it is attained in the case when γR(H) = 2.
But these are not the only graphs with such property.

Proposition 3.2. Let G and H be nontrivial connected graphs. Then γR(G ◦ H) = 2γ (G) if and only if one of the following holds:

1. γR(H) = 2;
2. γt(G) = γ (G) and γR(H) ≥ 3.

Proof. Let G and H be connected graphs. If γR(H) = 2 or γt(G) = γ (G) and γR(H) ≥ 4, the result follows directly
from Theorem 2.3. So let γR(H) = 3, γt(G) = γ (G) and suppose D is a minimum dominating set of G (which is also
minimum total dominating set of G). Then (D, ∅) is a dominating couple of G. According to the Theorem 2.3, γR(G ◦ H) =

min{2|A|+3|B|; (A, B) is a dominating couple of G}. Therefore,γR(G◦H) ≤ 2|D| = 2γt(G) = 2γ (G). SinceγR(G◦H) ≥ 2γ (G)
by Corollary 2.2, we have γR(G ◦ H) = 2γ (G).

To prove the converse suppose γR(G ◦ H) = 2γ (G). If γR(H) ≥ 4, then, by Theorem 2.3, γR(G ◦ H) = 2γt(G),
therefore γt(G) = γ (G). To conclude the proof, let γR(H) = 3. By Theorem 2.3, γR(G ◦ H) = min{2|A| +

3|B|; (A, B) is a dominating couple of G}. Let (A, B) be a minimum dominating couple. If A = ∅, then B is a minimum
dominating set of G. Thus γR(G ◦ H) = 3|B| = 3γ (G), a contradiction. If B = ∅, then A is a minimal total dominating
set, so γR(G ◦ H) = 2|A| = 2γt(G) and hence γt(G) = γ (G). Finally, suppose (A, B) is an arbitrary minimum dominating
couple where both A and B are nonempty. Since A and B are disjoint and A ∪ B is a dominating set, we have γR(G ◦ H) =

2|A| + 3|B| = 2|A| + 2|B| + |B| = 2|A ∪ B| + |B| ≥ 2γ (G) + |B| > 2γ (G), a contradiction. �

Proposition 3.2 enables the construction of new infinite families of Roman graphs. Before that, we need the following
observation about dominating sets in G ◦ H .
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Lemma 3.3. Let G be a nontrivial connected graph and H a connected graph with γ (H) ≥ 2. Then

γ (G ◦ H) = γt(G).

Proof. Let G be a nontrivial connected graph and H a connected graph with γ (H) ≥ 2. We already know that γ (G ◦ H) ≤

γt(G). To prove the reversed inequality, we claim that there exists a minimum dominating set D′ of G ◦ H such that its
projection on G is a total dominating set of G. Let D be a minimum dominating set of G ◦ H . Suppose that projG(D) is not a
total dominating set of G. Then there is a vertex g ∈ projG(D) that is not adjacent to any other vertex in projG(D) (and let A
be the set of vertices in G with such property). Since γ (H) ≥ 2, it follows |

gH ∩ D| ≥ 2. Let D′ be a set of vertices obtained
from the set D in such a way that for every vertex g ′

∈ A we replace one vertex from g ′

H ∩ D by a vertex in a neighboring
H-layer. One can easily observe that D′ is a dominating set of G ◦ H, |D| = |D′

| and projG(D′) is a total dominating set of G.
Then γ (G ◦ H) = |D′

| ≥ |projG(D′)| ≥ γt(G). �

Using Lemma 2.5 from [16], which states that γt(G ◦ H) ≤ γt(G), we derive the following simple observation.

Corollary 3.4. Let G be a nontrivial connected graph and H a connected graph with γ (H) ≥ 2. Then γ (G ◦ H) = γt(G ◦ H).

With this corollarywe obtain a large family of graphs for which the natural lower bound for the total domination number
is attained. In the end, we characterize Roman graphs among the lexicographic products of graphs.

Theorem 3.5. Let G and H be nontrivial connected graphs. Then G ◦H is a Roman graph if and only if one of the following holds:

1. γR(H) = 2 or γR(H) ≥ 4,
2. γR(H) = 3 and there exists a minimum dominating couple (A, B), such that B = ∅.

Proof. First, let G ◦ H be a Roman graph, i.e. γR(G ◦ H) = 2γ (G ◦ H), and let γR(H) = 3. By Lemma 3.3, γR(G ◦ H) = 2γt(G)
and by Theorem 2.3,

min{2|A| + 3|B|; (A, B) is a dominating couple of G} = 2γt(G).

Observe that for a minimum total dominating set D of G, (D, ∅) is a minimum dominating couple.
To prove the converse, let G and H be nontrivial connected graphs and suppose D is a dominating set of G ◦ H . It

is straightforward to check that projG(D) is a dominating set of G (this fact also follows from Lemma 2.3 in [16]). Thus
γ (G) ≤ γ (G ◦ H).

Let γR(H) = 2 (i.e. γ (H) = 1 by Observation 1). Note that in this case γ (G) ≥ γ (G ◦ H), hence γ (G) = γ (G ◦ H). By
Theorem 2.3, we obtain γR(G ◦ H) = 2γ (G) = 2γ (G ◦ H), thus G ◦ H is a Roman graph.

Now, let γR(H) = 3 and (A, ∅) a minimum dominating couple. By Theorem 2.3, γR(G ◦ H) = 2|A|. Since A is a
minimum total dominating set of G, γR(G ◦ H) = 2γt(G). According to Lemma 3.3, γt(G) = γ (G ◦ H) and therefore
γR(G ◦ H) = 2γt(G) = 2γ (G ◦ H).

Finally, let γR(H) ≥ 4. By Lemma 3.3, γ (G ◦ H) = γt(G) and by Theorem 2.3, γR(G ◦ H) = 2γt(G). Therefore, also in this
case G ◦ H is a Roman graph. �

An example of a lexicographic product of graphs that is not a Roman graph is depicted in Fig. 2.
In this paperwe established the formula that gives the Roman domination number of the lexicographic product of graphs.

We believe that it is not easy to obtain such a formula in the case of other standard products of graphs, however, it would
be reasonable to investigate Roman dominating sets in these products in order to obtain (improved) bounds for this graph
parameter.
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