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It is known that a closed aspherical manifold of dimension greater than or equal to five is 
covered by Euclidean space if and only if its fundamental group is I-LC at infinity. In this paper 
theorems will be proved giving sufficient conditions for G, an amalgamated free product or HNN 
group, to be I-LC at infinity and other conditions will be given which are sufficient for G to be 
not I-LC at infinity. It is also proved that none of the groups which are shown to be not I-LC at 
infinity can actually be the fundamental group of an aspherical manifold. 

Introduction 

This paper continues the study of the end invariant e,(G) for finitely presented 
groups G with one end. Earlier results are contained in [9, 10, 11, 151. It was first 
shown in [ 1 l] that a closed aspherical manifold of dimension greater than or equal 
to five with fundamental group G is covered by Euclidean space if and only if 
e,(G) = 1. This is the most important application of the invariant e,(G). 

All groups will be understood to be finitely presented unless stated otherwise. 
Mainly two kinds of groups will be considered. The amalgamated free product of A 
and B with amalgamated subgroup C will be denoted A *c B. Also [A: C,f] will 
denote the HNN group where C is a subgroup of A andf is a monomorphism from 
C into A. Then a presentation of [A: C,f] can be obtained from a presentation of A 
by adding one additional generator t and the relationsf(g) = t-‘gl for all g in C. Also 
let K be any finite complex with xl(K) = G and let R be the universal covering space 
of K. The group G is said to be I-LC at infinity if for any compact set Cof R there is 
a larger compact set D in I? so that any loop in 17-D is contractible in R- C. A 
group is l-LC at infinity if and only if e,(G) = 1. In this paper theorems will be 
proved giving sufficient conditions for G, an amalgamated free product or HNN 
group, to be l-LC at infinity and other conditions will be given which are sufficient 
for G to be not l-LC at infinity. I would like to thank the referee for his many help- 
ful suggestions in revising this paper. 
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Let K and i? be as aaove. End invariants of the group G are defined as in i9, 11, 
151. One takes an increasing sequence of compact sets I/r, U,, . . . whose union is all 
of J?. The number of ends of G,ea(G), is defined to be 

no@- U, ) 2 no&I/Z)>... . II 
For a group with one end the Vi can be chosen so that each R- Vi is connected and 
thus one also has an inverse system of fundamental groups 

n&R- Ul, u,) 
fl fz - n,(R- u,, u,) - *** 

where the maps f; are induced by paths between the respective basepoints Ui+ I and 
ui. A group G is said to be stable at infinity if for some subsequence of the Ui’s 

Rl(R- Ui,, Ui,) A Rl(K- Ui2y Iliz) A *‘+ 

with gr =fi2_ 1 O*** ofiofi, etc., the induced maps 

Imigr12-- Im[gz] L Im[gJ A .a. 

are all isomorphisms. A group G is said to be semistable at infinity if for some 
subsequence of Ui’S the induced maps are epimorphisms. The end invariant e,(G) 
can be defined, for any group with one end which is semistable at infinity, to be 

-I 
lim n,(R-U,,u,) ” fl -n*(R-u,,u+------..a . 

1 

A group G is I-LC at infinity if and only if G is semistable and e,(G) = 1. 
Related invariants can be defined using cohomology. As in Epstein [4] one has an 

exact sequence 

where Cf”(Z?) is the finite cochains on g, C*(R) is the regular cochains on R, and 
C:(R) is defined by the exact sequence. This induces a long exact sequence in co- 
homology 

It is well known that dimz,{@(R; Zz)} = co(G) = dimZ,{H1(G; 7&G)} + 1 and that an 
infinite group G has either one, two, or an infinite number of ends. Also an import- 
ant result of Stallings [16] shows that any finitely generated group G with more than 
one end can be nontrivially written as either A *c B or [A: C, f] where C is a finite 
subgroup in either case. 

Less information is known about the other end invariants, stability, semistability, 
and e,(G), for finitely presented infinite groups with one end and their relation to 
cohomology. Results of Farrell in [S] show that if G is a finitely presented group 
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with at least one element of infinite order then HZ(G; ZG) is either 0, infinite cyclic, 
or not finitely generated. He also shows that H’(G; ZzG) and HJ(g; Zz) are iso- 
morphic for any finite complex K with rrt(K) = G. Houghton in [8] has shown that if 
G is semistable at infinity and e,(G) =M then H’(G. HG) = Hom(M/M’, Z) [also 
H’(G, H,G)= Hom(M/M’,.Zz)] where M’ is the commutator subgroup of M. A 
special case of this is a consequence of the following proposition. 

Proposition 1. If e,(G)= 1 (G is I-LC at infinity) rhen Hj(R; Z)=O for any finite 
simplicial complex K with n,(K) = G. 

Proof. An element of H#; Z) is represented by a simplicial I-cochain f, whose 
coboundary is a finite 2-cochain. So @is zero outside some finite complex C. Since 
R is a locally finite simplicial complex which is I-LC at infinity then there exists a 
subcomplex D in I?- C whose complement is a finite number of cells and so that any 
edge loop Q in D is collapsible to a vertex in the complement of C. Suppose CT starts 
at ao, follows a l-simplex to a,, then follows a l-simplex to a2, . . . , then follows a l- 
simplex to a,, and finally follows another l-simplex back to a,. Then f(a) = f(aoa,) + 
f(a,az) + ..- +f(a,ao) = 0 since a is collapsible in the complement of C and thus is a 
boundary in the simplicial homology. Now we extend f restricted to D to a 
simplicial cocycle g on all of R. The cocycle g will be the same as f on D. Let 

b,b?,bs&,..., b2, _ , b2” be the I-simplices of R not in D. If 6, and b2 are joined by a 
path p in D and f(p) = k then for any other path 4 in D joining 6, and b2, f(q) = k, 
and so we can define g(b,b2) = k. Otherwise if b, and b2 are not joined by a path by a 
path in D one defines g(blb2) = 0. Now let D, be D plus the vertices b, and 6: and the 
l-simplex joining them. The new map g restricted to D1 will again satisfy the 
property that g(o) = 0 for any loop (r in D, since if p, and p2 are any two paths in D, 
with the same endpoints then g(p,) =g(p2). Define g for b3b4 in a similar fashion and 
continue in this way until g is defined on all of g. Thus g is a I-cocyle on K, since 
g(o)=0 for any loop a in 17. Since Hi(R Z) =0 then by the universal coefficient 
theorem H’(f?; H) = 0 and g is also a coboundary. But g differs from f on at most a 
finite number of simplices so f is a coboundary in C,*(K; Z). Therefore Hj(R; Z) = 0. 

Remark. Also it is true that HL(x; Z,) =H’(G; ZzG) = 0 if e,(G) = 1. In addition 
another consequence of Houghton’s result is that if H2(G; ZG) [or H2(G; Z,G)] is 
nonzero then G is not I-LC at infinity. For if G is semistable at infinity and 
Hz(G; ZG) = Hom(M/M’; Z) is nontrivial then M= ei(G) is nontrivial and G is not 
I-LC at infinity. In addition if G is not semistable at infinity then trivially G is not l- 
LC at infinity. 

1. Amalgamated free products 

Earlier results of Houghton (81 and Jackson [IO] show that if 1 -+H-G-K-+1 is 



an exact sequence of finitely presented infinite groups where at least one of I-2 and K 
has one end then e,(G) = 1. Stallings’ classification of groups with more than one 
end indicates that amalgamated free products and HNN groups also play an import- 
ant roIe. The following theorems can be used to compute e,(G) and H’(G; hzG) for 
certain amalgamated free products. Thus consider the standard amalgamated free 
product G = G, *H Gz. Suppose H has generators (~,,a~, . . . , a,, with relations 
fr = 1, . . . . rj=l,G,hasgeneratorsw, ,..., wk,a, ,..., Qnwithrelationsqr=l,..., q,=l, 
rt=l,***rrj=l, and G2 has generators m,,m2, . . . , md,al, . . . ,a, with relations 
p, = 1, . . . . ps=l* rr=lr***,fj=l* Then G can be presented with generators 
ml ,..., md,w ,,..., wk,al ,..., a, and relations pi=1 ,..., ps=l, qi=l ,..., q,=l, r,= 
1 , . . . , fj = 1. So G,, Gz, and H will be thought of as subgroups of G. Let .W; Y, r//r, and 
32 be the Z-dimensional CW complexes corresponding to these presentations, con- 
structed as in [12, p. 1171 with one vertex, a loop for each generator, and a 2-cell for 
each relation, with n,(.#‘) = H, n,( Y) = G, n,( 3,) = G,, and nl( 32) = G: respectively. 
Then !// is constructed from attaching a copy of Y, and Y2 at a copy of .K Also 
since G,, Gz, and H inject into G then the universal covering space of G, d, is con- 
structed from coset copies of the universal covering spaces :4, and :s2 which are 
attached at coset copies of .ti As usual e,(G) = e,( :g). 

Theorem 1. lf H is a subgroup of Cl and G2 where G, and G2 both have one end 
and H has more than one end, then the amalagamated free product G = G, *H G2 has 
one end but is not stable at infinity. 

Proof. One has a Mayer-Vietoris sequence for the amalgamated free product of 
groups [18]: 

.--H,(G,; Z2G)@H’(G2; &G)+-H,(G; Z2G)+-H”(H; ZIG)+-. . 

The groups H, G,, and G2 are subgroups of G of infinite index so Z2G is a free 
iZ2H, Z2G,, and ZzG2 module respectively of infinite rank. Since H is infinite then 
H”(H; Z2H)= HO(H, Z2G)=0 and since G, and G2 both have one end then 
H’(G,; iZ2G) = H,(G,; Z2G,) =O=H’(G,; Z2G2) = H,(G2; E2G). Thus it is also true 
that H,(G; Z2G) = 0 and hence G has one end. 

Now let Ci be an increasing sequence of finite subcompIexes in $ whose union is 
all of 3 and consider the inverse sequence of fundamental groups. For convenience 
basepoints will be omitted. 

7r,( 3 - Cr)+nt( d - Cz)“?rr( 3 -c+-“‘. 

For any compact set Ci there is always a coset copy of $r intersecting a coset copy of 
g2 so that Ci doesn’t intersect either one. Thus any loop contained in this d, and 4 
is trivial in nr( d - Cj) for i 5 i. But some larger C, intersects this copy of 3, and 4 
and divides the copy of .@ in which they intersect into at least two infinite com- 
ponents. Using the fact that $, and 4 both have one end one can construct a loop a 
in d - C, which consists of a path in the copy of $t connecting two infinite com- 
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ponents of .$ followed by a path in $ connecting the endpoints of the first path. In 
fact in the complement of any compact set larger than C, there is also such a loop 
connecting two points in the remaining parts of the original infinite components of 
2 Let L be the union of all remaining parts of copies of 9, in d - C, and let M be 
the union of all remaining parts of copies of & in 9 - C,. Subdivide d by putting a 
new vertex at the center of each l-cell and 2-cell and creating new edges that join the 
vertex at the center of a 2-cell to each vertex on its boundary. Thus each 2-cell is 
subdivided into triangles. Then further subdivide each of these triangles and edges. 
In this second subdivision of 3 let L’= L together with the interiors of all triangles 
and edges whose boundaries intersect L and let M’= M together with the interiors of 
all triangles and edges whose boundaries intersect M. Then L’, M’, and L'n M’ are all 
open and L,M, and L flM are deformation retracts of L’,M’, L’nM’ respectively. 
Thus one has the following Mayer-Vietoris sequence. 

. ..~H.(L)OH,(M)~H,(LUM)~H,(LnM,-.... 

Since d(o) is nontrivial in H,(L nM) the loop CT is nontrivial in H,( 3 - C,) and also 
nontrivial in nl( !$ - C,). So far arbitrarily large k > r one can construct a loop which 
is nontrivial in IT,( 9 - Ci) for r~j II? but trivial in n,( 3 - Cj) forj = i. Since i and k 
are arbitrarily large then this shows that the inverse sequence of fundamental groups 
is not stable and hence 3 is not stable at infinity. It is however possible that 3 is 
semistable at infinity but in that case e,(G) is infinitely generated (91. 

Theorem 1 allows one to construct many examples of groups which are not I-LC 
at infinity. In fact if n = max{cd(G,), cd(Gz)} and His a subgroup of both Gr and G2 
with cd(H) c n then the amalgamated free product G L- G, *H G2 has cd(G) = n [14]. 
Thus one can construct groups which are not I-LC at infinity of any cohomological 
dimension. However none of these groups can be a Poincare duality group which is 
a condition that is satisfied by the fundamental group of a closed aspherical mani- 
fold. One has the following Mayer-Vietoris sequence 

.+.+H*(G; h,G)+H’(H; H2G)‘H’(G1; Z2G)@H’(G2; Z,G)+-.+. . 

Since ee(H) > 1 and e,,(G,) = eO(Gz) = 1 then H’(H; &H) #0 and Ht(G,; Z2G1) = 
H’(G,; Z2G2) = 0. Also H, G,, and G2 are subgroups of G of infinite index so 
Z2G is a free Z2H,Z2G1, H2G2 module respectively of infinite rank. Therefore 
dim,,[H’(H; Z2G)] is infinite and dimZ,[H1(G,; Z,G)] = dimZ,[H’(G2; 4G)] = 0 
and so dimz,[H2(G; Z2G)] is infinite. For a Poincare duality group of dimension n, 
dimZz[H”(G; Z2G)] = 1 and dimz,[H’(G; Z2G)J = 0 for i+ n. 

Theorem 2. If both G, and G2 are I-LC at infinity and H has one end then 
G = G, *H G2 is also 1 -LC at infinity. 

Proof. As in Theorem 1 it is easy to see that as long as G, and G2 both have one end 
and His infinite then G has one end. Suppose C is some compact set in d. Then C is 
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restricted to any copy of 9, or Z& is compact. Since each copy of @t and d, and 4 
in d is I-LC at infinity one can find a larger compact set Fin s so that any loop in 
one copy of a 9; in the complement of F can be contracted in this copy of $ in the 
complement of C. Also F restricted to each copy of 2 is compact so F can be 
enlarged to a compact set E so that for every copy of 2 in ~9 the l-skeleton of 1 in 
the complement of E is connected. Let D be a compact set containing E for which 
any loop in the complement of D is homotopic to an edge loop in 9 -E. I now 
prove by induction that any loop in the complement of D is contractible in the com- 
plement of C. 

A loop in the complement of D is homotopic to an edge loop in the complement 
of E. A loop in the complement of E contained in one coset copy of gi can be con- 
tracted in the complement of C. Suppose an edge loop a in the complement of E 
starts in some copy of Y’, follows a path al in some di to another copy of 9, where 
it follows a path a2 in some Y2 and so on until cr,, comes back to the starting point of 
aI. Also suppose the path aI starts at a vertex corresponding to some g in G. Then (rl 
ends at a vertex corresponding to gal where al is an element of G1,a2 ends at galb2 
where b2 is in G2 until a,, ends at galb2-m-b,,. Since galb2-..b,=g then 
a1b2.-- b, = 1 in G. This can only happen if at least one of the ok’s or bk’s is in H [13]. 
This means at least one of the paths oj starts at a vertex cl and this path aj ends at a 
vertex c2 in the same copy of .& By the construction of E, cl and c2 are connected by 
an edge path p entirely in this copy of 2 and in the complement of E. The loop con- 
sisting of the path oj followed by the pathp-l is contractible in the complement of C 
since it is contained in one coset copy of a $t or g2. This means oj is homotopic top 
in the complement of C. However aj_ I followed by p followed by oj+ I is entirely in 
a copy of some 9, or g2 so a is homotopic in the complement of C to a new edge 
path in the complement of E which is contained in n - 2 copies of @t and g2 or 1 

copy if n = 2. By induction a is contractible in the complement of C so 3 is l-LC at 
infinity. 

Remark. If in Theorem 2 one just assumes that H2(G,; Z2GI) and Z-Z2(G2; Z2G3 are 
both zero in addition to the fact that H has one end then using the Mayer-Vietoris 
sequence 

..-+H2(GI; Z2G)@H2(G2; Z2G)eH2(G;E2G)+H1(H, h,G)-... 

it is easy to see that H2(G, Z2G) = 0. Also in Theorems 1 and 2 it is only necessary 
that the amalgamated subgroup H be finitely generated since a presentation of G 
can be constructed using the presentation of Gr and the presentation of G2 (each of 
which includes the generators of H) but it is unnecessary to include the relations of 
H. 

2. HNN Groups 

Now consider the groups G= [Gi: H,f]. Call the subgroup f(H) of Gi,K. Sup- 



End in varian fs of amalgamated free products 239 

pose that H has generators a,, . . . ,a,, similarly K has generators a;C, . . . ,a:, where 
f(ai) =a:, and G, has generators b,, . . . , b,,,,a,, . . . ,a,, ai, . . . ,a: with relations p, = 
1 ,..., pk=l.ThenGcanbepresentedwithgeneratorsb, ,..., bmra, ,..., a,,af ,..., a,*,,t 
and relations pI = 1,. . . , pk = 1, ai = t-,a& . . . , af = t-‘a,,t. Let 9 and Y, be the finite 
2-complexes corresponding to the presentations of G and G, respectively and let X 
and Y be the finite subcomplexes of G, corresponding to the generators of Hand K. 
Then 9 is homeomorphic to the space constructed from a copy of 9, and a copy of 
Xx [0, l] where X’x 0 is identified with the copy of Y in 1, and Xx 1 is identified 
with the copy of ;Y in 9,. Since G,,K, and Hinject into G then d can be constructed 
from copies of d, and Ix [0, 11. The complexes 3 and i will contain the edges of 
$, corresponding to the generators of Z-I and K. As before there will be one copy of 
1 and 2 for each coset of H and K respectively. In @, the copies of _#x [O, l] are 
attached in one copy of @, to a copy of 1and in another copy of $, to a copy of 2. 

Theorem l*. I.. H is a subgroup of GI where G, has one end and H has more than 
one end, then the HNN group G = [G,: H, f ] has one end but is not stable at infinity. 

Proof. The proof will be essentially the same as in Theorem 1. As before G can 
easily be seen to have one end using the appropriate Mayer-Vietoris sequence. Let 
C; be an increasing sequence of compact sets in $ whose union is all of 9 and 
consider the inverse sequence of fundamental groups. 

For any compact set C; there will always be two coset of 9, joined by a coset copy of 
Ix (0, I] disjoint from Ci. However some larger C, intersects these copies of 9, and 
divides the copy of 2x [0, I] which joins them into at least two infinite components. 
Then in the complement of any compact set Ck larger than C, there exists a loop cz 
which first consists of a path entirely in the first copy of J, joining pointsp, x 0 and 
~2x0 in 2x0 which are in different infinite components of 2x [0, 11, which is 
possible since @, has one end. Since Ck is compact p, and p2 can be chosen so that 
p, x [0, l] and p2 x [0, l] are in the complement of Ck. Then (Y folows p2 x [0, 11, then 
follows a path in the second copy of 9, joining p2 x 1 and p1 x 1, and finally follows 
p, x [0, l] back to the starting point. Let L be the union of all parts of 3,, and 
%‘x [0, $), and 2x (3, l] in $ - Ck and let M be the union of all parts of _%x (i, i) in 
3 - Ck. As before the Mayer-Vietoris sequence 

shows that the loop a is nontrivial in H,( 3 - ck) and n,( $ - Ck). Once again we can 
construct a loop a! so that (Y is trivial in rr,( 9 - Cj) for jsi but nontrivial in 
n,( 9 - Ci) for rc j I k. Since i can be chosen to be arbitrarily large and k can be 
chosen arbitrarily larger than r we have that 9 is not stable at infinity and thus G is 
not stable at infinity. 
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Remark. None of these groups can be Poincare duality groups either. One has the 
following Mayer-Vietoris sequence for HNN groups [l]. 

..-+H”(H, i&G)--H”(G,; &G)+-H”(G; Z,G)+-W- ‘(H, Z,G)+*.. . 

If G is as in Theorem l* then dimr,[H’(H, E2G)] is infinite and also 

dtmrJHt(Gt; B2G)] = 0. 

Thus for n = 2 one has 

. ..+H2(G. H2G)+H’(H; E2G)+-O+... . 

Since dim#f’(H, E2G)] is infinite then one also has that dimr,[H2(G; h2G)] is in- 
finite. Therefore G is not a PoincarC duality group. 

Theorem 2 *. If G, is I-LC at infinity and H has one end then the HNN group 
[G,: H,f] is also l-LC at infinity. 

Proof. By Britton’s lemma if one has g&g+’ ..-timg,,= 1 where the g,‘s are in G,, 
then for some j, ij > 0, ij + 1 ~O,andgjisinKorforsomej,ij<O,ij+r>O,andg~isin 
H. The proof now proceeds as in Theorem 2. Suppose C is some compact set in 3. 
Since each copy of 3t is l-LC at infinity one can construct a larger compact set Fin 
3 so that any loop in one copy of 9, in the complement of F can be contracted in 

the complement of C. Since F is compact then it intersects a finite number of copies 
of 2x [0, 11. Also since F restricted to each copy of Ix [0, l] is compact and .@ has 
one end it is possible to choose a compact set D in Y? so that F restricted to this copy 
of 2x [0, l] is contained in D x [0, l] and 2-D is connected. Add D x [0, l] to F and 
continue this for each 9x [0, 1) which F intersects to get a new compact set E. 
Finally let T be a compact set containing E for which any loop in the complement of 
T is homotopic to an edge loop in the complement of E. Now any loop in the com- 
plement of T can first be contracted to an edge loop in a in the complement of E. 
Therefore Q can be represented by a word gotil--. t’ng,, which is equal to 1 in G. The 
proof now proceeds by induction on Iit I+ lizI + *-- + I&,[. If Ii, I+ liz\ + *+- + li,,/ = 0 
then a is contained in one copy of G, and hence is contractible in the complement of 
C. If Ii, I+ Ii21 + ... + Ii,/ >O then CT can be contracted in the complement of C to a 
new loop in the complement of E with lit I + lizI + --- + Ii,,1 two less by using the com- 
binatorial fact about HNN groups above. By induction a is then contractible in the 
complement of C and hence G is l-LC at infinity. 

Remark. If in Theorem 2* one just assumes that H2(G,; B,G,) is zero in addition to 
the fact that H has one end then using the appropriate Mayer-Vietoris sequence one 
can show that H2(G; Z2G) is also zero. 

Thus Theorems 1 and 1* show that certain amalgamated free products and HNN 
groups, G, es G2, [G,: S,f] where G, and G2 have one end and S has more than one 



End invariants cf amalgamatedfreeproducts 241 

end, are not stable at infinity. If Gt and G2 are not assumed to have one end, then 
Gt +s Gl may be stable at infinity even if S has an infinite number of ends. For 
example let Gr be the free group generated by (I and b and Gz the free group 
generated by c and d. Let the amalgamated subgroup S be the free group generated 
by a*b and b which is identified with the free group generated by d-*c-l and c so that 
a26 = dF2c- * and b = c. Then G, *s G2 is isomorphic to K = (e, fig ( e*f 2g2 = 1). Since K 
is isomorphic to the fundamental group of a closed aspherical 2-manifold covered 
by R2, then K is stable and e,(K) = h. 

Bieri in [2] shows that any extension G of H by K, where Hand K both have more 
than one end, has H*(G, B2G) nontrivial. So these groups have one end but are not 
I-LC at infinity. Applying Stallings’ classification to the group K with more than 
end shows that G can be written as Gt *s G2 or [Gt: S, f] where S is a group having 
more than one end which contains Has a subgroup of finite index. So all examples 
of groups that I know of which are not I-LC at infinity can be written as G1 *s G2 or 
[G, : S. f] where e,,(S) > 1. 

Theorems 2 and 2* show that certain amalgamated free products and HNN 
groups are I-LC at infinity. Also it is well known that if a group G contains a sub- 
group H of finite index which is l-LC at infinity then G is also l-LC at infinity and 
thus undoubtedly one has many more groups which are l-LC at infinity. Certainly 
some groups satisfying the conditions of these two theorems will be the fundamental 
groups of closed aspherical manifolds. It then follows that these manifolds have 
universal covering spaces homeomorphic to Euclidean space if they are of 
dimension greater than four. However in general it is not known to what extent the 
fundamental groups of aspherical manifolds can be written as amalgamated free 
products or HNN groups or when they contain such groups as subgroups of finite 
index, even when their dimension is three. 
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