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Almost all theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle 
near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). Recently it was shown that 
the GUP gives rise to corrections to the Schrödinger and Dirac equations, which in turn affect all non-
relativistic and relativistic quantum Hamiltonians. In this Letter, we apply it to superconductivity and the 
quantum Hall effect and compute Planck scale corrections. We also show that Planck scale effects may 
account for a (small) part of the anomalous magnetic moment of the muon. We obtain (weak) empirical 
bounds on the undetermined GUP parameter from present-day experiments.

© 2011 Elsevier B.V. Open access under CC BY license.
Various approaches to quantum gravity, such as String Theory, 
Doubly Special Relativity (DSR) Theories, Loop Quantum Gravity 
via so-called Polymer Quantization, as well as black hole physics, 
predict a minimum measurable length, and a modification of the 
Heisenberg Uncertainty Principle to a so-called Generalized Uncer-
tainty Principle, or GUP, and a corresponding modification of the 
commutation relations between position and momenta [1–7]. The 
only GUP consistent with the symmetries and index structure of 
the modified commutator bracket between position and momen-
tum from all the above derivations (all of which predict corrections 
involving at most terms up to second order in the momentum), 
and which ensures [xi, x j] = 0 = [pi, p j] (via the Jacobi identity)1

is, to the best of our knowledge [9,10]

[xi, p j] = ih̄

[
δi j − a

(
pδi j + pi p j

p

)
+ a2(p2δi j + 3pi p j

)]
, (1)

�x�p � h̄

2

[
1 − 2a〈p〉 + 4a2〈p2〉]

� h̄

2

[
a

1 +
(

√〈p2〉 + 4a2
)

�p2 + 4a2〈p〉2 − 2a
√〈

p2
〉]

(2)

where a = a0/MPlc = a0�Pl/h̄, MPl = Planck mass, �Pl ≈ 10−35 m =
Planck length, and MPlc

2 = Planck energy ≈ 1019 GeV. It should be
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1 (a) In Refs. [9,8,10] α was used in place of a. (b) The results of this article

do not depend on this particular form of GUP chosen, and continue to hold for a 
large class of variants, so long as an O(a) term is present in the right-hand side of
Eq. (1).
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stressed that the GUP-induced terms become important near the 
Planck scale. It is normally assumed that a0 ≈ 1. For phenomeno-
logical implications of the above GUP, see [8,11,9,10,12]. Note that 
although Eqs. (1) and (2) are not Lorentz covariant, they are at 
least approximately covariant under DSR transformations [6]. We 
expect the results of our Letter to have similar covariance as well. 
In addition, since DSR transformations preserve not only the speed 
of light, but also the Planck momentum and the Planck length, it is 
not surprising that Eqs. (1) and (2) imply the following minimum 
measurable length and maximum measurable momentum

�x � (�x)min ≈ a0�Pl, (3)

�p � (�p)max ≈ MPlc

a0 
. (4)

It can be shown that the following definitions

xi = x0i, pi = p0i
(
1 − ap0 + 2a2 p2

0

)
(5)

(with x0i, p0 j satisfying the canonical commutation relations
[ h∂/∂x0i ) satisfy Eq. (1). Inhδi j , such that p0i = −i¯x0i, p0 j] = i¯
[8,9] it was shown using Eq. (5), that any non-relativistic Hamil-
tonian of the form H = p2/2m + V (�r) can be written as H =
p2

0/2m − (a/m)p3
0 + (5a2/2m)p4

0 + V (r)+ O(a3), implying the mod-
ified Schrödinger equation[
− h̄2 

2m
∇2 + iαh̄3 

m
∇3 + 5a2h̄4 

2m
∇4

]
ψ = ih̄

∂ψ

∂t
. (6)

We will treat the a and a2 terms as perturbations, although the 
higher order Schrödinger equation now has new non-perturbative
solutions of the form ψ ∼ eix/2ah̄ , which may have interesting 
physical implications [9]. Some phenomenological implications of 
the above GUP modified Hamiltonian were examined in [11,12].
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Note that for the earlier versions of the GUP (which did not
take into account DSR), the terms in Eqs. (1), (2) and (5) linear in
a and the Planck length were effectively absent. In the following
sections, we will apply that version to the problems of Supercon-
ductivity (Section 1) and the quantum Hall effect (Section 2). In
Section 3, we will write the Dirac equation that follows from the
full GUP, and apply it to the problem of anomalous magnetic mo-
ment of the muon.

1. Superconductivity

The usual Schrödinger current minimally coupled to a Cooper
pair of charge −2e and mass 2m reads [13]

�J = − e

2m

[
ψ�

{(
h̄

i
�∇ + 2e

c
�A
)

ψ

}
+

{(
h̄

i
�∇ + 2e

c
�A
)

ψ

}�

ψ

]
.

(7)

Substituting ψ = |ψ |eiφ , and assuming virtually all spatial depen-
dence of the wavefunction in the phase φ, such that |ψ | ≈ con-
stant, and �∇ψ = iψ �∇φ, we get:

�J = −
[

2e2

mc
�A + eh̄

m
�∇φ

]
|ψ |2. (8)

Integrating both sides of (8) over a closed loop inside a supercon-
ducting material (where �J = 0), we get:

0 =
∮

�J · d�l =
∮ (

2e2

mc
�A + eh̄

m
�∇φ

)
· d�l (9)

or, from Stokes theorem:

Φ ≡
∫

�B · d�S =
∮

�A · d�l = h̄c

2e

∮
�∇φ · d�l

= h̄c

2e
�φ = h̄c

2e
2πn ≡ nΦ0, Φ0 = hc

2e
,n ∈ N (10)

which is the flux quantization in a superconductor.
Next, we would like to estimate GUP effects on the above flux

quantum. We see from (6) that because of the ∇3 operator, the
leading Planck scale term of order O (a) is non-local, except in
1-spatial dimension. We do not know of a natural way of circum-
venting the problem for the non-relativistic case at hand, though
such a linearization can modify the Dirac equation [9] (which we
shall use in Section 3). Thus we will work with the earlier ver-
sion of the GUP and equivalently the O (a2) term in Eq. (6). The
new conserved current follows (see [11], with β → 5a2/2), again
for charge −2e and mass 2m

�J = h̄

2mi

[
ψ� �∇ψ − ψ �∇ψ�

]

+ 5a2h̄3e

2mi

[(
ψ� �∇∇2ψ − ψ �∇∇2ψ�

)
+ (∇2ψ� �∇ψ − ∇2ψ �∇ψ�

)]
(11)

≡ �J0 + �J1, (12)

ρ = |ψ |2, �∇ · �J + ∂ρ

∂t
= 0, (13)

with J1 being the GUP induced term. Once again, minimal cou-
pling with the Cooper pairs give

�J1 = −5a2e

2m

{
ψ�

[(
h̄ �∇

i
+ 2e

c
�A
)(

h̄ �∇
i

+ 2e

c
�A
)

·
(

h̄ �∇ + 2e �A
)]

ψ +
[(

h̄ �∇ + 2e �A
)(

h̄ �∇ + 2e �A
)

i c i c i c
·
(

h̄ �∇
i

+ 2e

c
�A
)

ψ

]�

ψ +
[(

h̄ �∇
i

+ 2e

c
�A
)

·
(

h̄ �∇
i

+ 2e

c
�A
)

ψ

]�[(
h̄ �∇

i
+ 2e

c
�A
)

ψ

]
+

[(
h̄ �∇

i
+ 2e

c
�A
)

·
(

h̄ �∇
i

+ 2e

c
�A
)

ψ

][(
h̄ �∇

i
+ 2e

c
�A
)

ψ

]�}
. (14)

Using | �A| ≈ |�B|L, where L is a typical linear dimension of the
sample and h̄ �∇ψ/i = h̄ψ �∇φ ≈ h̄2πψ/L, an experiment can be
arranged that such that |h̄ �∇ψ/i| � |2e �Aψ/c|. For example, for
|�B| ≈ 0.1 T, L ≈ 0.1 m, |h̄ �∇ψ/i|/|2e �Aψ/c| ≈ 10−3. Hence

�J1 ≈ −80a2e4

mc3
�A| �A|2|ψ |2. (15)

Thus using once again 0 = ∮ �J ·d�l = ∮ �J0 ·d�l + ∮ �J1 ·d�l, and treating
| �A|2 ≈ |�B|2L2 as effectively constant over the domain of integration
we now, in lieu of Eq. (10), get the flux (1 − 40a2e2

c2 | �A|2)Φ = hc
2e n or

Φ =
(

1 + 40a2e2

c2
| �A|2

)
nΦ0 ≡ n

(
Φ0 + a2Φ1

)
, (16)

Φ1 = 40e2|�B|2L2

c2
Φ0, n ∈ N (17)

to leading order in a.
Measurement of the fundamental flux quantum implies a2Φ1 <

δΦ0/Φ0, where δΦ0/Φ0 is the experimental error. Using Eq. (17)
above, we obtain an upper bound on a0,

a0 <
10−n/2

√
40

MPlc
2

eBL
< 1019−n/2, (18)

assuming experimental precision of 1 part in 10n , where again we
used |�B| ≈ 0.1 T, L ≈ 0.1 m. For example, for n = 4, a0 < 1017. Con-
versely, if a significant improvement of precision can be achieved,
then small deviations from Φ0, as predicted above, may be observ-
able! P induced correction to the flux quantum.

2. Quantum Hall effect

The modification of the flux quantum has a direct effect on the
observable Hall resistance. As is well known, a current density jx

along x in a two-dimensional sample in the xy plane subjected to
a magnetic field B along z results in a potential difference and an
effective electric field E y along y. This results in a cancelation of
the electric and Lorentz force on the charge carriers (having drift
velocity v)

eE y = ev B, (19)

and sets up a measurable potential difference in that direction.
Eq. (19), and the relation jx = nev , where n is the electron den-
sity in the sample, imply

E y = jx B

ne
. (20)

The Hall resistivity ρxy is defined by the relation

E y = ρxy jx, (21)

which combined with Eq. (20) yields

ρxy = B
. (22)
ne
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We also know that quantum mechanically, the electrons in the
sample subjected to the perpendicular magnetic field give rise to
Landau levels, with the energy at level n given by

En = h̄ωc

(
n + 1

2

)
, (23)

where ωc = eB/mc is the cyclotron frequency. Now, from flux
quantization it follows that the density of quanta of magnetic flux
is given by

nH = B

Φ0 + a2Φ1
(24)

in terms of the single unit of flux quanta given by (16). This is
also the density of states for each Landau level, where we have
made the replacement 2e → e in Eq. (10), since now the carriers
are electrons as opposed to Cooper pairs.

Now if the Fermi energy E F lies between the energy levels Ek
and Ek+1, all states Ei , i � k are occupied, resulting in the carrier
density

n = knH , k ∈ N. (25)

Thus from Eqs. (16), (17) and (22), the Hall resistance turns out to
be [14]

ρxy = hc

ke2

[
1 + 10a2e2|�B|2L2

c2

]
, k ∈ N. (26)

Although the Hall resistance is still quantized, its magnitude has
shifted by a small amount. A bound similar to Eq. (18), as well as
possibilities of measurement of corrections of the above type can
be argued for this case as well.

3. Anomalous magnetic moment of the muon

In this case, we show that the non-relativistic limit of the Dirac
equation can be used to extract GUP corrections. First, as in [9] we

linearize p0 =
√

p2
0x + p2

0y + p2
0z by replacing p0 → �α · �p, where αi

(i = 1,2,3) and β are the Dirac matrices, for which we use the
following representation

αi =
(

0 σi
σi 0

)
, β =

(
I 0
0 −I

)
. (27)

The GUP-corrected Dirac equation can thus be written to O(a) as

Hψ = (
c �α · �p + βmc2)ψ(�r, t)

= (
c �α · �p0 − ca(�α · �p0)(�α · �p0) + βmc2)ψ(�r, t)

= ih̄
∂ψ(�r, t)

∂t
. (28)

To study the non-relativistic limit, we write the spinor ψ as [15]

ψ = e−imt
(

χ1(�r, t)
χ2(�r, t)

)
, (29)

and we include the electromagnetic potential Aμ = (φ, �A) in
Eq. (28) by the usual minimal coupling prescription [11] ih̄ ∂

∂t →
ih̄ ∂

∂t − eφ, �p0 → �Π0 ≡ �p0 − e �A/c, obtaining the two component
equations

ih̄
∂χ1

∂t
= eφχ1 + c(�σ · �Π)χ2 − ca(�σ · �Π)2χ1,

ih̄
∂χ2 = (

eφ − 2mc2)χ2 + c(�σ · �Π)χ1 − ca(�σ · �Π)2χ2. (30)

∂t
In the non-relativistic limit mc2 � eφ, |∂χ2/∂t|, the second of
Eqs. (30) becomes to O(a)

χ2 = 1

2mc

[
1 − a

2mc
(�σ · �Π)2

]
(�σ · �Π)χ1, (31)

which, when substituted into the first of Eqs. (30) yields

ih̄
∂χ1

∂t
= eφχ1 + 1

2m
(�σ · �Π)2χ1 − a

(2m)2c
(�σ · �Π)4χ1

− ca(�σ · �Π)2χ1. (32)

Using the identities σaσb = δab + iεabcσc and (�σ · �Π)2 = | �Π |2 −eh̄ �σ ·
�B/c and the identification of the spin operator �S = �σ/2, Eq. (32)
becomes

ih̄
∂χ1

∂t
=

[(
1

2m
− ca

)
| �Π |2 − a

(2m)2c
Π4 + eφχ1

− 2
eh̄

2mc

(
1 − 2acm − a

mc
Π2

)
�S · �B − ae2h̄2

(2m)2c3
|�B|2

− ieh̄a

2(mc)2

(
�∇(�σ · �B) · �Π − e

c
�A · �∇(�σ · �B)

+ ih̄∇2(�σ · �B)

)]
χ1 (33)

where the terms in the first line correspond to the GUP corrected
kinetic terms (including the Π4 term) and the potential energy
term, while those on the second and third lines pertain to the in-
teraction with the electron with an external magnetic field. The
ones in the third line are also new terms which depend on deriva-
tives of the magnetic field.2 Since e/2mc is the Bohr magneton,
one gets g = 2(1 − 2acm − a

mc Π2), or

(
g − 2

2

)
GUP

= −
[

2acm + aΠ2

mc

]
. (34)

Note that GUP predicts a slight decrease in the value of g , and for
a measurement accuracy of 1 part in 10n , one obtains the bound

a0 < 10−n mPl

mμ
< 1020−n, (35)

where we have used mPl = 1.2 × 1019 GeV/c2 and mμ =
105.7 MeV/c2. Thus for the present-day precision level of n = 12,
a0 < 108, which gives a much tighter bound. Conversely, further
increase of accuracies may enable one to observe the above devia-
tion.

4. Conclusions

In this Letter we have explored Planck scale effects on some low
energy systems via the Generalized Uncertainty principle, which
appears to be a robust prediction of most theories of Quantum
Gravity. We found that small but non-zero effect are present for
the fundamental flux quantum of superconductivity, for the inte-
ger quantum Hall effect, and for the anomalous magnetic moment
of the muon. Since these effects have not been observed so far, one
can obtain important upper bounds on the GUP parameter, which
turns out to be a0 < 1017 and a0 < 108 from current experiments
in Superconductivity and muon experiments respectively. These
can be compared with the bounds obtained in [8], between 1018

and 1025, and in [10], between 1010 and 1023. Although the above

2 We used the following identities in their derivation: [ �Π, �σ · �B] = �p0(�σ · �B),

[Π2, �σ · �B] = �Π · �p0(�σ · �B)+{�p0(�σ · �B)} · �Π and (�σ · �B)Π2 = Π2(�σ · �B)−[Π2, �σ · �B].
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bounds appear to be rather weak, future experiments of greater
precision will either provide better bounds on the GUP parameter
or in an optimistic scenario, may be able to detect some of these
effects. In a broader context this approach may open up a low
energy window to quantum gravity phenomenology. This strongly
suggests that more work needs to be done in this direction.

Note added

After completion of this work, we became aware of paper [16] (we thank the
referee for pointing this out to us), in which the authors obtain a lower bound
on the fundamental (higher dimensional) Planck mass in theories with extra di-
mensions, from muon (g − 2) measurements, by directly using the modified Dirac
equation. In this Letter on the other hand, we use the non-relativistic limit of the
GUP modified Dirac equation to obtain upper bounds on a0.
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