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INTRODUCTION

Let G be a locally compact group. We consider a uniformly infinitesimal
triangular system J = (4, )x—1,....x:n>1 Of probability distributions on G and
its sequence (4,),5, of row products g, :=p, * +++ * fiy . For G=R the
investigation of the possible limit points of (u,) has been one of the most
important and stimulating problems of classical probability theory [8]. The
starting point for the present paper was the question of the limiting
behaviour of (4,) on an arbitrary locally compact group.

In order to restrict the number of new difficulties appearing in this general
situation it is convenient to consider only systems J that are (rowwise)
commutative. There are also some results for non-commutative systems (cf.
[15, 6.6]). But up to now they have not been very satisfying. So we do not
go into this and deal always with a commutative system J. This has the
immediate consequence that the row products v, of the accompanying system
I, = (v,x) (where v, is the Poisson measure with exponent u,.) are again
Poisson measures. Since it is therefore much easier to study the system J,
instead of I one has to look for conditions which yield the equality of the
limit points of (#,) and (v,). In the classical case or more generally for an
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Abelian group G this can always be achieved by applying appropriate shifts
to the u,,. But for a general group G this does not work. So we will have to
impose an additional condition on our system 3.

Instead of considering the sequence (v,) it is more effective to study the
sequence of the associated Poissson semigroups S,. Yet the (infinitesimal)
generator of S, can be expressed with the aid of the row sum g,,; + -+ + g,
of 3. So our task is to investigate the convergence of the sequence (S,) in
terms of its generators. But at this point we can gain more information if we
pose the problem more generally. A Poisson semigroup is the prototype of a
convolution semigroup (of probability measures) on G. Thus we shall
consider a sequence (or a net) of convolution semigroups §, on G together
with their generators 4,. And we shall connect the convergence (in an
appropriate sense) of the sequences (S,) and (4,). This is the subject of the
second part of the present paper.

In the classical situation of the real line, limit theorems for the system 3
are proved by applying Fourier transformation. It will turn out that this is
also an appropriate method for locally compact groups. So at first we have
to study the convolution semigroups and their generators in terms of their
Fourier transforms. In contrast to a maximally almost periodic group G,
where this problem has been solved completely [15, 1.5, 4.3; 24], for a
general group G infinite dimensional irreducible representations come into
play. This demands a refinement of the usual Fourier analysis on groups.
Differentiable vectors for representations have to be considered. These
preparations make up the first part of this paper.

Of course the convergence behaviour of commutative and infinitesimal
systems J has attracted most mathematicians interested in probabilities on
groups. But almost all of them have restricted their attention to special
classes of groups. So Urbanik [27] proved a central limit theorem on some
compact Abelian groups. Some years later Parthasarathy [20] derived limit
theorems on locally compact Abelian groups in complete analogy with the
classical situation. Parthasarathy [19] and Heyer [14] treated the central
limit problem on compact Lie groups, and Carnal [6] worked in the context
of compact groups. For systems of probability measures on Lie groups
rather far reaching results were obtained by Wehn [29]. The first step to
general locally compact groups apparently has been taken by Grenander [9].
In [21] the author studied triangular systems on locally compact groups. The
results specialized to maximally almost periodic groups are presented in [15,
6.5]. Finally Hazod [10] obtained some interesting results on totally discon-
nected groups. "

Now we give a summary of this paper. It is divided into two parts. The
first deals with the Fourier analysis of convolution semigroups. Though
preparatory in its character it nevertheless contains results which are of some
interest in itself. In Section 1 the concept of a differentiable vector for a
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representation is introduced. In Section 2 we assemble some well-known facts
on Fourier transformation and convolution operators needed in the sequel.

Section 3 is concerned with the Fourier transforms of a convolution
semigroup S. The Lévy—Chintschin formula of § is given in terms of the
coefficient functions of group representations (Proposition 3.2). In Section 4
we prove that a convolution semigroup is uniquely determined by its
infinitesimal generator restricted to the differentiable vectors of the
irreducible group representations.

Finally Section 5 is very technical but at the same time very important for
our further analysis. Lemmata 5.2 and 5.3 compare the coordinate functions
an a Lie group with the differentiable coefficient functions of irreducible
representations. An application of these lemmata yields Lemma 5.4, where
we return to measures. This lemma will enable us to extend results from Lie
groups to Lie projective groups.

Part II of this paper is concerned with our central subject: the convergence
of convolution semigroups and its applications to triangular systems of
probability measures. For this G will be assumed to be a Lie projective
group (in most casés). In Section 6 we introduce first an appropriate
convergence concept for convolution semigroups, namely, the uniform
convergence on compact intervals of the parameter set (= real numbers >0).
Our main result here is Proposition 6.4: If a net (S,),, of convolution
semigroups with generators A, converges to a convolution semigroup § with
generator A then the net (4,),., converges to 4 in a very precise manner.

In Section 7 we are concerned with the converse situation. Corollary 1 of
Proposition 7.1 assures that lim 4, =4 is also sufficient for lim S, = S. As
a consequence we obtain compactness criteria for the space of convolution
semigroups. These criteria are so sharp that they yield the compactness
conditions of Parthasarathy for infinitely divisible probability measures on
Abelian groups [20].

In Section 8 we study a commutative and infinitesimal system J of
probability distributions on G. Our first result is Proposition 8.1: If J
satisfies a certain boundedness condition (B) then the sequence (,) of row
products of I converges if and only if the sequence (v,) of row products of
its accompanying system J, converges. In the affirmative case these two
limits coincide. By a counterexample it is shown that without condition (B)
this result becomes incorrect even on the real line. Proposition 8.2 gives
sufficient conditions for J that the sequence (u,) converges to a probability
measure embeddable into a convolution semigroup.

The final Section, Section 9, is devoted to the important central limit
problem, i.e., the convergene of the sequence (u,) of row products of J to a
Gaussian measure. Our version of a central limit theorem is Proposition 9.3.
Condition (G) figuring in it is classical (cf. |8, p. 126, Theorem 1]). Here we
need one more condition (WB). But we obtain also a stronger result than in
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the classical case, namely, the existence of limit points for (z,). A special
case of this appears as a law of large numbers (Proposition 9.4 and its
corollary) which is concerned with the convergence of (y,) to degenerate
measures.

The problem of the convergence to Poisson measures has been excluded
here since in this case other methods become involved. We have studied it in
[25].

PRELIMINARIES

N, Z, @, R, C are the sets of positive integers, integers, rational numbers,
real numbers and complex numbers, resp. We define R, :={rE R |r >0},
Q, =R, NQ, R¥:={reR|r>0}, Q% :=RY¥NQ. For any ordered
vector space (V, >) let V', be the cone of its elements >0.

Let E be a locally compact space. 4~ denotes the closure of a subset 4 of
E. If T is a mapping with domain F its restriction to 4 is denoted by T'| 4.
By #%(E) we denote the space of bounded continuous complex-valued
functions on E equipped with the supremum norm | - || .. #(E) and #%(E)
are the subspaces of functions with compact support and of functions
vanishing at infinity. The support of a function fon E is denoted by supp(f),
and f is the complex conjugate function of f.

A (E) is the space of all real Radon measures on E, #°(E) the subspace
of bounded measures (equipped with the norm || - ||) and .#"(E) the subset of
probability measures or distributions (i.e., positive measures u such that
#(E)=1). If F is a locally compact subspace of E and u € #(E) then | F
denotes the restriction of g to F. It is u | F € A#(F). The Dirac measure in
x € E is denoted by ¢,. u € #(E) is said to be degenerate if 4 = ¢, for some
xEE. For u € #(E) and appropriate functions f (on E) f - u denotes the
measure with u-density f. The image of u € #°(E) under a continuous
mapping T with domain E is denoted by T(z). The vague topology &, in
#(E) and the weak topology &,, in .#°(E) are defined as the topologies of
simple convergence on #(E) and #°(E), resp. A set M in A% (E) is said to
be uniformly tight if sup{||lu|| |2 € M} < oo and if for every ¢ > O there exists
a compact set K, in E such that u(CK,) < ¢ for all 4 € M. By Prohoroff’s
theorem M is uniformly tight iff M is relatively £, -compact.

By G we always denote a locally compact group. U(G) is the system of all
neighborhoods of the identity e in G that are Borel sets. Let G* := G\{e}. If f
is a function on G and y € G let ,f, £, f*, f ~ be the functions defined by
WS = F(x) f,x) = f(ep), S*(x) i= f(x7"), f7 = [* resp. (all x € G).
#,(G) is the subspace of #>(G) of uniformly continuous functions with
respect to the left uniform structure on G. If v is a homomorphism of G into
some other group then ker(y) denotes its kernel. .#% (G) is a topological
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semigroup with respect to convolution * and topology &,,. If k € 4%, (G) the
Poisson measure exp(x — k(G)e,) € #"'(G) with exponent x is defined by
exp(k — k(G)e,) :=e "G (g, + k + (1/2)k*xKk + --- ). For u € #(G) (resp.
u € #(G*)) the adjoint measure & is defined by 4(f) :=u(f*) (f € #(G)
resp. /' € Z(G*)). u is said to be symmetric if u =J. By w or dx we denote
a left Haar measure on G. L'(G) (resp. L%(G)) is the Banach space (resp.
Hilbert space) of integrable (resp. square integrable) complex-valued
functions on G with respect to w.

G is said to be a Lie projective group if there exists a family § of compact
normal subgroups in G descending to {e} such that G/H is a Lie group for
any HE€ $. It is well known that any locally compact group G admits an
open Lie projective subgroup.

If # is a complex Hilbert space and T a densely defined linear operator
on ~# the adjoint operator of T exists and is denoted by 7.

Finally some remarks on nets: A net in a set X is said to be universal iff
for each subset 4 of X the net is eventually in A or eventually in X\A4. There
is a universal subnet of each net in X. The image of a universal net is again a
universal net [16, p. 81]. Let I be a non-void set directed by >. If y denotes
the identity mapping on I then (i, >) is a net (in I) with domain I. In this
case we will also say that I is a net. Thus it should be also clear what we
mean by a subnet of I,

Let (x,),; be a net in a topological Hausdorff space X. (x,),; is said to
be a compact net if any of its universal subnets converges. Let X be a
completely regular space and 4 a subset of X. Then A is relatively compact
iff any net in A4 is a compact net or equivalently, iff any universal net in 4
converges (in X). In particular, a sequence (x,),,, in X is a compact net iff
the subset {x,|n € N} of X is relatively compact.

Now let X :=(#%(E), €,), where E is a locally compact space. A net
(a)aer In X is said to be tight if im, ||z, )] < oo and if for every ¢ > O there
exists a compact set C, in E such that lim, pa(C C.) < €. Then we have the
following characterization: A net (u,),.; in (#%(E), £,,) is a compact net if
and only if it is a tight net [23, Lemmas 1.1 and 1.2}.

1. INFINITE DIMENSIONAL FOURIER TRANSFORMATION

1. Unitary Representations and Differentiable Vectors

Let G be a locally compact group. A continuous unitary representation of
G is a homomorphism D of G into the group of unitary operators on a
complex Hilbert space # such that the mapping x -+ D(x)u of G into # is
continuous for all ¥ € #. The space # is called the representation space of
D and is denoted by #(D). The inner product and the norm in #(D) are
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denoted by (-,-) and | - |, respectively. If u,v E€A(D) then (Du,v)
denotes the coefficient function x —» (D(x)u, v) of G into C. Obviously we
have (Du, v) € ,(G).

The class of all continuous unitary representations of G is denoted by
Rep(G). The direct sum and the tensor product of two representations
D,, D, € Rep(G) are denoted by D, ® D, and D, ® D,, resp. A represen-
tation D € Rep(G) is said to be irreducible if the only closed subspaces of
(D) invariant under D are {0} and -#(D). By Irr(G) we denote the class
of all irreducible representations in Rep(G).

Let £2(G) be the space of infinitely differentiable complex-valued functions
with compact support on G in the sense of Bruhat [5]. The space &(G) of
bounded regular functions on G is defined by

&(G):={fEFG)|f - g€ D(G) for all g€ 2(G)}.

DEfFINITION. Let D € Rep(G). The vector u €#(D) is said to be
differentiable (for D) if the function (Du, v) is in &(G) for any v € #(D).

By +#,(D) we denote the space of all vectors in -#°(D) differentiable for D.

#,(D) is invariant under D. (We have {(DD(x)u, v) = ({Du,v)), for all
x € G, and £(G) is invariant under right translations [5]). We want to show
that #4(D) is dense in #(D). We need a preparation:

For D € Rep(G) and f € L'(G) there is a bounded linear operator D(f)
on -#(D) defined by

(D(fus v) = [ FONDEu, vYdx  (all v € #(D)).

Then f - D(f) is the (continuous) representation of the group algebra L'(G)
associated with D [18, p.381]. The linear space -#{(D) generated by
(D(Nulf € Z(G), u e #(D)} is called the Garding space of D.

LEmMA 1.1. (i) #(D) is a subspace of #4(D).

(ii) #(D) (and thus also #y(D)) is dense in #°(D).
(iii) D)D(/*)=D((f,)*) for all x€ G and f € Z(G).
In particular, #,(D) is invariant under D.
Progf. (i) By [3] and Lemma 3.1 we have D(f)u € #(D) for all
S € 2(G) and u € #(D).
(ii) For any U €& U(G) there exists a function f, € Z,(G) such that
supp(fy) < U and [ f,, dw = 1. Hence lim,, D(f,)u = u.

(iii) A simple calculation proves the formula. Since &(G) is invariant
under right translations and inversion [5] the second assertion follows from

it. 1
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ExampLEs. (a) For any f € L*G) let L(y~')f:= f (all y € G). Each
L(y) is a unitary operator on L’(G), and L is a continuous unitary represen-
tation of G with representation space L*(G). It is called the left regular
representation of G. We collect the following properties of L:

(1) 2(G)cH(L). (This is proved in (28, p. 252] for Lic groups. In
the general case it follows along the same lines taking into account the
definitions of Z(G) and £(G).)

(2) We have L(f)g=f*g for all f€L'(G), g€ L*G). Hence
[ * gEHH(L) for all f € Z(G), g € LY(G) (Lemma 1.1).

B Lfg)=(*g)x ") for all f,g€L¥G) and xEG.
Moreover supp((Lf, g)) < supp(g)(supp(f))~".

@) AL =(f*f7)* is a positive definite function in Z%G) (all
fELYG)) [12, Vol. II, (32.43 ¢)].

(b) For any D € Rep(G) such that #(D) has finite dimension we have
#,(D) = #y(D) =#(D). (This is an immediate consequence of Lemma 1.1.)

2. Fourier Transforms and Convolution Operators

Let G be a locally compact group. For a measure u € #%(G) we define its
Fourier transform g by

@D, v) = f (D(x)u, v)u(dx)

for all D& Rep(G) (u, v €A#(D)). This Fourier transformation has the
following properties:

1. 4(D) is a bounded linear operator on -#(D) such that | Z(D)| < |lull.
2. fi(D) = (DY,

3. (Uniqueness theorem) The correspondence u— 4 is injective; ie.,
i,(D) = d,(D) for all irreducible representations, D € Irr(G), implies y, = t,.

4. (au, + bu,) (D) =ad,(D) + bi,(D) for u,,u, € A*G) and a,bER
(D € Rep(G)).

5. (uy % 12) (D) = ji,(D) fir(D) (D € Rep(G)).

6. (Continuity theorem) The correspondence u—gd is sequentially

continuous in the following sense. For any sequence (u,),5, in #?% (G) the
following assertions are equivalent:

(i) &, limu,=y,.
(ii) lim g, (D)u = dy(D)u for all D € Irr(G) and u € #(D).
(iii) lim{d,(D)u, v) = {fiy(D)u, v) for all D € Irr(G) and u, v € #(D).
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(For the proofs of (1)—(5) see [13]. For the proof of (6) see [1, Proposition
6] or [26].)

For our purposes we need the following slightly stronger version of the
continuity theorem:

LEMMA 2.1. Let (u,),50 be a sequence in #°(G) such that
lim{g,(D)u, v) = {do(D)u,v) for all D € Irr(G) and u,v € #4(D). Then we
have € -lim u, = u,.

Progf. We only have to verify condition (iii} of property (6). For any
X € G let Dy(x) be the identity operator on C. Obviously D, € Irr(G) and
lll = £(G) = (G,(D)1, 1), Thus we have lim |u, ]| =] ugl by our
assumption. By Lemma 1.1, #(D) is dense in #(D). Hence a simple
estimation yields condition (iii).

Let us say that the net (u,),, in #*(G) €-converges to u € #* (G) if
we have lim_{d,(D)u, v) = {@i(D)u, v) for all D€ Irr(G) and u, v € #,(D).
In this case we will write £-lim, 4, = u. Clearly & -convergence implies & -
convergence whereas the converse implication holds, in general, only for
sequences.

Sometimes we need a second type of transformation for measures. For
U € A" (G) we define

LSG):=[f()udy)  (@llf €F(G)xEG).

We have T,f € #%(G). T, is called the convolution operator of u. It has
properties similar to those of the Fourier transformation:

1. T, is a bounded linear operator on #%(G) such that || T, | =] u |-

2. T,,=T,T, and T, ,, =aT,+bT, for all uv€.£%(G) and
abeR,.

3. The correspondence u— T, is continuous on .#'(G), i.e., for each net
(Up)ae; in AG) and each uE€.#'(G) the following assertions are

equivalent:

(i) &, lim, u,=u
(i) lim, |7, f—T,fll,=0forall f& #°(G).
(For the proofs see [15, 1.5.5] or {23, p. 440].)
Finally we have the following connections between the convolution

operator and the Fourier transform: (Dd(D)u, v)=T,((Du,v)) for all
D € Rep(G)(u, v €#(D)), and (T, f/)* = ji(L)f* for all f € F(G).
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3. Fourier Transformation of Convolution Semigroups

Let G be a locally compact group. A family (u,),5, in #(G) is said to be
a convolution semigroup if we have u,*u,=u,,, for all s,¢>0, and € -
lim, g 4, = u, :=¢,. Its generating functional (4, 57) is defined by

of = | [E@HG) | AU) = lim — () — £ (e) exists|.

We have £(G)c «/, and on £(G) the functional 4 admits the canonical
decomposition (Lévy—Chintschin formula)

AN =N+ 4D+ [ f~fO-TDldn. (LO)

Here A, is a primitive form, 4, a quadratic form, I a Lévy mapping for G
and 7 a Lévy measure for G [15, 4.5.9; 24]. We will also say that the
generating functional 4 admits the canonical decomposition (4,,4,, 7). The
Lévy measure 7 is uniquely determined by the semigroup (u,),,,,; in fact we
have {24, Lemma 1]

dn =lim % j fdu, for all f € #%G) with e & supp(f).
G

Gx

If G is a Lie group with a system {x,,..., x,} of canonical coordinates in
Z(G) adapted to the basis {X,,.., X,} of its Lie algebra ¥(G) then (LC)
takes the more explicit form

A=Y a(X.f)e) + PN 200

i=1
P

+ Lx [f x)—Sle)— > x,(x)(X,f)(e)] dn(x), (LLC)

i=1

where a, ..., a, are real numbers and (a;;), <<, is @ real symmetric positive
semidefinite matrix [15, 4.2.4; 24].

Sometimes we have to consider the adjoint convolution semigroup (4,),,,-
We denote its generating functional by 4. Obviously 4 admits the canonical
decomposition (—4,,4,, ) (or (—a;, a;;, M« <, in the Lie group case).

ExAMPLE. For x € 4% (G) let u, := exp(t(x — k(G)e,)) be the Poisson
measure with exponent ¢x (all £ > 0). Then it can be easily seen that (u,),,,
is a convolution semigroup with generating functional (x — x(G)e,, #*(G));
it is called a Poisson semigroup.
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If (4,);50 is a convolution semigroup in .#'(G) the family (T, ),,, of
convolution operators defines a strongly continuous semigroup of
contractions on the Banach space @,(G) [23, p.441, proof of
Proposition 5.1]) whose infinitesimal generator is denoted by (N,.#"). We
have 2(G) <.+ |15, 4.5.8] and (Nf)(x)=A(,f) for all xE G and f € 4"

Let D € Rep(G). By properties 1, 5 and 6 of the Fourier transformation
(@/(D)),5, is a strongly continuous semigroup of contractions on #(D). We
denote its infinitesimal generator by (4(D), &/ (D)).

ProposITION 3.1. & (D)= {u €E#(D)|{Du,v) € < for all v € # (D)}
and {A(D)u, v) =A((Du, v)) for all u € o7/ (D) and v € #(D).

Proof. Let u € #(D) such that (Du,v) € &/ for any v € #(D). Let
h(v) == A({Du, v)) and h,(v) :=n[{@,(D)u,v)— (u,v)] (n € N). Then we
have lim A,(v) = h(v) by the definitions of 4 and the Fourier transforms.
Any 4, is a continuous linear functional on #(D). Since #(D) is barreled
also # is a continuous linear functional on -#(D) by the Banach—Steinhaus
theorem. Hence there exists a vector B(D)u € #(D) such that

(B(D)u, v) = h(v) = ltigl (/0@ DYu, v) — (u, v)]
(all v € #(D)). Moreover,

lsi?(;l (1/8) [l (DY, v) — G (D)u, v)]
= lim (1920, £(D)*0) — (. 4(DY'V))

= (B(D)u, i (Dy*v) = (@D) B(D)u, v).

Therefore the function - (f(D)u,v) of R, into C has a continuous right
derivative. This yields

2D —u={ 3,(D) B(D)uds

[30, IX, proof of Theorem 3.2]. Thus u € (D), B(D)u=A(D)u and
(A(D)u, v) = h(v) =A(Du, v)).
Conversely for u € /(D) we have

ADYs, v) = lim (DEADIM V) — . v)]
= lim (1/0){u,((Du, v)) = (w. )
— A(Du. v))

ie., (Du,v) € 57 (all v €#(D)). 1
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CoROLLARY 1. For D € Rep(G) and u € &/ (D), v € #(D) we have
t
8D —u= [ 4,D)A(D)uds
0
and

@0y~ w0y = [ (D() A, v)u(d)ds.

COROLLARY 2. For all u € & (D) and v € #(D) we have (Du, p) eN,
N((Du, v)) = (DA(D)u, v) and | N((Du, v))||., <[ AD) u| |[v]l.

Proof.

(D) AD, ) ~— [(T, D 03)x) — (Dt 0)) ()]

= | D) 4D 0) ~ [ KD ) — (Dl o) )|

~ |4 DGy = (4 [ 1Dl ). D)

ol (all x € G).

< 4@~ 3@y —ul

This proves our assertions. M

COROLLARY 3. #y(D) < (D).

Proof. This follows immediately from the definition of #;(D),
&(G) c .« and Proposition 3.1. I

We give an application of Proposition 3.1 needed in the sequel. Let £(G)
be the Lie algebra of G in the sense of Lashof [17] and exp the exponential
mapping of £(G) into G. It is well known that ¥(G) is in one-to-one
correspondence with the one-parameter subgroups in G. For every X € (G)
and f € &£(G) the limit

X)) =lim (1/0)[f (x exp £X) — f(x)]

exists for all x € G, and Xf € &£(G) if Xf is bounded.
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LEMMA 3.1. Let X € ¥(G) and D € Rep(G). Then we have

(i) X(Du:=lim,_, (1/t)[D(exp tX)— D(e)lu exists for every
u € #yD), and (DX(D)u, v) = X({Du, v)) for all v € #(D). In particular,
H#4(D) is invariant under X(D).

(i) X(D) is a linear operator on #y(D), and \/—1 X(D) is self
adjoint.

(iii) For every fE€2(G) we have X(D)D(f*)=D((Xf)*). In
particular #/(D) is invariant under X(D).

Proof. (i) Let x,:=exp X for all t € R. Then (¢, ),,, and (&,_),,, are
convolution semigroups in .#'(G). Thus our assertions are special cases of
Proposition 3.1 and its corollaries.

(ii)) By (i), we have (DX(D)u,v)=X({Du,v))€&(G) for all
v € #(D), and thus X(D)u € #(D) (u € #;(D)). Since the D(x) are unitary
operators we have X(D)* = — X(D), i.e., v/ —1 X(D) is self-adjoint.

(iii) Let fE€Z2(G) and u€A(D). Since fe€.# we have
lim, , (1/1)[ f,, — f1* = (X/)* uniformly on G and thus in the norm of L'(G)
by Lebesgue’s theorem (all functions have their supports in a fixed compact
set). Thus by (i) and Lemma 1.1 we can conclude

X(D) DU = lig - (D) D)~ DUl

. 1 *
=tim D (( 7= 1) )u=D@ " B

Remark. Let G be a Lie group and D € Rep(G), u€#(D). If the
function x —» D(x)u is weakly differentiable infinitely often (i.e., u € #(D))
then it is also strongly differentiable infinitely often. (This is immediate by
Lemma 3.1; cf. [28, p. 484, Remark].)

ProprosITION 3.2.  The canonical decomposition (LC) of the generating
functional A of the convolution semigroup (u.),,, can be extended to all
representations D € Rep(G) and all differentiable vectors u € #(D) in the
Jollowing way:

A(D)u=A,(Du + A,(Dyu + Lx [D(x) — D(e) — I'(D)(x)]u dn(x).

Here A (D), A,(D) and I'(D)(x) are linear mappings of #4(D) into #(D)
defined by

(A(D)u,v) :=A;((Du,v)) and (L(D)x)u,v):=TI({Du,v))(x).
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vV —1A,(D), Ay(D) and \/—1 I'(D)(x) are symmetric and closable. Moreover
A,(D) is negative semidefinite.

Proof. Let B be a primitive or quadratic form on &(G). (4, and I'( - )(x)
are primitive forms, and 4, is a quadratic form.) There exists a unique
convolution semigroup (v,);5, in #'(G) whose generating functional
coincides with B on &(G) [15, 4.5.8; 24]. Hence by Proposition 3.1 and its
Corollary 3 there is defined a linear mapping B(D) of #;(D) into #(D) by
(B(D)u,v) = B({Du,v)). This yields the existence of A4,(D), A,(D) and
I'(D)(x). Moreover B(D) is closable since it is the restriction to #5(D) of the
closed infinitesimal generator of the semigroup (¥#,(D)),,,. Finally
\/——_1 A,(D), \/——1 I'(D)(x) and A,(D) are symmetric. [By definition, B is
real, i.e., B(f) = B(f) for all f € &(G). If B is primitive (resp. quadratic) we
have B(f*)=— B(f) (resp. B(f*)=B(f)) 15, 4.4.7(3)]. For D € Rep(G)
and u,v € #(D) we have (Du,v)* = (u, Dv). Combining these facts the
statements can be proved easily.] Since 4, is almost positive {15, 4.4.6] it is
not difficult to prove that 4,(D) is negative semidefinite.

Applying formula (LC) to the function {Du,v) (u € #(D), v € #(D))
we get

(A(DY, ) = (A,(D)u, v) + (A (D), v)
+]_ (D) = D)~ DY) lu, v) dn(x).

From this formula we conclude the existence of the vector [4.[D(x) — D(e) —
I'(D)(x)]udn(x) in #(D) and thus the desired decomposition. [}

CoroOLLARY. If G is a Lie group the canonical decomposition (LLC)
extends to D € Rep(G) and u € # D) in the following way:

P P
ADu=Y aXDu+ > a,X(D)X(D)u
i=1 o=

ij=1
p
+[ [DG)=D(e) = Y x(x) X,(D)lu dn(x)
G* i=1
Progof. This follows immediately from (LLC) and Lemma 3.1 together
with Proposition 3.1 and its Corollary 3. [

4. The Differentiable Vectors Determine the Convolution Semigroup

Let G be a locally compact group and (g,),5, a convolution semigroup in
#'(G) with generating functional (4, «). We are going to show that (u,),,,
is uniquely determined by the family (4(D)|#{(D))perr)- The crucial
point of the proof is the following.
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PropoSITION 4.1. Let (N,.#7) be the infinitesimal generator of the
associated semigroup (T, ), of convolution operators on %,(G).

If f € 2(G) we have (Nf)* € LY(G) and A(D) D(f*)= D((Nf)*) for all
D € Rep(G).

Proof. The proof will be divided into several steps. Let D € Rep(G) be
fixed.

1. Let A be bounded; i.e., there exists a constant ¢ > 0 such that
AN <c|fll, for all f€ /. Then we have & =%?G) and
A(f)=[[f— f(e)]dk for some k € .#5(G) (all f € #*(G)) [11, p. 32].

Let £ € Z(G). Then f* € L'(G) and k = f* € L'(G) [12, Vol. I, (20.12)].
Moreover

(k * /*)(x) = K(G)S*()
= [ [/*(r~'0) = /()] de(y)

= [ 176" = S ]dr(r) = A S)

= (M) = (Nf)*(x).

Thus we have (Nf)* € L'(G). Let u € #(D). Applying Fubini’s theorem (x
is bounded) we get

A(D) D(f*)u= [ [D(y) — D(e)] D(f*)u di(y)
= [ [k /*(x) = 1(G)S*(x)| Dl e
= [ (W)*(x) D dx = DS ).

2. Let G, be an open Lie projective subgroup of G and #(G) the Lie
algebra of G. We assume that 4 admits the canonical decomposition
(A,,A4,,n), where the support of # is contained in a compact neighborhood
Ue U(G). We fix f € Z(G). Then there exists a compact normal subgroup
H in G, such that G,/H is a Lie group and f lies in the space &,(G) of all
functions in &(G) that are constant on the right cosets modulo H (definition
of Z(G)). An easy calculation shows (together with Lemma 1.1) that
(DD(f*)u, v) € &y(G) for all u,v € #(D).

(a) There exist vectors X,,..., X, € £(G), functions x,,...,x, € Z(G)
and real numbers a;, a;; (1 <i,j< p) such that
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A@=3 oo Ao)= 3 aXX e

and

10 =A@ - 4@ A:0)=| ¢ g~ ¥ xxiee)] a

i=1

for all g € &,(G) (22, p. 328].
With the aid of Lemma 3.1 we get

(4, + A4,)(D) D(f*)u, v)
= (4, + 4,)(DD(f*)u, v))

= X G X (DDU Y 0)))

+ ; ij tX](<DD(f*)u’v>)(e)

iJj=1

= X a& (D) D, )

i=1

S a,{X (D) X{(D) D(f*)u, v)

iJj=1

=<D ((‘ a X, f+ ‘ aUXX,f) ) v> (u, v € #(D)).
11 1
(b) Let  h(x, y):=f(yx)— f(»)— 2Tl )X, S)(y)  (all
x, ¥ € G). Obviously there exists a constant d > 0 such that | (x, y)| < d for
all x, y € G. Moreover we have

h(xy) = ,f(x)— ,fe) - Z x,()X (. ))(e)-
Lifting the Taylor formula from G,/H to G, there exists a neighbourhood
U, € U(G), Uy c U, such that

IhCx, D)< 5 KX, )E )

Z:
2 W(x) ; |(X1Xjf)(y'f(xa i2)]

i 1

for x € U,, y € G, where &(x, y) € U, and y = Y?_, x}. Thus there exists a
constant ¢ > 0 such that |A(x, y)| < cy(x) for all x€ Uy, yEG.

607/39/2-2
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If C := supp(f) then A(x, y)=0 for x € U and y € CU~". Since # has its
support in U and is a Lévy measure we conclude

J,.J, 116 v~ i dan(y) )

<ol [ef et +d 00 <
Up\le}
Thus the application of Fubini’s theorem in the following calculation is
justified; and we have (J . h(x, + )dn(x))* € L'(G).
(4,(D) D(f*)u, v)
=4,((DD(f*)u,v))

=, [<DD(f*)u, v) — (D(f*)u,v)

— N X (X(DD(f*), v>))(e)] dn

i=1

=[ ([P -pu- L x0) DK, 7)) dnte

i=1

:J;x <D ([fx—f_ f xi(x)Xif]*)u, v>dn(x)

i=1

=[Pt Y v)ano)

= LX
= J’G

:JG (J xh(x, .)dn(x)>*<D(y)u, v)dy

G

L h(x, y~ ' KD(y)u, v)dy ; dn(x)

j i, y~Hdn(x) { (D(y)u, v)dy

- <D ((fc h(x, - )dn(x)) )u,v> (u, v € #(D)).
(c) Since (Nf)Ny)=A(,f) and ,f € &,(G) for all y € G,we have

4 P
N=Y aXf+ X ayXXf +] e, - )dn().

i=1 iJj=1
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Combining (a) and (b) we thus get (Nf)* € L‘(G) and
AD)D(f*)u= (4, + 4;)(D) D(f*)u + 4,(D) D(f*)u
= D((Nf)*)u.

3. Now let A be arbitrary. It is an easy consequence of the canonical
decomposition (LC) that A4 can be written as a sum of a bounded generating
functional and a generating functional as in 2 (cf. [11, p. 34]). Combining
the results in 1 and 2 we arrive at our assertion.

Remark. The formula A(D) D(f*)= D((Nf)*) in Proposition 4.1 has
been stated without proof in [7]. For an Abelian group G and for D € Irr(G)
it is proved in |2, Theorem 12.16).

PROPOSITION 4.2, Let (A, /) be the generating functional of the
convolution semigroup (u,),5, in A (G).Then (u,),, is uniquely determined
by thefamily (A(D)l”?i(D))Dslrr(G)'

Proof. Let (v,),5, be a second convolution semigroup in .#"(G) with the
generating functional (B, #) and the infinitesimal generator (M,.#) for
(T, )50 such that 4(D)|#{(D) = B(D)|#,(D) for all D € Irr(G).

For f€Z(G) we have D(f*u€#(D) and thus D((Nf)*)u=
AD)D(f*)u=B(D) D(f*)u=D((Mf)*)u for all ue#(D) (Propo-
sition 4.1). Hence D((Nf)* — (Mf)*)=0 for all D€ Irr(G). This yields
(NF)Y* = (Mf)* [18, p. 271]. In particular, we get 4 |2 (G) = B|%(G). But
this implies u, =, for all 1 >0 [15, 4.5.6]. 1

We shall give a simple application of Proposition 4.2 that will be needed
later on. For this let us call a convolution semigroup (g,),5, in A (G)
degenerate (resp. trivial) if any u, is degenerate (resp. if #, = ¢, for all £ > 0).

PROPOSITION 4.3. Let S = (i,),50 be a convolution semigroup in #"'(G)
with generating functional A.

(i) S is a degenerate semigroup iff Re{A(D)u,uy=0 for all
D € Irr(G) and u € #y(D).

(ii) S is the trivial semigroup iff (A(D)u, u) =0 for all D € Irr(G) and
u € #yD).

Proof. (i) Let (4,,A,,n) be the canonical decomposition of 4. It is easy
to see that S is degenerate iff 4, =0 and n=0. Let S be degenerate. Then
A=A,. By Proposition 3.2 we have A4,(D)*=-—4,(D) and thus (%)
Re{4(D)u, u) =0 (D € Irr(G), u € #y(D)).

Conversely let (x) be satisfied. Again by Proposition 3.2 we have
0 = Re(4(D)u, u) = (A ,(D)u, u) + [z« [Re(Du, uy — (u, u)]dn, and the last
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two terms are not positive, hence zero. From {(4,(D)u,u)=0 for all
ue#(D) we obtain A4,(D)=0 since A,(D) is symmetric. From
fo-|Re(Du, u) — {u, ud)dy =0 for all D€ Irr(G), u € #,(D), we obtain
n=0 since the only common zero of the non-negative functions
((u, u) — Re{Du, u)) is the identity e of G (cf. the proof of Lemma 5.2).
Consequently A(D)|#(D)=A,(D) for all D€ Irr(G). Since A4, is the
generating functional of a degenerate semigroup the semigroup (u,),,, is
degenerate by Proposition 4.2.

(ii) S is trivial iff A = 0. Thus in view of Proposition 4.2 we only have
to show that {(4(D)u, u) =0 for all u € # (D) implies A(D)|#y(D) = 0. But
by (i) A is a primitive form. Hence \/——_IA(D) is symmetric
(Proposition 3.2). This proves our statement. [

S. Differentiable Vectors on Lie Groups

Let G be a Lie group of dimension p > 1. We choose a basis {X,..., X} of
its Lie algebra <(G) and a system {x,,.., x,} of canonical coordinates (in
&(G)) adapted to this basis and valid in the neighborhood U, € U(G).
Finally let ¢ be a Hunt function for G; i.e., ¢ is a symmetric function in
&,(G) bounded away from zero on G\U for any U€ U(G), and ¢(x)=
x,(x)2+ -+ 4 x,(x)? for all x € U, [15, p. 260].

LEmMMA 5.1. Let D € Rep(G) and u € #y(D).
(i) For the mapping x — D(x)u the Taylor formula

DX)u=u+ i x(x) X (D)u

i=1
1 2
t5 ,-;\-tl x(x)x(x) T(D)(x) X (D) X (D)u
is valid for all x € U,. Here each T(D)(x) is a bounded linear operator on
& (D) such that | T(D)(x)| < 1.

(ii) The following estimation holds for all x € U,:

1D —u— S xx) XDyl

i=1

1 P
<700 Y 1XD) XDl
ij=1
Progf. (i) Let x€ U, be fixed and define X :=37_, x,(x)X;. The
mapping f of R into #(D), defined by f(¢) = D(exp tX)u is infinitely
differentiable (cf. the remark after Lemma 3.1). We have f'(f)=



FOURIER ANALYSIS AND LIMIT THEOREMS 129

D(exp tX)X(D)u and f(t) = D(exp tX) X(D) X(D)u. The Taylor formula for
vector-valued functions yields

@)= FO)+'(©0) + tzjl (1 —s)f"(s)ds  (all (€ R).
(1]
In particular, we get for t =1,

D(x)u=u+ X(D)u

+J’l (1 —5) D(exp sX) X(D) X(D)uds.

Since [0,1] is compact and (D) is complete T(D)(x) :=
2[3(1 —s)D(expsX)vds is an element of #°(D) for any v € #(D) (4,
Chap. 111, Sect. 3,3]. Obviously T(D)(x) is a linear operator on #(D) such
that || 7(D)(x)| < 1. Finally we have X(D)=3"?_, x,(x)X (D). Hence our
first statement is proved.

(i) This follows directly from (i) since we have |x,(x)x;(x) <
x,(x)* + -+ + x,(x)? =0(x) for all §, j=1,..,, p and x € U,.

We are now going to prove two lemmata which will enable us to compare
the coordinate functions x,,...,x, and the Hunt function ¢ with the coef-
ficient functions (Du,v) for representations D € Irr(G) and vectors
u, v € #(D).

LEMMA 5.2. There exist a neighborhood U € U(G), a constant ¢ > 0,
representations D,,..., D, € Irr(G) and vectors u; € #,(D;) (1< j< n) such
that

px)<c i Re[{u;, u;) — (Dj(x)u;, up] for all x€ U.
i=1

Proof. For any D € Irr(G) and u € #(D) we define
H, = {x € G| (D(x)u, uy = (u, uy}.

We have x € H, , iff D(x)u=u. [D(x)u=u obviously implies x € H,, ,.
Conversely let x€ Hy, , (u#0). Then (D(x)u,u)=|ul*=| D(x)ull ||ul.
Schwarz’ inequality implies D(x)u = du for some d € C. But from d{u, u) =
(D(x)u, u) = {u, u) we conclude that d=1.] Thus any H, , is a closed
subgroup in G. We have (), s, Hp,, =ker(D). [Obviously ker(D) is
contained in this intersection. Conversely, x € H,, , for all u € #3(D) implies
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D(x)u=wu for all u €#(D) by Lemma 1.1. Therefore D(x)= D(e), i.e.,
x € ker(D).] This gives us

N Hy,,= () ker(D)= {e} (*)

Delrr(G),ue #4(D) Delrr(G)

[12, Vol. I, (22.12)}.

We choose a symmetric and open neighborhood U € U(G) such that U
has compact closure and contains no proper subgroup of G (G is a Lie
group!). Then C := (U?)"\U is compact and e & C. Thus by (*) there exist
D,,...,D, € Irr(G) and u; € #4(D;) (1 < j< n) such that HM C= @, where
H:=(),¢jcnHp,,, Hence K:=HNU is a subgroup of G. [For x, yEK
we have xp"'€HN(UY)~. But HN(UH) " =HNCUU)=HNC)Y
(HNU)=HNU=K.| From K c U we conclude K = {e}.

Let f(x):=37_ Re[{u;, u;) — (Dj(x)u;, u;)] for all x € G. Obviously we
have f > 0. Let x € U such that f(x) = 0. Then ||u;||> = Re(D,(x)u;, u;) and
consequently |lu;||* = (D/(x)u;, u;) for j=1,.,n Therefore x€ H. But
HN U= {e} implies x = e. Thus f has a strict local minimum in e. Moreover
(XXf)e)+ 0 for all X € £(G) as can be easily seen. Since ¢ has the same
property our assertion follows. 1

LEMMA 5.3. There exist representations D,..., D', EIrr(G), D,ERep(G)
and vectors v,w,.,w,E#(D,) such that D,=D\®---®D;, and
(Xi(Do)v, w;) =6y for 1 i, j< p.

Proof. We keep the notations of Lemma35.2 and define D:=
D,@®--®D, and u:=u,®--- Du,. Then D(x)u+ u for all x € U\{e).
Since u € #4(D) we can define v; := X (D)u (! i< p). Thus the Taylor
formula from Lemma 5.1 takes the form

Dxyu=u+ (i xi(x)v,.)

i=1

p p
T ¥ (0 200 ( o)
for all x € U (without loss of generality U < U,). Thus > 7_, x,(x)v; # O for
all x € U\{e}. Since U is a coordinate neighborhood of e this yields the
linear indepedence over R of the vectors v,,...,v,. Since v;=X(D)u the
linear operators X,(D),..., X,(D) on #4(D) are linearly independent over R
too. But we can even show that they are linearly independent over C. [We
have X(D)* =—X,(D) (Lemma 3.1). Thus } a,X(D)=0 (a;,...a,EC)
implies 0 = (3_ a,X(D))* =} a,X(D)* =~ 3" a,X(D).]
We need the following simple
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LEMMA. Let A,,..,A, be linearly independent linear mappings of a
vector space 7~ over C into itself. Then there exist elements z,,...,2, € 7"
(I< p) such that the vectors (A,z;), ¢ ApZicict o 7! are linearly
independent (over C).

(The proof is carried out by induction on p. Compare with [12, Vol. II,
(28.14)].)

Applying this lemma to X(D),..., X,(D) and -#(D) we obtain vectors
V) U} E (D) such that (X, (DY))1cjcirms X (DW)i;<; are linearly
independent over C. Let D, be the direct sum of [ copies of D and
vi=01@ - QU EAYDy).  Then X (Dy)v,.., X (Do)v are linearly
independent over C. Let %7 be the (finite-dimensional) subspace of #5(D,)
generated by these vectors (cf. Lemma 3.1(ii)). By L,(3" a,X,(D,)v) := a, for
all a,, . a, € C there is given a continuous linear functional L, on %~
(1< ) Since 7 is a Hilbert space (as a closed subspace of #(Dy))
there ex1st vectors wy,.,w, in #° (and thus in A#4(D,)) such that
Lw=(w,w;) for all wE?V. By construction we have (X,(D,)v, w;) =9
(1<i, j< p). Obviously D, is a direct sum of finitely many irreducible
representations. i

Remark 1. If G is a maximally almost periodic Lie group (i.e., the finite-
dimensional representations separate the points of G) then Lemmata 5.2 and
5.3 remain true if they are restricted to finite-dimensional representations (cf.
{15, 4.3.6, 4.3.7; 24)).

Remark 2. Let # be a Hilbert space over C with scalar product (-, - )
and let T be a linear operator on -#. Then we have for all u, v € # the
following identity, which we will have to use several times:

(Tu, v) =4[{(T(u + v)su+ v) + i{T(u + iv), u + iv)]

- —l—ﬂ [{Tu, u) + (Tv, v)].

LeEmMA 5.4. Let (k,),e; be a net in #°(G). Then the following
assertions are equivalent:
(i) Tim, ||R,(D)u — Kk, (Gu| < o for all D € Irr(G), u € #(D), and
fim, x,(CU) < o0 for all U€ U(G).
(i) Tim, |(R (D) — k,(Gu, u)) < © for all D €EIrt(G), u € #4(D),
and Tim_ x,(C U) < oo for all U€ U(G).
(i) Tm, (fedx,) < o and Tim, (|[x;dk,|) < o for i=1,..,p.
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Proof. (i)= (ii) is trivial.

(ii) = (ili) 1. We keep the notations of Lemma 5.2, Then we have the
following estimation:

j(p dx, :fu ¢ dk,, +J'CU¢dxa
e X Re [ Gy = Do 1), (@) + Il . (C V)
= ¢\ Re(io (G — Ro(D,)tp 1) + 0]l o (C U)

<o X Kka@y — RalDi )] + ol o € ).

(One  observes  Re(u;—D;u;,u;)>0.) Our  assumptions  yield
Tim, ([ ¢ dx,) < oo.

2. We keep the notations of Lemma 5.3. The Taylor formula
(Lemma 5.1) yields for all x € U,

x (%) = <L x,(x)X;(Dy)v, wk>

= <Do(x)v = U, W)

- 7 Z X (X)X % XT(Do)(x) X (Do) X (Do), ). (*)

Applying the identity of Remark 2 to T'= K (D) — x,(G)Dy(e) our first
assumption yields

Tim | [ @ytxo — o, (d) | < o (%)

since D, is the direct sum of finitely many D; € Irr(G). Furthermore we have

[ 2 5T x @10 wo | i

< IKDDXD Wil [ o dr,=id,[ odx,.
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With the aid of (*) we can now conclude

I X, dk,,

Uo

<[ @ —vmyxaan)|

+

[ D ~ v, wiyka(dx)
G\Up

+d, L o dx,
< “G (Do(x)v — v, W) K, (dx) l

+ 2 |loll Iwell x.(G\Uy) + di | o dx,,.

Ug

By (**), the second assumption and part 1 we have [im |f,,0 X, dk,| < ©
and finally fim,, |[x, dx_| < co.

(iii)= (i) Tm, (fpdx,) < o obviously implies Tim, x,(CU) < o for
all U € U(G). The inequalities

1D~ ulr () ” <2lulx, (C o)

and

J' [DO)u — ulx, (dx)

< Zi [ X(D)u

J’ x;dx,,
Uo

1
+ 5 DIXD)X,Dwl | pdx,
i.J Ug
(Taylor’s formula) prove the second statement. Ml

COROLLARY. If we have k,=YfNu,i» Lok €EANG) for all
k= 1,..., k(a) and all a € I, then the following assertions are equivalent:

@) Tim, Y% |4, (D —u| < o for all D € Irr(G), u € #y(D), and
lim,, "“"’,uak( U) < o for all U € U(G).

(i) Tim, Y% (.. (D)u—u,u)| < o for all D € Irr(G), u €A4(D),
and lim, Z"“”pak(é U) <  for all U€ U(G).

(i) Tm, Y59 (odu,) <o and Tm, Y5 |[x,dugl <o for
i=1,..,p.
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Proof. This follows by the same arguments as those in the proof of
Lemma 5.4. |

II. LiMiT THEOREMS FOR DISTRIBUTIONS
oN LocaLLy CompacTt GRrRoOUPS

6. Convergence of Convolution Semigroups: Necessary Conditions

Let G be a locally compact group. By S(G) we denote the system of all
convolution semigroups in .#*(G). Clearly &(G) can be considered as a
subspace of the space F(G) of all continuous mappings of R, into
(A#(G), £,). We equip F(G) with the topology &, of compact convergence.
Obviously G(G) is a £,-closed subspace of F(G).

Let 7 be an index set directed by >. For any a € I let there be given a
(fixed) convolution semigroup S, := (u{*),,, in A'(G) with generating
functional 4, and Lévy measure 7. In this and the next section we shall
study the £_-convergence of the net (S,),; in terms of the A, and #,,.

If S=(u,),5, is a further convolution semigroup in #*(G) we have & -
lim S, =S iff £,lim,u{® =y, uniformly in ¢ € [0, d] for all d > 0. Since
the topologies £, and &, coincide on .#'(G) this is equivalent with £ -
lim,4{® =y, uniformly in ¢ € [0, d] for all d > O (cf. [16, Chap. 7]).

The & -convergence of sequences in (G) admits the following convenient
characterization:

ProrosiTiON 6.1. Let I=WN. Then the following assertions are
equivalent:

(i) The sequence (S,),, is € -convergent.

(ii) For each t € R, there exists a measure u, € A" (G) such that &,
limn:ugn) = My

Proof. We only have to prove (ii)= (i). Let T\ and T, be the
convolution operators corresponding to u{™ and y,, resp. By Lemma 2.1 we
have £, dim,u™ =g, and thus lim, TV =T, strongly on #%G) (cf.
Section 2). Therefore (T),,, is a strongly measurable semigroup and thus
even strongly continuous [30, p. 233, proof of the theorem]. Consequently

(U)o 1s a convolution semigroup.
Let 4 > 0 and f € #°G) be fixed. Define

L) =lle" M —e ¥ T fl,  (£20).

Then we have lim f,,(¢) = O for all ¢ > 0. Furthermore f,(t) < 2 | ||, e~ * for
all n € N. By Lebesgue’s theorem we conclude
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[im
n

j e MT™ [t — j P e, fdt\
0

(]

[s.0]
<lim j f(Ddt=0.
" Jo

Thus lim RY"f = R, f for all f € #°(G). (Here R{” and R, are the resolvents
corresponding to -the semigroups (T("),,, and (T,),,¢, resp.) The Trot-
ter-Kato theorem [30, p. 269] yields lim T\ = T, strongly on #°(G) and
uniformly in ¢ € [0, d] (d > 0). This proves (i). §

Remark. Proposition 6.1 seems to be well known. For the sake of
completeness we have included a proof.

LEMMA 6.1. Let DERep(G) and u€E#(D) such that
lim, (|4,(D)u| < co. Then we have:

(i) There exist a, €I and ¢ >0 such that ||F*(D)u — F(Du| <
cls—t| forall s,t >0 and a > a,.

() If €, lim u®=u € #(G) exists for all tER, then
lim, |@{*)(D)u — 2{D)u|| = O uniformly in t € [0,d] for all d > 0.

Proof. (i) There exist a, €I and ¢ > 0 such that ||4,(D)u| < ¢ for all
a > a,. Thus by Corollary 1 of Proposition 3.1 we have, for a > a, and
s, t >0,

|2 (DYu — A (D)u|

[ 8014, dr

s

<ls— || 4,(Dul < s —t]c.

(ii) This is an immediate consequence of (i).

PROPOSITION 6.2. Let there exist a convolution semigroup (i), in
A'(G) with generating functional A such that €,-lim, p{® =y, for all ¢ > 0.

Then for each representation D € Rep(G) such that Tim, [|{4 ,(D)ul| < o
and Tim_ ||A,(D)u| < w0 for all u € #D), we have lim,(4,(Du,v)=
(A(D)u, v) for all u € #,D), v € #(D).

Proof. let us fix wu,v€H(D). We have Iim,[{4,(Du,v) <
fim_ ||4,(D)u|{|v] < co. Substituting 7 by a universal subnet we may
assume that a :=lim {4 ,(D)u, v) exists.
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By assumption there exist a, € I and ¢ > O such that |4 ,(D)u|| < ¢ for all
a > a,. Thus by Corollary 1 of Proposition 3.1 we obtain the following
estimation (for some ¢ > 0):

1O = ()] = Ao

=+ || KD A.0 v) ~ (Ao (D, o)) ) ds

—— |[ (1E"D) ~ D)4 o(D)w, v) ds

=— |[ (D), 1ED) ~ Dle) o) as

<Al - [ 11E7®) - D@)lo]

[od t
< [ M=y = vl ds.
0

Lemma 6.1(ii) applied to the adjoint measures & and g, yields

lim,, |4’ (D) — i (D)v]| =0 uniformly in s € [0, t]. Going with a to the
limit in the inequality above yields

— (DY v) — (0]~ a

C s
<; [ MdDyp —vlds<e sup 4D —v].
0 0<s<t

Since (d,),5, is a convolution semigroup we get

a=lim (1/0)[¢@ (D), v) =, )] = (A(D)u, v),

ie., lim {4, (D)u,v)=(A(D)u,v). Since this limit is independent of the

universal subset chosen above the result holds for the original net too.
Since Tim, ||4,(D)ul|| < oo and since #(D) is dense in #(D) we finally

have lim {4 (D)u, v) = (4(D)u, v) for all v €#(D) (and u € #yD)). |

Now let G be a Lie group of dimension p > 1, {X,,..., X,} a basis of ¥(G)
and {x,,..,x,} a system of canonical coordinates in £(G) adapted to this
basis and valid in the neighbourhood U, € U(G). Finally let ¢ be a Hunt
function for G (cf. Section 5). Let
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4,0)= Y aR XN+ 3 aP XK

iJj=1
p

+] [ro-ro- ¥ xonnse) anw

i=1

(f € £(G)) be the canonical decomposition of 4, (cf. (LLC) in Section 3).

PROPOSITION 6.3. Let there exist a convolution semigroup S = (), in
AN(G) such that €/lim S, = S.
Then we have

p P
fi [g @]+
o=

e ji= i

lai®| +I (pdn,,] < .
1 G*

Proof. 1. Let us denote by d, the maximum of the numbers |a{®’|, |a{?’|,
[ex0dn, (1<i, j< p). We have to show Tim_ d_ < .

Let us suppose lim, d, = oo. Selecting an appropriate subnet we can even
assume lim, d, = oo. Let ¢, :=d;'. Then we have lim_ ¢, =0. We define
bi®) :=c, a{®, by :==c,a{®, &, =c,n, and B, :=c,A,. Then B, is the
generating functional of the (unique) convolution semigroup (v{*'),,, in
A'(G) such that v(® =), and B, admits the canonical decomposition
B, B, €)1 <1jcp- Since limgc, =0 and &, lim, S, =S we have &,-
lim, v{*' =g, for all £ > 0.

2. Let D€ERep(G) and u€#(D). By the corollary of
Proposition 3.2 we have

B, (Du= il b X (D)u + il bIX (D) X(D)u
i= ij=

14

3 x(x) X;(D)] ude, (x)

i=1

+ Lx [D(x) —D(e)—
and thus

IB.OWI< S 1X@Wl+ 3 1K) XD+,

f, =1 .

with some constant c¢(D,u) >0, ie., Tim,| B, (Du| <. [We have
b1, |b|<1 and [s.pdé,<1. The definition of ¢ yields
¢.(C Uy < . Together with Lemma 5.1(ii) this proves the existence of
c(D, u).]

The generating functional B, of the adjoint convolution semigroup
(%), admits the canonical decomposition (—b{*, b, &), <,- Thus
the inequalities |—b{®| < 1, |04 |< 1, [ 0dE, = [0 dé, < 1 are fulfilled
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again. As above we conclude lim, || B, (D)u|| < co. Now Proposition 6.2
yields Tim (B _(D)u,v) =0 for all v € #(D) (the generating functional of
the trivial convolution semigroup (g,) is zero).

3. Let us define f :=Re({Du,u)). (D and u will be appropriately
chosen later on) f is real valued and positive definite. Therefore it attains its
maximum at e. This yields (X,/)(e)=0 for i=1,., p. By Q.(g) =
2 b (X X, g)(e) (g€ &(G)) there is defined a quadratic form @, on
&(G). It follows: Re(B, (D)u,u)=Re(B,({Du,u)))=B,(f)=Q,.(f)+
(e [ —f(e)ldE,.  But  f<fle) implies Q. (f)<O0  and
Jelf = f@)]de, <0 (@€ Thus lim (B, (D)u,uy=0  yields
lim, Q,(f)=0 and lim, [4.[f(e) — f] d¢, =0.

(a) By Lemma 5.2 there exist D € Rep(G) and u € #;(D) such that
o(x)<c(f(e) — f(x)) for all x € U, where U € U(G) and ¢ > 0 are chosen
appropriately. Since Q, is a quadratic form we get 0 < Q,(9) < —cQ,(f)
and thus lim, Q,(¢)=0. But Q,(¢)=23,b{" and the positive semi-
definiteness of (b"),; ¢, yield lim, b =0 (1 <i, j< p). Moreover we
have lim,, {1, ¢d¢, = 0.

(b) Let us choose for D the left regular representation L of G and
for u a function g € &, (G) such that [ g?dw = 1 and supp(g) < ¥, where
V € U(G), YV-! c U, then we have supp(f) < U (cf. Section 1, example a).
Therefore &,(C U) <[4 [f(e) — f1d&,. Thus lim, &,(C U)=0 and taking
into account (a), finally lim, . ¢d¢é, = 0.

4. By Lemma 5.3 there exist a representation D € Rep(G) and vectors
v, w; €EA4(D) such that (X,(D), w;) =4, (1<, j< p). If f:= (Dv,wy)
we have

(Ba(D, ) = Bo((Dv, i) = Bal i)
=HP+ QuU) + [ e file) = xid de

Applying parts 2 and 3(a, b) we get lim_ 5{*’ =0 (1 <k < p).
5. But now we have arrived at a contradiction to

=c,d =1

T«

max

tbi“’l,lb}f’l,j 0de | 1<i, j< p
GX

for all @ € I. Our assumption [im, d, = 0 was incorrect. This finishes our
proof. 1

Let us return to an arbitrary locally compact group G. By Fac(G) we
denote the system of all representations D € Rep(G) with the following
property: There exists a compact normal subgroup K in G (depending on D)
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such that G/K is a Lie group and a representation D' € Rep(G/K) such that
D =D'om, where n is the canonical mapping of G onto G/K. Obviously
D’ o m € Fac(G) for all D' € Rep(G/K). For a Lie projective group G we
have Irr(G) = Fac(G) (3, p. 247, Korollar 2].

ProPOSITION 6.4, Let G be a Lie projective group and let there exist a
convolution semigroup S = (4,),50 in A (G) with generating functional A
and Lévy measure n. We assume € _-lim, S, = S. Then following assertions
are valid:

(i) Tm,|4,(D)| < o and lim
and u € #4(D).

(i) lim,(A4,(D)u,v)=(A(D)u,v) for all D € Fac(G), u € #y(D) and
v € #(D).

(ili) There exists a basis U of closed neighbourhoods for e € G such
that

|4 (D) < w for all D€ Fac(G)

ol

g imn, |CU=9|CU forall Uelu

In particular, we have & lim_n,=n.

Proof. (i) By the definition of Fac(G) we may assume without loss of
generality that G is a Lie group. But then the statement follows immediately
from Proposition 6.3, (LLC) in Section 3 and Lemma 5.1(i).

(i) This statement follows from (i) and Proposition 6.2.

(iii) Since G is a Lie projective group there exists for any U € U(G) a
compact normal subgroup K in G such that G/K is a Lie group and a
neighbourhood ¥V € U(G) such that VK < U. Thus we may assume again
that G is a Lie group. In this case we have Fac(G) = Rep(G).

1. We first prove & lim, n,=n. [Let h € #(G*) be real valued
and C :=supp(h). Since e & C there exists an open neighbourhood U € U(G)
such that e € CU. Let € > 0. Then there exists a compact neighbourhood
VEU(G) such that Vo U, V=V"! and |h*(x)—h*(y~'x) < ¢ for all
Y€ ¥V and x € G. Let us choose a function g € Z _(G) such that supp(g) < V
and [ gdw = 1. Then we have, for any x € G,

| *(x) — (g * B*)x))

- |[ @ sd - [ a0 |

< L g *(x) - h*(y 'x) | dy e fyg(y) dy=c¢.
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Since (g=*h*)(x~')=(L(x)g, h) we have |h(x)— {L(x)g h)|<¢ for all
x € G. Furthermore supp({Lg, &)) = supp(h)(supp(g))~! = CV. Since CV is
compact and e € CV there exists a constant ¢ > 0 such that ¢(x) > ¢ for all
x € CV. Thus we get |7 — (Lg, h)| < ec™'o.

By Proposition 6.3 there exist a constant d > 0 and an index a4 € / such
that [;. 0 dn, <dfor all a > ay, and [;, ¢ dn < d.

e & supp((Lg, 1)) and g € (L) imply (4,(L)g, h) = [5.{Lg, k) dn, and
(A(L)g, h)= [ox {Lg: h)dn (cf. (LLC) in Section 3). Thus we can estimate
|forhdn, — (A (L)g W) =1 g [h— (Lg, )] dng| <ec™* [ge 9 dn, <ec™' d
for a > a, and analogously |[s.hdn— {A(L)g, h)} < ec™'d. Finally by (ii)
we have lim_(4,(L)g, &)= (A(L)g, k). Since ¢ >0 was arbitrary we get
hma fohdﬂa ,[thd” ]

2. Let U€ U(G) be closed. There exists a function f € £, (G) such
that with g:=(Lf, f) we have g(¢)=1, g* = g and supp(g) = U. Since
[ EH#G(L) we have f ® f € AL ® L) [28, 4.4.1.10]. Moreover (g — 1)’ =
-2+ 1=(LOLN®f), (QS)—2ALLS)+ (EL1L). (Here E
denotes the trivial representation of G on C.) Thus by (ii) we obtain
lim, A,((g ~ 1)) = 4((g — 1)?).

For any primitive orquadratic form B on &(G) the defining equation
yields B((g—1)))=0 [15, 4.4.6). Therefore we have 4,((g— 1)?)
{ox(g~1)2dn, and A((g~1)*)=](g—1)*dn. Thus lim, ;. (g-1)*dn,
J¢x (g — 1)*dn. Taking part 1 into account this yields €,,-lim, (g — 1)’ - 1, =
(g — 1)*- n [4, Chap. IX, p. 61, Proposition 9).

If the boundary of U has #n-measure zero it follows lim, 7 (C U)=
lim, [o, (g—1)dn, = Jc, (g —1)*dn=n(CU) [20, p.40) (we have
g(x) 0 for all x€ CU).

Since C U is open we may consider .#(C U) as a subspace of #(G*).
Thus keeping part 1 in mind we can conclude & -lim_ 7, | Cu=q|Cu.

3. We finish the proof by exhibiting a basis U of closed
neighbourhoods for e whose boundaries have n-measure zero. [For any
r€ R’ the set U, := ¢~ ([0, r]) is a closed neighbourhood for e € G. By the
deﬁmtlon of ¢ the system (U,),cp, is a basis for U(G). Since 5 is a Lévy
measure we have o(n)()r, ©|)=n(e~'(jr, o[)=9C U,) < o for all

r € R’ . Thus there exists an at most countable subset Z in R’ such that
(n(n)({r}) =0 for all r € R’,\Z. For these r the n-measure of the boundary of
U, is zero since it is contained in ¢ ~'({r}). Obviously U := (U))rer;y s also
a basis for U(G).] §

7. Convergence of Convolution Semigroups: Sufficient Conditions

Again we consider a net (S,),¢, in ©(G) with S, = (u{),,. 4, and 7,
denote the generating functional and the Lévy measure of S, respectively.
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PROPOSITION 7.1. Let G be a Lie projective group and let the following
conditions be satisfied:
(@) Tim, | {4,(D)u,u)| < oo for all D € Irr(G) and u € #4(D).
(b) (1,10 U),, is a compact net for any open U € U(G).
Then (S,),<; is a compact net in (S(G), €,). Moreover (1,)ae; IS @
compact net in (A (G¥), E,).
Proof. By Remark 5.2, condition (a) is equivalent with
(a’) Tim,[{4,(D)u,v)| < o for all D € Irr(G) and u, v € #4(D).

Without loss of generality let 7 be a universal net. We then have to show
that (S,),e; is £.-convergent and (77,),., is £, -convergent.

1. Let G be a Lie group with canonical coordinates {x,,..., x,} valid in
U, € U(G) adapted to the basis {X,,..., X,} of £(G) and with Hunt function
. Let (a{®,a{”, n,),<:1 <, be the canonical decomposition of 4,. (One
should compare the arguments in (a) and (b) infra with those given in
parts 3 and 4 of the proof of Proposition 6.3).)

(@) By @,(g):=2,a’(X,;X,g)(e) there is defined a quadratic
form on &(G). Let f :=Re(Du,u), where D is a finite direct sum of
irreducible representations of G and u € #;(D). Then we have

—Re(d (D), uy=Q,(f(€) =)+ [ [f(e)~S]dn,,

and both summands on the right-hand side are non-negative. By condition
(a) we have Iim, | Re{4(D)u, u)| < co; hence Tim, Q,(f(e) — f) < oo and
lim, [ [f(e)— f]dn, < ©. By a proper choice of D and u (cf.
Lemma 5.2) and taking into account condition (b) we obtain

imQ,(9p) <o  and Ef pdn, < .
a e Jox

But Q,(¢p)=2),a® and the positive semi-definiteness of the matrix
(@i)1<14<p Yield

[im | a{”| < o0 for i, j=1,..,p.
o

(b) Let us choose Dy, v,w, (1<k< p) as in Lemmas.3. If
Ji i = (Dgv, ;) we have

(A (Do, wy=A,(f)= a® + 0.(f1)

] =S —x dn..

607/39/2-3
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Applying condition (a) and the results of part (a) of the proof we obtain
lim, |a{®| < o for i = 1,..., p.
(c) Without loss of generality we can assume

sup |a;'| < 0, sup |a;”’| < oo,sgpj pdn, <o  (1<i,j< p)
o GX

We recall that I is a universal net. Hence there exist

a; = liin al®, b= liin a®, a:=lim| pdy,.

a Gx

Moreover by condition (b) there exists (for all open U € U(G))

Elimn, |CU=n €A (C U)-

(d) Let 7, :=n,|C(U"). If U,V € U(G) are open and Uc V we
have 7, | C(V")=7,. [Let f € #(C(¥)). Since C(¥~) is open &' (C(V "))
may be considered as a subspace of #(C V) as well as of .#°(CU). Hence
() = m(f) =lim,(n, | C V)() = lim,(n, | CO)f) = 1,(5) = i (f).]

Hence there exists a unique measure 1 € .#, (G*) such that | C(U~) =7,
for all open U€ U(G). We have & lim #n,=1n. [Let f € #(G*). There
exists an open U € U(G) such that supp(f) < C(U~). Considering f also as
an element of #(C(U~)) and .#°(C U) we obtain n(f)=#,(f)=n,(f)=
lim, (1, | C U)(f) = lim, 7,(/).

We have [,.9dn< oo; ie., n is a Lévy measure. [Let U € U(G) be
open. Then [¢y- 0 dn=[(p|C(U))di,<[(9|CV)dn,=lim, [(¢|CU)
d(n, |C U)<lim, f. 9 dn, =a < oo. Hence [g.0 dn=sup{[cy- odn|UE
U(G) open} < a.].

If U € U(G) is open and if the boundary of U has #-measure zero we have
€, lim 7, |CU=n|CU. [Let ¥€U(G) be open and V- c U. Then we
have CUcC(r-)cCV and U\UcC(V-). Hence 0=nU"\U)=
7, (U\U) =, (U"\U); i.e., the boundary of U has also n,-measure zero.
Therefore &,-lim,n,|C V=7, implies £,lim, 5, |CU=1,|CU |20,
p.40]. But 7|C(¥)=#,=#,1C(V") and CU<C(¥~) finally yield
ny|CU=7|CU.]

Finally there exists a basis U of open neighbourhoods for e € G whose
boundaries have z-measure zero (cf. part 3 of the proof of
Proposition 6.4(iii)).

(e) For any &> 0 there exists c;(g):=lim, [, ,c.X;X;dn, and
[c;i(e)] < ¢ for some ¢ > 0 (1< i, j< p). [There is a constant b > 0 such that
|x,x;| < bp. Then lim, f4. ¢ dn, = a yields the statements with ¢ := ab.]
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There exists ¢, :=lim,j,c;(e). [Let 0 <€ <e. Then there exists UE U
such that C := {x € G| &' < o(x) < €} = C U. Since &, lim, ., |CU=75|CU
and since C is closed we obtain |c(e) —c(e') = lim, |f, cpceX;X; ANl <
lim,, [¢|x,%;| dng < fc|xx|dn < b fococ @ dn. But the last term tends to
zero if € | 0.]

(f) Let a;j = bi} + ;cij SO that

1
. . (a)
a;= 161{13 ]l;n [au +——2 j()(w“x,xjdr]a].

Obviously (a;;)i<i.i<, is a real symmetric positive semidefinite matrix. Let us
define (for all f€ &(G))

A(f) = :\— SN+ 3 a XN

ij=1
P

+[ [r-re- 3 xese |an
Then A is the generating functional of a convolution semigroup § € &(G).
We have (*) sup,|4,(f) <oo and (**) lim,A4,(f)=A(f) for all
S EE&(G).
[Let f € &(G) be real valued. Then for any sufficiently small U € U(G)
we have the Taylor expansion

1) =1e) + z XX S)E)

4 IZ X,00) %, X )EG)),

where x, &(x) € U. Hence |f—f(e)— Y x{(X,f)(e)| < cp for some ¢ > 0.
Now (*) follows immediately from (c).

Condition (**) is a consequence of the definitions of a, and a;;, of &,-
lim, 7, |CU=7n|CU for all UEU (cf. (d)) and of the Taylor expansion
above. (This has been pointed out in [9, 196 ff.].)]

Now Hazod has proved [11, p. 36] that conditions (*) and (**) imply & -
lim, S, = S. Hence in the Lie group case the proposition is proved.

2. Let G be a Lie projective group. By $ we denote the system of all
eompact normal subgroups H in G such that G/H is a Lie group. For HE §
let m, denote the canonical mapping of G onto G/H. Then
14(S ) = (mu(1{®)),5 is a convolution semigroup in A (G/H). If AY is the
generating functional of 7,(S,) and #¥ its Lévy measure we obviously have
A¥(D)=A (D o n,) for all D € Irr(G/H) and [ gy S dn = [5: (fo my)dn,
for all f € #°((G/H)*). Hence conditions (a) and (b) also hold for the nets
(nH(Sa))aEI ¢
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By part 1 there exist convolution semigroups Sy = (u¥),5, in A (G/H)
with Lévy measures ¥ such that £,-lim, 7,(S,)= S, and € lim, n¥ =n"
(all H€ $). Since the family (n,(S,))yeq is consistent for each a €1 the
same holds for the family (Sy)ycq (ie., for H, H' €9, H' < H we have
Ty (Sy) =Sy, where m,,denotes the canonical mapping of G/H' onto
G/H). Hence there exists a unique convolution semigroup S = (#,),5, in
#(G) with Lévy measure 7 such that n,(S)=S, (i.e., () =p; for all
t>0) for all HE$ (cf. |15, 1.2.17, 1.2.18]). Moreover [g.(fo n,)dn=
'mSfdn® for f € #((G/H)*) and HE $.

Finally we have £_lim,S,=S and &, lim,n,=7n since
{fom,|f€#(G/H), HE H} is a dense subspace of (Z(G), ||  ||,)- Thus
the proposition is completely proved. [

COROLLARY 1. Let G be a Lie projective group, (S,)ae; @ net in S(G)
and S € ©(G). Let A, and A be the generating functionals and 1, and n the
Lévy measures of S, and S, resp. Then the following assertions are
equivalent:

() £-lim,S,=S.
(i) (@) lim, (4, (Du,uy=<AD)u,u) for all DeElrr(G) and
u € #y(D).
(®) (1,1C U),, is a compact net for any open U € U(G).

Proof. (i) = (ii) We apply Proposition 6.4. Then condition (a) follows
immediately. As for (b) let U € U(G) be open. Then there exists ¥ € U such
that ¥ < U and £,-lim, #,|C ¥ =#|C V. Hence (n,|C V),, is a compact
and hence tight net (cf. preliminaries). Given & > O there exists a compact set
K<CV such that Tim, #,(C¥\K) <& Then Tim, n,(CINKNCU))<e
and KN C U is compact since C U is closed. Thus also (7, |C U) is a tight
and hence compact net.

(ii) = (i) Obviously condition (a) implies condition (a) of
Proposition 7.1. Hence (S,),; is @ compact net in (S(G), &,). Let (S,))es
be a convergent subnet with limit '€ &(G). If A’ is the generating
functional of S’ we have by condition (a) (together with Remark 5.2) and
Proposition 6.4(ii) {A'(D)u,v)={A(D)u,v) for all DeEIrr(G) and
u, v € #,(D). Since #(D) is dense in #(D) (Lemma 1.1(ii)) this implies
A'(D) | #(D)=AD)|#(D) for all D€ Irr(G). Proposition 4.2 yields
S’ = S. Thus we must have &lim, S, =S. 1

COROLLARY 2. We keep the notations of Corollary 1. Then the following
assertions are equivalent:
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(i) (Sg)aes is a compact net in (&(G), £,).
(i) (a) lim, [{4,(D)u, u)| < o for all D € Irr(G) and u € #(D).
() (1.1C U), e, is a compact net for any open U U(G).

Proof. (i)= (ii) By Corollary 1 above conditions (a) and (b) hold for
any universal subnet of (S,),,;. Since a net of measures is compact iff any
of its universal subnets is compact conditions (a) and (b) also hold for

(Sa)ael‘
(ii)= (i) This is Proposition 7.1. N

COROLLARY 3. Let G be a Lie projective group and T a subset of S(G).
For any S € X let Ag denote the generating functional of S and n; its Lévy
measure. Then the following assertions are equivalent:

(i) X is relatively compact in (8(G), &,).

(i) (@) sup{[{(Ads(D)u,u)||SE€EIT}< 0 for all DeIrr(G) and
u € #(D).

) {(ns|CU)\S€EX} is relatively €, -compact for any open
U e U(G).

Proof. This follows immediately by Corollary 2 since a set Y in a
completely regular space X is relatively compact iff any net in Y is a
compact net. [l

Remark. On a locally compact Abelian group G our compactness
criteria for subsets of (S(G), £.) yield the compactness conditions of
Parthasarathy for infinitely divisible probability measures on G [20, IV,
Theorem 9.1]. This can be seen in the following way:

Let (u‘@),, be a net of infinitely divisible measures 4'* € #"(G) without
idempotent factors. Using Fourier transformation it can be easily proved that
there exists a unique convolution semigroup S, = (¥{*),,,€ S(G) of
symmetric measures such that v{*’ =u‘® x 7 (@ € I). Let u'® have the
Parthasarathy representation (x,,F,,¢,) {20, IV, Theorem 7.1]. If 4,
denotes the generating functional of S, then we obviously have A4, ()=
2{f/[Rex—1]dF,—¢,(x)} for all characters y of G. Moreover 7, =
(F, + F)| G* is the Lévy measure of S, .

Let us now assume that there exist elements y, € G such that the net
'™ * €, )4e; €,-converges to a measure u € #'(G) without idempotent
factors. Applying Fourier transformation we obtain the existence of a
convolution semigroup S =(v,),5, € ©(G) with v, =p* 7 such that & -
lim, §,=S. Hence Corollary 3 of Proposition 7.1 yields Parthasarathy’s
result [20, IV, Theorem 9.1].
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8. Infinitesimal Systems of Probability Measures

Let 3 = (@uik=1....,k,:n»1 e a (triangular) system of probability measures
on the locally compact group G. For any n€N we define
My =y % -+ %l and call (u,),,, the sequence of row products of 3.

J is said to be infinitesimal if we have

lim \TBX (C U) for all U€ U(G).

J is said to be commutative if we have
Mg ¥ My =ty * My for k,1=1,...,k, and for all nE€ N.
J is said to be convergent with limit u if we have
u€e. #4G) and Z‘w-li’rln U, =l

LEMMA 8.1. 3 is infinitesimal if and only if for any D € Irr(G) and for
all u € #,(D) we have

0 i e, VoD = ul =0,

Proof. 1. Let 3 be infinitesimal. For D € Irr(G) and u € #y(D) we
define , € {1,... k,} by (|4, (DY — u]| = max{|| 4, (D) — u| |1 <k < k,}all
n € N). By assumption we have lim, y,,,”(C U)=0 for all U€ U(G), ie., &,-
lim, u,, = e¢,. But this implies lim,, [|2,, (D)u —u|| = 0.

2. We assume (I). Let UcU(G). We define [, € {l,.,k,} by
#, (C v) :==max{u,, (CU)|1<k<k,} (@l n€N). By (I) we have
llm,, | 4, (DYu — u|| =0 for all D € Irr(G) and u € #4(D). Lemma 2.1 yields
g,lim,u,, =e¢,and thus lim nbni, Cuvy=o0. 1

We  define ,l = Uy — e, vnk —exp(l,,k) (1<k<k,) and
Vp i= V% oo % Vs Zk 1 nk’ Zk 18k a S (vnk)k=1,....k,,;n>l
1s called the accompanymg system of 3, its sequence of row products is
(Vus1- If I is commutative J, is commutative too and we have
v, =exp(4,) (n€ N). 3, is infinitesimal if and only if J is infinitesimal.
[This follows from v, >e 'y, respectively from ||V, (Du—ul <
|2p(D)u — u|| together with Lemma 8.1.]

ProposiTION 8.1. Let J be a commutative and infinitesimal system
which satisfies the condition

kn
B) Im > |4, (Du—ul|<w  forall DEIrr(G), u € #yD).
"ok=1
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Then we have lim, |(d,(D)u,v)— (3, (Du,v)=0 for all D € Irr(G),
u € #(D) and v € # (D).

Progf. We fix a representation D€EIrr(G) and define T, :=
A,(D)—D(e) (for all k, n). Then we have ||T,,| <2. Furthermore with
Sk =l (D) iy kA (DYy i s (D) +o+ 9,y (D) we have ||S,[I<1 and
(since J is commutative)

f,(D) — (D) = Z 8 (D)D) — $,(D)).

Finally we define

1 1
A= D(e)+ 7 Tt gy Tt

We have ||4,,] < 1/2! + (1/3!)2 + (1/4!)22 + .- <e?and g,,(D)— ¥, (D)=
fn(D) = [D(€) + oo+ (1/2) T+ -+ | = ~A,, T%. Obviously A, S,
and T,, are pairwise permutable (1 <k < k,,).

Let u € #Y(D), v € #(D). We have the following estimation:

K[d.(D) = 5,(D)]u, v)|

kn
z <Snk[/2nk(D) - l"‘nk(D)]ll, v)

k=1

Z KSnkAnk T:ku’ U>i - Z. |<Snk Tnk“’ T”:kv>|

L k4
kZ IS mell 1A el 1| Tt} | Thiew ] < € p I Tl | T |l
- =1

We are left to show lim, Y% | || T,..u|| | T#,v| = 0: Condition (B) yields the
existence of a constant ¢ > 0 such that > %+, || T, u]| < ¢ for all n € N. Thus
it suffices to prove lim, max{|TF (|1 <k<k,} =0: Since J is
infinitesimal the system @nidk=1,....kyn»1 is infinitesimal too. Now T =
A, (D)* —D(e) =i,.(D) — D(e) and part 1 of the proof of Lemma 8.1 yield
the statement. [

COROLLARY. Let G be a Lie projective group and let I be a commutative
and infinitesimal system in A'(G) satisfying Tim, Y%, u,.(C U) < o for all
U € U(G) and the condition

kn
(WB) Tim Y |[(duD)u—uu) <o  forall D€ Irr(G), u € (D).
k=1

Then J satisfies condition (B); hence the conclusion of Proposition 8.1 is
valid.
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Proof. This is an immediate consequence of the corollary of Lemma 5.4
since any D € Irr(G) can be factorized over a Lie quotient group of G (cf.
Section 6). 1

Remark 1. Let J be a commutative and infinitesimal system satisfying
condition (B). Then J enjoys the following property:

(C) J is convergent if and only if the accompanying system
3, is convergent, and in the affirmative case their limits coincide.

[This is an immediate consequence of Proposition 8.1 and Lemma 2.1.]

Remark 2. Proposition 8.1 becomes incorrect if we substitute condition
(B) by the weaker condition

kn
: (ﬁnk(D)u - u)

k=1

(") Tim

for all D € Irr(G), u € #(D).

Let us consider the following counterexample:

Let G=R and u,, :=¢,,, where x,, = (- 1)¥/y/n for all k= 1,...,k, :=n
(n € N). Obviously the system 3J := (u,,) is commutative and mﬁmtesimal.
We have x,:=x,, + - +x,,=0 for even n and x,=— 1/\/n for odd n,
thus limx,=0 and consequently limu, =lime, =e¢,. Therefore J is also
convergent. Furthermore we have f,(y)= exp[ty(( 1)%/y/n)]; hence
St lawm(y) — 1] =nlcos(y/\/n)—1] for even n resp. =(n—1)
[cos(y/\/n) — 1] + [exp(—iy/\/n) — 1] for odd n. But lim n(1 — cos(y/\/n))
= /2. Consequently we have lim, Y 7_, [4.(y)—1]=— y¥/2 for all
»y € R.In particular, condition (B’) is satisfied for J. On the other side we get
lim ,(») = 1 and lim 5,(») = lim exp{324_, (4, (») — 1]} = exp(~*/2) for
all y € R. Therefore lim |4,(y) — ¥,(»)| =1 —exp(—»*/2) > 0 for y # 0. By
Proposition 8.1 condition (B) cannot be satisfied for J.

Remark 3. Let the system 3= (u,) be identically distributed, i.e.,
Mgy = =Wy for any n€N, and lim,k,=c0. Obviously I is
commutative. J satisfies condition (B) if it satisfies condition (B’) and in the
affirmative case 3 is infinitesimal. [We have Y% &, (Du—ul|l=
kolld (DY —ul|=|| Xk, (@,,(D)u —u)|, ie., the equivalence of (B) and
(B’) for 3. Furthermore if J satisfies (B) we get lim ||Z,,,(D)u — ul| =0 for
all D € Irr(G), u € #(D) (observe lim k, = co). Hence J is infinitesimal by
Lemma 8.1.]

Remark 4. Let G be a Lie group with canonical coordinates {x,,..., x,}
and Hunt function ¢ as usual (cf. Section5). Wehn [29] derived
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Proposition 8.1 (for a commutative and infinitesimal system J=(g,,))
assuming the validity of the following two conditions:

kn
(W1) lim )’ J'(ody,,k < 0.
" ok=1
kn
(W2) im j Xy | <0 for i=1ly,p.
k=1

But (W1) and (W2) imply condition (B) by the corollary of Lemma 5.4.
Thus Wehn’s result follows from Proposition 8.1.

Remark 5. Let 3= (u,,) be a commutative and infinitesimal system in
A'(G). One may ask for conditions other than (B) that imply property (C)
for 3. There are the following two interesting results: If G is totally discon-
nected and in addition compact or Abelian then J always has property (C).
Conversely if any system J has property (C) then G is necessarily totally
disconnected [10, Theorem 2.1].

We are now going to apply our compactness criteria from Section 7 to
triangular systems of probability measures.

ProPOSITION 8.2. Let G be a Lie projective group and let
3 = Wnk=1.....k:n>1 De @ commutative and infinitesimal system in A 1(G)
satisfying condition (WB). Moreover for any open U€W(G) let
(ki | C U),5, be a compact sequence.

Then the sequences (u,),», and (v,),s, of row products of I and 3,,
respectively, are uniformly tight. Their limit points coincide, and any of these
limit points is embeddable into a convolution semigroup.

Proof. Let us define k,:=Y% u, and v :=expt(x,—K,(G),)
(n €N, t >0). Obviously 4, =k, — k,(G)e, is the generating functional of
the Poisson semigroup S, :=(¥{),,, and k,| G* is its Lévy measure. By
Proposition 7.1 (S,),»; is a compact sequence in (S(G),€,). Hence the
sequence (¥{"),,, of row products of the accompanying system J, of J is
compact and thus uniformly tight.

Let us assume that (u,),;, is uniformly tight too. Then by the corollary of
Proposition 8.1 the limit points of (u,) and (v{") coincide. But since the
sequence (S,),5, is compact any limit point of (v{"") lies on a convolution
semigroup. Thus we are left to show that (u,),, is uniformly tight.

Let H be a compact normal subgroup in G such that G/H is a Lie group
and let 7z denote the canonical mapping of G onto G/H. Since H is compact
it suffices to prove that the sequence (m(u,)) is uniformly tight. Obviously
(r(v{")) is uniformly tight. Thus without loss of generality let G be a Lie
group. Then G and therefore also (#'(G), £,)) are metrizable [20, p. 43]. We
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choose a subsequence (u,.) of (u,). Then there is a further subsequence (u,,.)
of (u,) such that &,limv{"” =v exists. By Proposition 8.1 we have
lim{d, A{D)u, vy = lim{5"(D)u, v) = (§(D)u,v) for all D€ Irr(G),
u, v € #(D). Now Lemma 2.1 implies &€ -limu,,=v. Hence (u,) is a
compact sequence and therefore uniformly tight.

Remark 6. It should be mentioned that for root compact groups some of
our convergence theorems can be slightly improved (cf. [15, 21]). If G is a
compact group the last assumption of Proposition 8.2 follows from
condition (WB).

9. Central Limit Theorem and Law of Large Numbers

Let G be a locally compact group. A family (4,),,, of non-degenerate
measures in .#"(G) is called a Gaussian semigroup if we have u, * u,=u, .,
for all 5,£>0, and lim,lo(l/t)y,([: U)=0 for all UEU(G). A (non-
degenerate) measure u € #(G) is called a Gaussian measure if there exists
a Gaussian semigroup (), in .#"(G) such that y, =y [15, 6.2.1].

Remark 1. Any Gaussian semigroup is a convolution semigroup.

Remark 2. If (u,),, is a Gaussian semigroup then any u,, t>0 is a
Gaussian measure and is supported by the connected component of e in G
[15, 6.2.3].

Remark 3. Let (4,),5,, be a non-degenerate convolution semigroup in
A'(G) with canonical decomposition (4,,4,,7). ()5, is a Gaussian
semigroup if and only if # =0 or equivalently if lim,(1/t)u,(f) =0 for all
f € #°(G) with e & supp(f) (cf. Section 3).

ProposiTiON 9.1. Let G be a Lie projective group and let (S,),., be a
net in S(G). Let n, be the Lévy measure of S,. We assume that the net
(S,)uer E-converges to a non-degenerate semigroup S € &S(G). Then the
Jollowing assertions are equivalent:

(i) S is a Gaussian semigroup.
(i) tim, #,(C U)=0 for all U€ U(G).

Proof. This follows immediately from Proposition 6.4(iii) and Remark 3
above. |

COROLLARY. Let G be a locally compact group and (S,),; a net of
Gaussian semigroups in S(G) that &,-converges to a non-degenerate
semigroup S € &(G). Then S is a Gaussian semigroup too.

Proof. By Remark 2 we can assume that G is connected and hence Lie
projective. But then Proposition 9.1 and Remark 3 apply. 1
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Remark 4. This corollary was first proved by Hazod (cf. [15, 6.2.23]).

ProPOSITION 9.2. Let G be a Lie projective group and let (x,),.; a net
in A"® (G) which satisfies the following two conditions:

(a) Tim, |k, (D)u — x,(G)u, u)| < o for all D € Irt(G), u € #5(D).
(®) lim, x,(C U)=0 for all U€ U(G).

For any a €1 we define the Poisson semigroup S, = (v\*'),,, by v{* :=
exp t(xa - Ka(G)se) (a” t> 0)

Then (S,),c; is a compact net in (S(G), €.). Any of its limit points is a
Gaussian semigroup or a degenerate semigroup.

Proof. A, :=kK,—K,(G)e, is the generating functional of S, and x_ | G*
is its Lévy measure. Hence by Proposition 7.1 (S,),c; is a compact net in
(S(G), £,).

Without loss of generality, now let (S,),., be a universal net that & -
converges to S € S(G). Let n be the Lévy measure of S. By condition (b)
and Proposition 6.4(iii) we have # = 0. Hence by Remark 3 the semigroup S
is Gaussian or degenerate. [

Now we are ready for a version of the central limit theorem.

PROPOSITION 9.3, Let G be a Lie projective group and I =
Wni)k=1,...,kn>1 @ COmmutative system in A (G) satisfying condition (WB).
Moreover we assume

(G) lim ij Mk ([j U) =0 forall UEU(G).
k=1

Then the sequence (u,),, of row products of J is uniformly tight and any
of its non-degenerate limit points is a Gaussian measure.

Proof. First of all we remark that condition (G) implies the
infinitesimality of J.

Let us define k,:= =Y% sy, v :=expt(x,—k,(G),) and
S, = ®"),50 (nEN, t>0). By Proposition 8.2 the sequence (4,),,, is
uniformly tight and has the same limit points as (»{"),,,. But by
Proposition 9.2 the sequence (S,) is compact and its limit points are
Gaussian or degenerate semigroups.

Remark 5. Proposition 9.3 admits the following partial converse: Let G
be a locally compact group and v € #'(G) a Gaussian measure. Then there
exists a commutative system (uneli=1,... k51 D A I(G) satisfying
conditions (B) and (G) and convergent with limit v. [There exists a Gaussian
semigroup (v,);5o in A7(G) with generating functional 4 such that v, =v.
We define p,:=v,, for k=1.,k,:=n (all n€N). Since
lim n[¥,,(D)u —u]=AD)u (D E€Irn(G), u€#YD)), lim v, CU)y=0



152 EBERHARD SIEBERT

(U U(G@)) and v{, =v(n € N) the system (u,,) obviously has the desired
properties. |

Our version of the law of large numbers is merely a special case of
Proposition 9.3.

PROPOSITION 9.4. Let G be a Lie projective group and J=

Wmidk=1....kn51 @ commutative system in A#'(G) satisfying conditions
(WB), (G) and

kn
(D) lim N Re(@(Du—u,uy=0  forall DEIrr(G),u€AD).
" k=1

Then the sequence (u,,),,, of row products of 3 is uniformly tight and has
only degenerate limit points.

Progf. We keep the notations of the proof of Proposition 9.3. But by this
very proposition and its proof the sequence (u,),, is uniformly tight and
has the same limit points as the sequence (v{"), . Hence it suffices to show
that any limit point of the sequence (S,),s;, S,:= ") in S(G) is a
degenerate semigroup.

Let (n(a)),c; be a universal subnet of N and S:=£_lim,S,,,. If
A,=x,—k,(G)e, and 4 denote the generating functionals of S, and S,
resp., we have lim_(4,,,(D)u,u)=(A(D,u) for all De€Irr(G),
u € #4(D) (Proposition 6.4(ii)). On the other hand condition (D) yields
lim, Re{4 ,,,(D)u, u)=0. Hence Re{4(D)u,u)=0 for all D €E Irr(G),
u € #,(D). By Proposition 4.3(i) S is a degenerate semigroup. [

CoROLLARY. Let G be a Lie projective group and I = Uu)g=1.... .k n>1
a commutative system in .#'(G) satisfying conditions (WB), (G) and

kn
(D) lim N (@ (Du—u,uy=0  forall D EIr(G),u€ #yD).
mok=1

Then we have & limu,=¢, for the sequence (u,),., of row products
of 3.

Proof. Keeping the notations of the proof of Proposition 9.4 we observe
that condition (D’) and Proposition 4.3(ii) imply S =(eg,). Hence the
sequence (S, ) has only one limit point, namely, the trivial semigroup, i.e., &,
limS,=(,. 1

Remark 6. If the system J is identically distributed (Remark 8.3) then
condition (D’) obviously implies condition (WB).
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Remark 7. On Lie groups a central limit theorem and a law of large
numbers have already been proved by Wehn [29]. The results are contained
in [9, Theorems 4.4.2, 4.3.1a]. The corollary of Lemma 5.4 shows at once
that the conditions posed on the system J by Wehn imply our conditions
(WB) and (G) in Proposition 9.3, respectively, (WB), (G) and (D) in
Proposition 9.4.
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