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INTRODUCTION 

Let G be a locally compact group. We consider a uniformly infinitesimal 
triawul~ system 3 = kk)k=l,...,k,tn>l of probability distributions on G and 
its sequence cu.),>, of row products ,u,, :=&i * a+. *fink,. For G = I3 the 
investigation of the possible limit points of (u,) has been one of the most 
important and stimulating problems of classical probability theory [8]. The 
starting point for the present paper was the question of the limiting 
behaviour of C,uJ on an arbitrary locally compact group. 

In order to restrict the number of new difficulties appearing in this general 
situation it is convenient to consider only systems 3 that are (rowwise) 
commutative. There are also some results for non-commutative systems (cf. 
[ 15, 6.6)). But up to now they have not been very satisfying. So we do not 
go into this and deal always with a commutative system 3. This has the 
immediate consequence that the row products v, of the accompanying system 
3, = (v,,) (where v,~ is the Poisson measure with exponent pmk) are again 
Poisson measures. Since it is therefore much easier to study the system 3, 
instead of 3 one has to look for conditions which yield the equality of the 
limit points of (u,) and (v,). In the classical case or more generally for an 
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Abelian group G this can always be achieved by applying appropriate shifts 
to the ,unk. But for a general group G this does not work. So we will have to 
impose an additional condition on our system 3. 

Instead of considering the sequence (v,) it is more effective to study the 
sequence of the associated Poissson semigroups S,. Yet the (infinitesimal) 
generator of S, can be expressed with the aid of the row sum pnl + a.. + ,unkn 
of 3. So our task is to investigate the convergence of the sequence (S,) in 
terms of its generators. But at this point we can gain more information if we 
pose the problem more generally. A Poisson semigroup is the prototype of a 
convolution semigroup (of probability measures) on G. Thus we shall 
consider a sequence (or a net) of convolution semigroups S, on G together 
with their generators A,. And we shall connect the convergence (in an 
appropriate sense) of the sequences (S,) and (A,). This is the subject of the 
second part of the present paper. 

In the classical situation of the real line, limit theorems for the system 3 
are proved by applying Fourier transformation. It will turn out that this is 
also an appropriate method for locally compact groups. So at first we have 
to study the convolution semigroups and their generators in terms of their 
Fourier transforms. In contrast to a maximally almost periodic group G, 
where this problem has been solved completely [ 15, 1.5, 4.3; 241, for a 
general group G infinite dimensional irreducible representations come into 
play. This demands a refinement of the usual Fourier analysis on groups. 
Differentiable vectors for representations have to be considered. These 
preparations make up the first part of this paper. 

Of course the convergence behaviour of commutative and infinitesimal 
systems 3 has attracted most mathematicians interested in probabilities on 
groups. But almost all of them have restricted their attention to special 
classes of groups. So Urbanik [27] proved a central limit theorem on some 
compact Abelian groups. Some years later Parthasarathy [20] derived limit 
theorems on locally compact Abelian groups in complete analogy with the 
classical situation. Parthasarathy [ 191 and Heyer [ 141 treated the central 
limit problem on compact Lie groups, and Carnal [6] worked in the context 
of compact groups. For systems of probability measures on Lie groups 
rather far reaching results were obtained by Wehn [29]. The first step to 
general locally compact groups apparently has been taken by Grenander [9]. 
In [ 2 1 ] the author studied triangular systems on locally compact groups. The 
results specialized to maximally almost periodic groups are presented in [ 15, 
6.51. Finally Hazod [lo] obtained some interesting results on totally discon- 
nected groups. 

Now we give a summary of this paper. It is divided into two parts. The 
first deals with the Fourier analysis of convolution semigroups. Though 
preparatory in its character it nevertheless contains results which are of some 
interest in itself. In Section 1 the concept of a differentiable vector for a 
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representation is introduced. In Section 2 we assemble some well-known facts 
on Fourier transformation and convolution operators needed in the sequel. 

Section 3 is concerned with the Fourier transforms of a convolution 
semigroup S. The Levy-Chintschin formula of S is given in terms of the 
coefficient functions of group representations (Proposition 3.2). In Section 4 
we prove that a convolution semigroup is uniquely determined by its 
infinitesimal generator restricted to the differentiable vectors of the 
irreducible group representations. 

Finally Section 5 is very technical but at the same time very important for 
our further analysis. Lemmata 5.2 and 5.3 compare the coordinate functions 
an a Lie group with the differentiable coefficient functions of irreducible 
representations. An application of these lemmata yields Lemma 5.4, where 
we return to measures. This lemma will enable us to extend results from Lie 
groups to Lie projective groups. 

Part II of this paper is concerned with our central subject: the convergence 
of convolution semigroups and its applications to triangular systems of 
probability measures. For this G will be assumed to be a Lie projective 
group (in most casks). In Section 6 we introduce first an appropriate 
convergence concept for convolution semigroups, namely, the uniform 
convergence on compact intervals of the parameter set (= real numbers 20). 
Our main result here is Proposition 6.4: If a net (S&, of convolution 
semigroups with generators A, converges to a convolution semigroup S with 
generator A then the net (AJaG converges to A in a very precise manner. 

In Section 7 we are concerned with the converse situation. Corollary 1 of 
Proposition 7.1 assures that lim A, = A is also sufficient for lim S, = S. As 
a consequence we obtain compactness criteria for the space of convolution 
semigroups. These criteria are so sharp that they yield the compactness 
conditions of Parthasarathy for infinitely divisible probability measures on 
Abelian groups [ 201. 

In Section 8 we study a commutative and infinitesimal system 3 of 
probability distributions on G. Our first result is Proposition 8.1: If 3 
satisfies a certain boundedness condition (B) then the sequence 01,) of row 
products of 3 converges if and only if the sequence (v,) of row products of 
its accompanying system 3, converges. In the affirmative case these two 
limits coincide. By a counterexample it is shown that without condition (B) 
this result becomes incorrect even on the real line. Proposition 8.2 gives 
sufficient conditions for 3 that the sequence (u,) converges to a probability 
measure embeddable into a convolution semigroup. 

The final Section, Section 9, is devoted to the important central limit 
problem, i.e., the convergene of the sequence b,,) of row products of 3 to a 
Gaussian measure. Our version of a central limit theorem is Proposition 9.3. 
Condition (G) figuring in it is classical (cf. [8, p. 126, Theorem 11). Here we 
need one more condition (WB). But we obtain also a stronger result than in 
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the classical case, namely, the existence of limit points for 01,). A special 
case of this appears as a law of large numbers (Proposition 9.4 and its 
corollary) which is concerned with the convergence of 01,) to degenerate 
measures. 

The problem of the convergence to Poisson measures has been excluded 
here since in this case other methods become involved. We have studied it in 
[25 I- 

PRELIMINARIES 

N, Z, Q IR, C are the sets of positive integers, integers, rational numbers, 
real numbers and complex numbers, resp. We define IR + := {r E IR 1 r > 0}, 
Q, := IR, n 62, IR$ := (r E [R 1 r > O), 0: := IF?? n Q. For any ordered 
vector space (V, 2) let V, be the cone of its elements 20. 

Let E be a locally compact space. A - denotes the closure of a subset A of 
E. If T is a mapping with domain E its restriction to A is denoted by T) A. 
By Qb(E) we denote the space of bounded continuous complex-valued 
functions on E equipped with the supremum norm (1 . [Ia. X(E) and 4’(E) 
are the subspaces of functions with compact support and of functions 
vanishing at infinity. The support of a functionfon E is denoted by suppdf), 
and $ is the complex conjugate function off: 

l(E) is the space of all real Radon measures on E, Mb(E) the subspace 
of bounded measures (equipped with the norm (1 . II) and J’(E) the subset of 
probability measures or distributions (i.e., positive measures ,u such that 
p(E) = 1). If F is a locally compact subspace of E and p Ed(E) then p IF 
denotes the restriction of p to F. It is ,U ( F EM(F). The Dirac measure in 
x E E is denoted by E,. ,u E M(E) is said to be degenerate if p = E, for some 
x E E. For ,U Ed(E) and appropriate functions f (on E) f . ~1 denotes the 
measure with p-density f: The image of p E Ah(E) under a continuous 
mapping T with domain E is denoted by Ttj~). The vague topology K, in 
J(E) and the weak topology E?w in Mb(E) are defined as the topologies of 
simple convergence on X(E) and S??‘(E), resp. A set M in J:(E) is said to 
be uniformly tight if sup((l,u(I 1~ E MJ < co and if for every E > 0 there exists 
a compact set K, in E such that ~(CK,) < E for all ,u EM. By Prohoroffs 
theorem M is uniformly tight iff A4 is relatively K,-compact. 

By G we always denote a locally compact group. U(G) is the system of all 
neighborhoods of the identity e in G that are Bore1 sets. Let G” := G\(e). Iff 
is a function on G and y E G let yf, fy, f *, f - be the functions defined by 
f(x) := f (yx), f,(x) := f (xy), f*(x) := f (x-i), f w := f* resp. (all x E G). 
gU(G) is the subspace of Bb(G) of uniformly continuous functions with 
respect to the left uniform structure on G. If w  is a homomorphism of G into 
some other group then ker(y/) denotes its kernel. &(G) is a topological 
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semigroup with respect to convolution * and topology gW. If K E -4: (G) the 
Poisson meusure exp(rc - K(G)&,) E&(G) with exponent K is defined by 
exp(K - K(G)&,) := ebWtG)(Ee + K + (1/2!)~* K + m-e ). For ~1 E J(G) (resp. 
P E yrY(G”)) the adjoint measure $ is defined by g(J) :=pdf*) df E.Z(G) 
resp. f E.Y(G*)). p is said to be symmetric if 1 =g. By o or dx we denote 
a left Haar measure on G. L’(G) (resp. L’(G)) is the Banach space (resp. 
Hilbert space) of integrable (resp. square integrable) complex-valued 
functions on G with respect to w. 

G is said to be a Lie projective group if there exists a family 5 of compact 
normal subgroups in G descending to {e) such that G/H is a Lie group for 
any HE $j. It is well known that any locally compact group G admits an 
open Lie projective subgroup. 

If R is a complex Hilbert space and T a densely defined linear operator 
on &” the adjoint operator of T exists and is denoted by P. 

Finally some remarks on nets: A net in a set X is said to be universal iff 
for each subset A of X the net is eventually in A or eventually in a. There 
is a universal subnet of each net in X. The image of a universal net is again a 
universal net [ 16, p. 811. Let I be a non-void set directed by >. If w  denotes 
the identity mapping on I then (y, >) is a net (in 1) with domain I. In this 
case we will also say that I is a net. Thus it should be also clear what we 
mean by a subnet of I. 

Let kAYel be a net in a topological Hausdorff space X. (xJael is said to 
be a compact net if any of its universal subnets converges. Let X be a 
completely regular space and A a subset of X. Then A is relatively compact 
iff any net in A is a compact net or equivalently, iff any universal net in A 
converges (in X). In particular, a sequence (x,),>~ in X is a compact net iff 
the subset {x, 1 n E IN } of X is relatively compact. 

Now let X:= (.t (E), g,), where E is a locally compact space. A net 
kAEI in X is said to be tight if riiii, Ilp,\I < co and if for every E > 0 there 
exists a compact set C, in E such that iiiii,pu,(CC,) < E. Then we have the 
following characterization: A net @&, in (J’$(E), E,) is a compact net if 
and only if it is a tight net 123, Lemmas 1.1 and 1.21. 

I. INFINITE DIMENSIONAL FOURIER TRANSFORMATION 

1. Unitary Representations and Dtfirentiabie Vectors 

Let G be a locally compact group. A continuous unitary representation of 
G is a homomorphism D of G into the group of unitary operators on a 
complex Hilbert space # such that the mapping x--t D(x)u of G into Z is 
continuous for all u E R’. The space Z is called the representation space of 
D and is denoted by 2’(D). The inner product and the norm in S(D) are 
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denoted by ( . , . ) and (] . I], respectively. If U, u EZ(D) then (Du, u) 
denotes the coefficient function x+ (D(x)u, u) of G into Cc. Obviously we 
have (Du, v) E VU(G). 

The class of all continuous unitary representations of G is denoted by 
Rep(G). The direct sum and the tensor product of two representations 
D,, D, E Rep(G) are denoted by D, @D, and D, @D,, resp. A represen- 
tation D E Rep(G) is said to be irreducible if the only closed subspaces of 
Z(D) invariant under D are (O} and R(D). By Irr(G) we denote the class 
of all irreducible representations in Rep(G). 

Let Q(G) be the space of infinitely differentiable complex-valued functions 
with compact support on G in the sense of Bruhat [5]. The space g(G) of 
bounded regular functions on G is defined by 

B(G) := {f E Q*(G) 1 f. g E @(G) for all g E g(G)}. 

DEFINITION. Let D E Rep(G). The vector u E Z(D) is said to be 
differentiable (for D) if the function (Du, v) is in B(G) for any v E R’(D). 

By RO(D) we denote the space of all vectors in Z(D) differentiable for D. 
2$(D) is invariant under D. (We have (DD(x)u, v) = ((Du, u))~ for all 

x E G, and C!?(G) is invariant under right translations [5]). We want to show 
that &(D) is dense in Z(D). We need a preparation: 

For D E Rep(G) and f E L’(G) there is a bounded linear operator D(J) 
on Z(D) defined by 

(D(f)u, v> := [f(x)(o(x)u~ VW (all u E 2’(D)). 

Then f + D(f) is the (continuous) representation of the group algebra L’(G) 
associated with D [ 18, p. 3811. The linear space &(D) generated by 
P(f)u If E a(G), u E JV)J is called the Garding space of D. 

LEMMA 1.1. (i) q(D) is a subspace of&(D). 

(ii) q(D) (and thus also q(D)) is dense in R(D). 
(iii) D(x)D(j*) = D((f,)*)for all x E G and f E g(G). 

In particular, e(D) is invariant under D. 

Proof: (i) By [3] and Lemma 3.1 we have D(f)u E PO(D) for all 
f E 9(G) and u ER(D). 

(ii) For any U E U(G) there exists a function f, E g+(G) such that 
supp(f,) c U and j fU do = 1. Hence lim, D(f,)u = u. 

(iii) A simple calculation proves the formula. Since g(G) is invariant 
under right translations and inversion [5] the second assertion follows from 
it. 1 
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EXAMPLES. (a) For any f E L’(G) let L(y-‘)f:= J (all y E G). Each 
L(y) is a unitary operator on L*(G), and L is a continuous unitary represen- 
tation of G with representation space L*(G). It is called the lef? regular 
representation of G. We collect the following properties of L: 

(1) g(G) cZ@). (This is proved in [28, p. 2521 for Iie groups. In 
the general case it follows along the same lines taking into account the 
definitions of S?(G) and g(G).) 

(2) We have L(f)g= f * g for all f E L’(G), g E L*(G). Hence 
f * g E q(L) for all f E g(G), g E L’(G) (Lemma 1.1). 

(3) (L(x)f, g) = (f * g-)(x-‘) for all f,g E L*(G) and x E G. 
Moreover supp(@f, g>) = supp(g)(suppdf))-‘. 

(4) Ku) = c.f * f ->* is a positive definite function in Q’(G) (all 
f E L*(G)) [12, Vol. II, (32.43 e)]. 

(b) For any D E Rep(G) such that R(D) has finite dimension we have 
q(D) = &o(D) = A?‘(D). (This is an immediate consequence of Lemma 1.1.) 

2. Fourier Transforms and Convolution Operators 
Let G be a locally compact group. For a measure ,U E Ah(G) we define its 

Fourier transform fi by 

W%, v> := j- (D(x)u, u)p(dx) 

for all DE Rep(G) ( U, u EZ’(D)). This Fourier transformation has the 
following properties: 

1. p(D) is a bounded linear operator on Z’(D) such that II,d(D)lj < JJ,uuJJ. 
2. j?(D) = j?(D)*. 
3. (Uniqueness theorem) The correspondence ,a -i; is injective; i.e., 

p,(D) = fi2(D) for all irreducible representations, D E Irr(G), implies .~i = p2. 

4. (ap, + bp,)-(D) = aP,(D) + &d,(D) for pl, p2 E Mb(G) and Q, b e IR 
CD E Rep(G)). 

5. 01, * iu2)%? = rllA1(W2(D) CD E Rep(G)). 
6. (Continuity theorem) The correspondence ,u -i; is sequentially 

continuous in the following sense. For any sequence (u,),>~ in At(G) the 
following assertions are equivalent: 

(i) gw-lirnpu, =p,. 
(ii) lim $,(D)u = fi,,(D)u for all D E Irr(G) and u E Z(D). 
(iii) lim&(D)u, u) = @,(D)u, v) for all D E Irr(G) and u, u EZ(D). 
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(For the proofs of (l)-(5) see [ 131. For the proof of (6) see [ 1, Proposition 
61 or [26].) 

For our purposes we need the following slightly stronger version of the 
continuity theorem: 

LEMMA 2.1. Let (u,),,>~ be a sequence in At(G) such that 
lim@^,(D>u, u> = @^,(D)u,v) f or all D E Irr(G) and U, u E X0(D). Then we 
have K,-lim ,u,, = ,u,, . 

Proof We only have to verify condition (iii) of property (6). For any 
x E G let D,(x) be the identity operator on C. Obviously D, E Irr(G) and 
IIP~II =PJG) = l..UDo)L 1). Thus we have lim lip,, I( = I( ~~11 by our 
assumption. By Lemma 1.1, q(D) is dense in R(D). Hence a simple 
estimation yields condition (iii). I 

Let us say that the net @JuEI in Mt (G) Krconverges to ,U E At (G) if 
we have lim,@,(D)u, v) = @(D)u, v) for all D E Irr(G) and U, u E&“(D). 
In this case we will write gflirn,pu, =,u. Clearly @?,,-convergence implies Kf 
convergence whereas the converse implication holds, in general, only for 
sequences. 

Sometimes we need a second type of transformation for measures. For 
p E d:(G) we define 

T,J-6) := US PWY) (allf E q’(G), x E G). 

We have TJ E %Yb(G). T,, is called the convolution operator of ,u. It has 
properties similar to those of the Fourier transformation: 

1. T,, is a bounded linear operator on 5Yb(G) such that ]( T,, )I = )I ,U I(. 
2. T,,, = T,, T, and Tarc+bv- -UT,, + bT, for all p, v E&(G) and 

u,bEF?+. 
3. The correspondence p+ T,, is continuous on A”(G), i.e., for each net 

WllEI in A’(G) and each p E&“(G) the following assertions are 
equivalent: 

(i) &,-lim, pcl, = p. 
(ii) lim, 1) TJ- TJl, = 0 for allf E Q’(G). 

(For the proofs see [15, 1.5.51 or [23, p. 4401.) 
Finally we have the following connections between the convolution 

operator and the Fourier transform: (D$(D)u, v) = T,((Du, v)) for all 
D E Rep(G)(u, v E R(D)), and (TJ)* = $(L)f* for all f E X(G). 
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3. Fourier Transformation of Convolution Semigroups 

Let G be a locally compact group. A family (,u~)~>~ in Ml(G) is said to be 
a convolution semigroup if we have ~1, * ~1~ ==ps+* for all s, t > 0, and Kw- 
lim,lo ,L+ = cl0 := E,. Its generating functional (A, J@) is defined by 

d := 
1 
f~ B”(G) 1 A(f) := 1~~ f h,(f) -f(e)) exists 1 . 

We have B(G) c _pP, and on B(G) the functional A admits the canonical 
decomposition (L&y-Chintschin formula) 

A(f) = A df) + A*(f) + j [f-f(e) - W)l dtt. (W 
GX 

Here A, is a primitive form, A, a quadratic form, r a Levy mapping for G 
and v a Levy measure for G [15, 4.5.9; 241. We will also say that the 
generating functional A admits the canonical decomposition (A,, A,, q). The 
L&y measure t] is uniquely determined by the semigroup @&,; in fact we 
have [24, Lemma 1 ] 

I dq = 1;s f, f d/, for all f E g*(G) with e @! supp(f). 
GX G 

If G is a Lie group with a system {x i ,.,., x,,) of canonical coordinates in 
a(G) adapted to the basis {Xi,..., X,,} of its Lie algebra Y(G) then (LC) 
takes the more explicit form 

A(f)= 5 a,Wif>@) + 5 ai,(Txjf)(e) I=1 I,/= 1 

+ lGx [f(x) -f(e) - ,il -qOo(e)] dv(xh (LLC) 

where a i ,..., ap are real numbers and (a,j),<i,,(p is a real symmetric positive 
semidefinite matrix [15, 4.2.4; 241. 

Sometimes we have to consider the adjoint convolution semigroup (,&),,,. 
We denote its generating functional by 2. Obviously A admits the canonical 
decomposition (-A,, A,, ti) (or (-a,, au, jn,<i,,<p in the Lie group case). 

EXAMPLE. For K E J!+(G) let ~1~ := exp(t(lc - K(G)&,)) be the Poisson 
measure with exponent TV (all t > 0). Then it can be easily seen that (,D,),>~ 
is a convolution semigroup with generating functional (K - K(G)&,, g’(G)); 
it is called a Poisson semigroup. 
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If cut),>0 is a convolution semigroup in J”(G) the family (TLIJ1.+,, of 
convolution operators defines a strongly continuous semigroup of 
contractions on the Banach space gU(G) [23, p. 441, proof of 
Proposition 5.11) whose infinitesimal generator is denoted by (N, J’). We 
have Q(G) c. 4‘ [ 15, 4.5.81 and (N!)(x) =A(f) for all x E G and f E-N. 

Let D E Rep(G). By properties 1, 5 and 6 of the Fourier transformation 
cU,W,>o is a strongly continuous semigroup of contractions on R(D). We 
denote its infinitesimal generator by (A(D), d(D)). 

PROPOSITION 3.1. -d(D) = (u E Z(D) 1 (Du, u) E s/for all u E Z(D)} 
and (A(D)u, u) = A((Du, 0)) for all u E d(D) and u E &n(D). 

Proof Let u E R(D) such that (Du, u) E s? for any v E R(D). Let 
h(v) := A((Du, 0)) and h,(u) := t~[($~,,(D)u, v) - (u, u)] (n E N). Then we 
have lim h,(v) = h(u) by the definitions of A and the Fourier transforms. 
Any i,, is a continuous linear functional on Z’(D). Since X(D) is barreled 
also h is a continuous linear functional on Z(D) by the Banach-Steinhaus 
theorem. Hence there exists a vector B(D)u E Z(D) such that 

(Wh 0) = h(u) = 1;~ (l/O[&Pb, u> - (u, u>l 

(all u E J“(D)). Moreover, 

1s’~ (l/s)lc;s+,(Db, u> - cu”,(Dh u>l 

= 1:~ (l/s)[oi,(D)u,P,(D)*u) - (~,W’)*~)I 

= (fVD)u, P,(D)*u) = l&(D) W)u, u). 

Therefore the function t -+ lji,(D)u, V) of IR + into C has a continuous right 
derivative. This yields 

,&(D)u - u = j’,&(D) B(D)uds 
0 

[30, IX, proof of Theorem 3.21. Thus u E J(D), B(D)u = A(D)u and 
(A(D)u, u) = h(u) = A((Du, u)). 

Conversely for u E J(D) we have 

@(D)u, u> = 1:~ (l/O[Cu^,(D)u, u> - (u, u)] 

= If,:: (Wb,(W u)) - (~7 u>l 

= A ((Du, u>>, 
i.e., (Du, u) E & (all u E R(D)). m 
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COROLLARY 1. For D E Rep(G) and u E J/(D), u EZ’(D) we have 

,&(D)u - u = 
I 
’ ,6,(D) A (D)u ds 

0 

and 

@,(W, u> - (~3 u> =Jt/ (D(y)A(D)u, u)cls(dy)ds. 
0 G 

COROLLARY 2. For all u E s./(D) and u E R(D) we have (Du, u) E JIT, 
N(Du, 4) = W(D)% 4 and IIWDw u))ll, <II&D) 41 Ibll. 

Proof: 

( (D(x) APb, u> - +- W,,,(Du, u))(x) - ((Duv u>)(x)] ( 

= (D(x) W)u, u> - f , [(D(xY)u, u> - (D(xh u>l/&+) 1 

= ( (A(+, D(x-‘1~) - (+ j [D(Y)u - ul ,Qdy), W-‘b) ) 

G 
II 
4D)u - f K(D>u - ~111 Ilull (all x E G). 

This proves our assertions. i 

COROLLARY 3. X0(D) cd(D). 

Proof. This follows immediately from the definition of &%“,(D), 
B(G) c J/ and Proposition 3.1. 1 

We give an application of Proposition 3.1 needed in the sequel. Let .9(G) 
be the Lie algebra of G in the sense of Lashof [ 171 and exp the exponential 
mapping of Y(G) into G. It is well known that Y(G) is in one-to-one 
correspondence with the one-parameter subgroups in G. For every X E Y(G) 
and f E 8’(G) the limit 

(xf )(x) = 1;~ UlNf 6 ev lx> - f WI 

exists for all x E G, and Xf E 8(G) if Xf is bounded. 
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LEMMA 3.1. Let X E Y(G) and D E Rep(G). Then we have 

(i) X(D)u := lim,+, (l/t)[D(exp tX) - D(e)]u exists for every 
u E ZO(D), and (DX(D)u, v) = X((Du, 0)) for all v E Z’(D). In particular, 
q(D) is invariant under X(D). 

(ii) X(D) is a linear operator on ZO(D), and flX(D) is self- 
adjoint. 

(iii) For every f E g(G) we have X(D) D(f*) = D((Xf)*). In 
particular q(D) is invariant under X(D). 

Proof (i) Let x, := exp tX for all t E F?. Then (E~()~.+~ and (s,_JISo are 
convolution semigroups in X(G). Thus our assertions are special cases of 
Proposition 3.1 and its corollaries. 

(ii) By (i), we have (DX(D)u, u) = X((Du, u)) E B(G) for all 
u E Z(D), and thus X(D)u E&(D) (U E Z’ D)). Since the D(x) are unitary 
operators we have X(D)* = -X(D), i.e., I+- -1 X(D) is self-adjoint. 

(iii) Let f E g(G) and u E&“(D). Since ~EJY we have 
liqll WNL, -fl* = Gu7* uniformly on G and thus in the norm of L’(G) 
by Lebesgue’s theorem (all functions have their supports in a fixed compact 
set). Thus by (i) and Lemma 1.1 we can conclude 

XP)D(f*h = ‘f$ f [W,) Wf*> -D(f*)lu 

= ‘fE D ((fIf,,-fl)*)u=D((xf)*)u. i 

Remark. Let G be a Lie group and D E Rep(G), u E&“(D). If the 
function x + D(x)u is weakly differentiable infinitely often (i.e., u E ZO(D)) 
then it is also strongly differentiable infinitely often. (This is immediate by 
Lemma 3.1; cf. [28, p. 484, Remark].) 

PROPOSITION 3.2. The canonical decomposition (LC) of the generating 
functional A of the convolution semigroup (ttJ,hO can be extended to all 
representations D E Rep(G) and all dtrerentiable vectors u E RO(D) in the 
following way: 

A(D)u = A,(D)u + A,(D)u + j [D(x) - D(e) - T(D)(x)]u dn(x). 
GX 

Here A,(D), A,(D) and T(D)(x) are linear mappings of&(D) into Z(D) 
defined by 

(Aj(D V) := Aj((Du, 0)) and (T(D)(x)u, u) := T((Du, v))(x). 
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flA,(D), A,(D) md \/riw< x are symmetric and closable. Moreover ) 
A,(D) is negative semideflnite. 

Proof Let B be a primitive or quadratic form on B(G). (A, and r( - )(x) 
are primitive forms, and A, is a quadratic form.) There exists a unique 
convolution semigroup (v,),.+, in J’(G) whose generating functional 
coincides with B on B(G) [ 15, 4.5.8; 241. Hence by Proposition 3.1 and its 
Corollary 3 there is defined a linear mapping B(D) of X0(D) into Z(D) by 
(B(D)u, v) = B((Du, v)). This yields the existence of A,(D), A,(D) and 
I(D)(x). Moreover B(D) is closable since it is the restriction to 2$(D) of the 
closed infinitesimal generator of the semigroup (FI(D))l,O. Finally 
flA,(D), &-&D)(x) and A,(D) are symmetric. [By definition, B is 
real, i.e., B(j) = B(f) for all f E B(G). If B is primitive (resp. quadratic) we 
have B(f*) = -B(f) (resp. B(f*) = B(f)) [ 15, 4.4.7(3)]. For D E Rep(G) 
and U, v E 2’(D) we have (Du, v)* = (u, Dv). Combining these facts the 
statements can be proved easily.] Since A, is almost positive [ 15, 4.4.61 it is 
not difficult to prove that A,(D) is negative semidefinite. 

Applying formula (LC) to the function (Du, v) (u E SO(D), v E R’(D)) 
we get 

(A(Wv v> = (A ,(D)u, u> t (A,(D)u, u) 

From this formula we conclude the existence of the vector IGI [D(x) - D(e) - 
I(D)(x)]udn(x) in X(D) and thus the desired decomposition. u 

COROLLARY. If G is a Lie group the canonical decomposition (LLC) 
extends to D E Rep(G) and u E ZO(D) in the following way: 

A(D)u = f a,X,(D)u t 5 a,,Xi(D)Xj(D)u 
i=L i,l=I 

+ I [D(x) - D(e) - 5 x,(x) xi(D)lU dtt(x)- 
G" i=l 

Proof. This follows immediately from (LLC) and Lemma 3.1 together 
with Proposition 3.1 and its Corollary 3. I 

4. The Dtgerentiable Vectors Determine the Convolution Semigroup 

Let G be a locally compact group and (.u,)~>,, a convolution semigroup in 
A’(G) with generating functional (A, s’). We are going to show that @Jr>,, 
is uniquely determined by the family (A(D) ]&(D))oElrr(Gj. The crucial 
point of the proof is the following. 
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PROPOSITION 4.1. Let (N,,&-) be the inJnitesima1 generator of the 
associated semigroup ( T,,JthO of convolution operators on g,(G). 

Zf f E Q(G) we have (Nf)* E L’(G) and A(D) D(f *) = D((Nf)*) for all 
D E Rep(G). 

Proof The proof will be divided into several steps. Let D E Rep(G) be 
fixed. 

1. Let A be bounded; i.e., there exists a constant c > 0 such that 
IA(f >I G c Ilf IL for all f E a?. Then we have J#’ = S??‘(G) and 
A(f)=J‘[f-f(dld f K or some K E At (G) (all f E 5?(G)) [ 11, p, 321. 

Let f E O(G). Then f * E L’(G) and K * f * E L’(G) [ 12, Vol. I, (20.12)]. 
Moreover 

(K * f*)(x) - K(G)f *(xl 

= 1 [f*(y-‘x) - f*(x)] dK(Y) 

= [f(x-Iv)-f(x-‘)]dK(Y)=A(x-If) i 

= (Nf)(x-‘) = (Nf)*(x). 

Thus we have (Nf)* E L’(G). Let u E R(D). Applying Fubini’s theorem (K 

is bounded) we get 

A(D) D(f *)u = 1 [D(Y) - D(e)] D(f *)u dK(Y) 

= 
I 

[K * f*(x) - K(G)f *(x)] D(x)u dx 

= (Nf )*(x) D(x)u dx = D((Nf )*)u. 

2. Let G, be an open Lie projective subgroup of G and Y(G) the Lie 
algebra of G. We assume that A admits the canonical decomposition 
(4 1, A,, v), where the support of q is contained in a compact neighborhood 
U E U(G). We fix f E g(G). Then there exists a compact normal subgroup 
H in G, such that G,/H is a Lie group and f lies in the space gH(G) of all 
functions in 8(G) that are constant on the right cosets modulo H (definition 
of g(G)). An easy calculation shows (together with Lemma 1.1) that 
(DDdf*)u, v) E Z,,(G) for all U, v E R(D). 

(a) There exist vectors X, ,..., X, E Y(G), functions x, ,..., xP E g(G) 
and real numbers ai, aij (1 < i, j < p) such that 
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A2(&!) = i aijVixj g>(e) 
ij=l 

and 

A,(g) :=A(g)-A,fg)-A,(g)=~~~ [g- g(e) - ,cl xi(X,g)te)] h 

for all g E 4$(G) [22, p. 3281. 
With the aid of Lemma 3.1 we get 

(64 1+ A,)(D) w-*)~~ 0) 

= 64 1 + ‘4 *)((Dw-*)~, 0)) 

= 
5 aiXi((DDdf*)% u))(e) 
i=l 

+ f uijxixj((DD(f*)U~ v)>(e) 
i,j= 1 

+ 5 %,(X,(D) X,(D) Nf*h4 u> 
i,j= 1 

~ UiX, f + ~ 
f5 i,Fl 

UijXiXjf (u, u E R(D)). 

@I Let h(x, Y) := f(YX) - f(Y) - CL1 Xi(X)W,f)(Y) (all 
x, y E G). Obviously there exists a constant d > 0 such that ]h(x, y)] < d for 
all x, y E G. Moreover we have 

WGY) = $<x> - J(e) - 2 4W3JNW. 
i=l 

Lifting the Taylor formula from GJH to G, there exists a neighbourhood 
U, E U(G), U, c U, such that 

for x E U,, , y E G, where <(x, y) E U, and ly = Cf= r xi. Thus there exists a 
constant c > 0 such that ] h(x, y)] < c&x) for all x E U,, y E G. 

601/W/2-2 
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If C := suppdf) then h(x, y) = 0 for x E U and y & CU- ‘. Since v has its 
support in U and is a L&y measure we conclude 

< o(CU-1) c [ 

Thus the application of Fubini’s theorem in the following calculation is 
justified; and we have (lGx h(x, - )&(x))* E L’(G). 

- 5 xi(xj((DD(f*)uY u)))(e)] dyt 
i=l 

YZ J ([ D((f~)*)-~(f*>- 5 Xi(X)D((Xif)*) 1 ) u, fJ h(x) 
C” i=l 

= (D@(x, J . )“>u, u)&(x) 
GX 

= 0, y-‘W(~h UPY h’(x) 
I 

= 0, Y-‘)&(X) (D(Y)K U)~Y 
I 

= J 0 h(x, . Pi+(x) * (D(Y)u, U)~Y 
G G+ ) 

w, * WI(x) (u, u E fl(D)). 

(c) Since (NJ)(y) = A(f) and ,,f E &(G) for all y E G,we have 

Nf = 2 aiXif + f aijXiXjf +I w, * P/(x). 
i=l i,j= 1 GX 



FOURIERANALYSIS ANDLIMITTHEOREMS 127 

Combining (a) and (b) we thus get (Nf)* E L’(G) and 

A (D) D(f*)u = (A 1 + A J(D) D(f*)u + A,(D) Ddf*)u 

= D((Nf)*)u. 

3. Now let A be arbitrary. It is an easy consequence of the canonical 
decomposition (LC) that A can be written as a sum of a bounded generating 
functional and a generating functional as in 2 (cf. [ 11, p. 341). Combining 
the results in 1 and 2 we arrive at our assertion. fi 

Remark. The formula A(D) Ddf*) = D((Nf)*) in Proposition 4.1 has 
been stated without proof in [7]. For an Abelian group G and for D E Irr(G) 
it is proved in [2, Theorem 12.161. 

PROPOSITION 4.2. Let (A, M’) be the generating functional of the 
convolution semigroup (u,),>,, in M’(G).Then (j&,, is uniquely determined 
by thefamily (A(D) M(D))bEIrr(ol. 

PrwJ Let (5hao be a second convolution semigroup in J’(G) with the 
generating functional (B, 9) and the infinitesimal generator @4,x) for 
tT”,h>ll such that A(D) ] T(D) = B(D) I&;(D) for all D E Irr(G). 

For f E g(G) we have D(f*)u Eq(D) and thus D((Nf)*)u = 
A(D) D(f *)u = B(D) D(f*)u = D((Mf)*)u for all u EZ(D) (Propo- 
sition 4.1). Hence D((Nf)* - (Mf)*) = 0 for all D E Irr(G). This yields 
(Nf)* = (Mf)* [ 18, p. 2711. In particular, we get A ] g(G) = B 1 g(G). But 
this implies ,D~ = V, for all t > 0 [ 15, 4.5.61. 1 

We shall give a simple application of Proposition 4.2 that will be needed 
later on. For this let us call a convolution semigroup (u,),>,, in J’(G) 
degenerate (resp. trivial) if any ,u~ is degenerate (resp. if rut = E, for all t > 0). 

PROPOSITION 4.3. Let S = (,u&, be a convolution semigroup in J’(G) 
with generating functional A. 

(i) S is a degenerate semigroup tfl Re(A(D)u, u) = 0 for all 
D E Irr(G) and u EXO(D). 

(ii) S is the trivial semigroup fl (A(D)u, u) = 0 for all D E Irr(G) and 
u E q(D). 

Proof (i) Let (A,, A,, v) be the canonical decomposition of A. It is easy 
to see that S is degenerate iff A, = 0 and q = 0. Let S be degenerate. Then 
A = A,. By Proposition 3.2 we have A,(D)* =-A,(D) and thus (*) 
Re(A(D)u, u) = 0 (D E Irr(G), u E ZO(D)). 

Conversely let (*) be satisfied. Again by Proposition 3.2 we have 
0 = Re(A(D)u, u) = (A,(D)u, u) + jcx [Re(Du, u) - (u, u)] dv, and the last 
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two terms are not positive, hence zero. From (A*(D)u, u) = 0 for all 
u E q(D) we obtain A,(D) = 0 since A,(D) is symmetric. From 
jc;’ ]Re(Du, u) - (u, u)] dq = 0 for all D E Irr(G), u E X0(D), we obtain 
q = 0 since the only common zero of the non-negative functions 
((u, u) - Re(Du, u)) is the identity e of G (cf. the proof of Lemma 5.2). 
Consequently A(D) ] q(D) = A,(D) for all D E Irr(G). Since A, is the 
generating functional of a degenerate semigroup the semigroup @,),.+O is 
degenerate by Proposition 4.2. 

(ii) S is trivial iff A = 0. Thus in view of Proposition 4.2 we only have 
to show that (A(D)u, u) = 0 for all u E RO(D) implies A (0) 1 RO(D) = 0. But 
by (i) A is a primitive form. Hence -A(D) is symmetric 
(Proposition 3.2). This proves our statement. fl 

5. D@erentiable Vectors on Lie Groups 

Let G be a Lie group of dimension p > 1. We choose a basis {X, ,..., X,} of 
its Lie algebra 9(G) and a system {x1,..., x,} of canonical coordinates (in 
O(G)) adapted to this basis and valid in the neighborhood U,, E U(G). 
Finally let a, be a Hunt function for G; i.e., rp is a symmetric function in 
g+(G) bounded away from zero on G\lJ for any U E U(G), and p(x) = 
x,(x)2 + a-* + x,(x)’ for all x E U,, [ 15, p. 2601. 

LEMMA 5.1. Let D E Rep(G) and u E RO(D). 

(i) For the mapping x + D(x)u the Taylor formula 

D(x)U = u + \” xi(x) Xi(D)U 
,F, 

+ t ,i Xi(X)Xj(X> T(D)(X)Xi(D)xj(D)U 
l.J- 1 

is valid for all x E U,. Here each T(D)(x) is a bounded linear operator on 
Z(D) such that I( T(D)(x)11 < 1. 

(ii) The following estimation holds for all x E U,: 

11 D(x)u - u - + 
,z, 

Xi(X) xi(D)U II 

G + (P(X) 5 IIxitD) XjtDhlI. 
i.j=l 

ProojI (i) Let x E U,, be fixed and define X := Cp=, xi(x)Xi. The 
mapping f of [R into R(D), defined by f(t) := D(exp tX)u is infinitely 
differentiable (cf. the remark after Lemma 3.1). We have f’(t) = 
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D(exp tX)X(D)u and f”(t) = D(exp fX) X(D) X(D)u. The Taylor formula for 
vector-valued functions yields 

f(t) = f(0) + f(O) + r2j1 (1 - s)f”(st)ds (all t E I?). 
0 

In particular, we get for t = 1, 

D(x)u = u + X(D)u 

+ 
I 
,’ (1 - s) D(exp sX) X(D) X(D)u ds. 

Since [0, 1 ] is compact and Z(D) is complete T(D)(x)0 := 
21:(1 - s)D(expsX)vds is an element of Z(D) for any u E Z(D) [4, 
Chap. III, Sect. 3,3]. Obviously T(D)( x is a linear operator on Z’(D) such ) 
that ]] T(D)(x)]] Q 1. Finally we have X(D) = C$‘= i x,(x)X,(D). Hence our 
first statement is proved. 

(ii) This follows directly from (i) since we have ]x~(x)x,(x)] Q 
x,(x)2+ *** + x,(x)’ = r&x) for all i, j = l,..., p and x E Do. 1 

We are now going to prove two lemmata which will enable us to compare 
the coordinate functions x i ,..., xP and the Hunt function cp with the coef- 
ficient functions (Du, o) for representations D E Irr(G) and vectors 
u, u E s&(D). 

LEMMA 5.2. There exist a neighborhood UE U(G), a constant c > 0, 
representations D, ,..., D, E Irr(G) and vectors u, E &“,(Dj) (1 < j < n) such 
that 

q(x) < c 5 Re[(u,, u,) - (D,(x)u,, u,)] for all x E U. 
j=l 

Prooj For any D E Irr(G) and u E&“(D) we define 

H D,u := {x E G 1 (D(x)u, u) = (u, u)}, 

We have x E H,+, iff D(x)u = u. [D(x)u = u obviously implies x E H,,,. 
Conversely let x E HD ,, (u # 0). Then (D(x)u, u) = 1) ul(* = I( D(x)uII II uJ[. 
Schwarz’ inequality imilies D(x)u = du for some d E C. But from d(u, u) = 
(D(x)u, u> = ( u u we conclude that d= 1.1 Thus any H,,, is a closed 9 > 
subgroup in G. We have nUc~Oo(o) H,,, = ker(D). [Obviously ker(D) is 
contained in this intersection. Conversely, x E H,,, for all u E Zo(D) implies 
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D(x)u = u for all u EZ’(D) by Lemma 1.1. Therefore D(x) = D(e), i.e., 
x E ker(D).] This gives us 

n H,,, = n ker(D)= {e} (*I 
D~1rr(G),usY,,(D) DcIrr(G) 

[12, Vol. I, (22.12)]. 
We choose a symmetric and open neighborhood U E U(G) such that U 

has compact closure and contains no proper subgroup of G (G is a Lie 
group!). Then C := (U’))\U is compact and e f$ C. Thus by (*) there exist 
D , ,..., D, E Irr(G) and uj E Ro(Dj) (1 < j < n) such that H n C = 0, where 
H := nI<j<n HD,,u,* Hence K := Hf7 U is a subgroup of G. [For x, y E K 
we have xy-‘EHn(u)-. But HrT(@)-=Hn(CUU)=(HnC)U 
(HnU)=HnU=K.]FromKcUweconcludeK={e}. 

Let f(x) := cj”=, Re [ ( uj, uj) - (Dj(x)uj, uj)] for all x E G. Obviously we 
have f > 0. Let x E U such that f(x) = 0. Then I] ujl]* = Re(Dj(x)uj, Uj) and 
consequently ]luj]]* = (Dj(x)uj, u,) for j = l,..., n. Therefore x E H. But 
H n U = {e) implies x = e. Thus f has a strict local minimum in e. Moreover 
(Xxf)(e) # 0 for all X E Y(G) as can be easily seen. Since o has the same 
property our assertion follows. I 

LEMMA 5.3. There exist representations D;,..., D’, E Irr(G), D, E Rep(G) 
and vectors v, w, ,..., wp E Ro(D,) such that D, = 0; 0 .a. 0 Dh and 
(Xi(D,)v, Wj) = 6, for I < i, j < p. 

Proof: We keep the notations of Lemma 5.2 and define D := 
D,@...@D,, and u:=u,@ ..a 0 u,. Then D(x)u # u for all x E v\(e). 
Since u E q(D) we can define Vi := X,(D)u (1 Q i < p). Thus the Taylor 
formula from Lemma 5.1 takes the form 

+ + T(D)(X) ,tl (xj(x) X/(D)) ( ,gl xLx)vi) 

for all x E U (without loss of generality U c 17,). Thus Cp=i x,(x)vi # 0 for 
all x E v\(e). Since U is a coordinate neighborhood of e this yields the 
linear indepedence over IR of the vectors vi,..., vP . Since vi = X,(D)u the 
linear operators X,(D),..., X,(D) on Ro(D) are linearly independent over iR 
too. But we can even show that they are linearly independent over @. [We 
have X,(D)* = -X,(D) (Lemm_a 3.1). Thus C3Xj(D) = 0 (a, ,..., ap E C) 
implies 0 = (C a,X](D))* = 2 a/X,(D)* = - C a/Xi(D).] 

We need the following simple 
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LEMMA. Let A , ,..., A, be linearly independent linear mappings of a 
vector space Y over Cc into itselJ: Then there exist elements z, ,..., zI E Y 
(I< p) such that the vectors (A,z~),<,(,,..., (APzI),c;,<I of Y’ are linearly 
independent (over C). 

(The proof is carried out by induction on p. Compare with [ 12, Vol. II, 
(28.14)].) 

Applying this lemma to X,(D),...,X,,(D) and RO(D) we obtain vectors 
v;,..., vi E&“,(D) such that (X,(D)V~),<j(,,..., (X,(D)vj),,,,, are linearly 
independent over C. Let D, be the direct sum of 1 copies of D and 
v := v’, 0 e.- 0 vi E ZO(D,,). Then X1(DO)v,..., X,(D,)v are linearly 
independent over C. Let Y be the (finite-dimensional) subspace of Zo(Do) 
generated by these vectors (cf. Lemma 3.l(ii)). By L,(C aJ,(D,)v) := aj for 
all a 1 ,..., aP E C there is given a continuous linear functional L, on 27 
(1 < j < p). Since W is a Hilbert space (as a closed subspace of Z(D,,)) 
there exist vectors wi,..., wP in Y (and thus in ZO(D,)) such that 
LjW = (w, Wj) for all w E WY By construction we have (X,(D,)v, wj) = 6, 
(1 < i, j < p). Obviously D, is a direct sum of finitely many irreducible 
representations. I 

Remark 1. If G is a maximally almost periodic Lie group (i.e., the finite- 
dimensional representations separate the points of G) then Lemmata 5.2 and 
5.3 remain true if they are restricted to finite-dimensional representations (cf. 
[15, 4.3.6, 4.3.7; 241). 

Remark 2. Let Z be a Hilbert space over C with scalar product ( . , . ) 
and let T be a linear operator on Z’. Then we have for all U, v E SF’ the 
following identity, which we will have to use several times: 

(Tu, v) = f[(T(u + v), u + v) + i(T(u t iv), u t iv)] 

-F [(Tu, u) t (TV, v)]. 

LEMMA 5.4. Let (K&~, be a net in -M:(G). Then the following 
assertions are equivalent: 

(i) &, ll~?,(D)u - ~,(G)ull < CO for all D E Irr(G), u E X0(D), and 
G, K~(C v) < 00 for all U E U(G). 

(ii) E, l(R,(D)u - K,(G)u, u)j < co for all D E Irr(G), u E&(D), 
and EE, KJC v) < 00 for all WE U(G). 

(iii) fi, (J(pdK,) < CO and E, (IJ‘XidK,I) < 00 for i = l,...,p. 
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Proof: (i) * (ii) is trivial. 

(ii) * (iii) 1. We keep the notations of Lemma 5.2. Then we have the 
following estimation: 

(One observes Re(uj - D~u,, Uj) 2 0.) Our assumptions yield 
iiiii, (j”pdK,) < 00. 

2. We keep the notations of Lemma 5.3. The Taylor formula 
(Lemma 5.1) yields for all x E U,, 

xk(x) = y x,(x>xj(D,>v9 wk 

= (DO(x>v - v, wk) 

(*I 

Applying the identity of Remark 2 to T= rZ,(D,) - K,(G)D,(e) our first 
assumption yields 

V, W&&X) < 00 (**I 

since D, is the direct sum of finitely many Dj E Irr(G). Furthermore we have 
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With the aid of (*) we can now conclude 

+ 
II 

@o(X)v - 0, “‘,)K,(dX) + d, 1 P d% 
G\Uo VO 

G (&ix)u - v, wk) K,(~) 

By (**), the second assumption and part 1 we have ii%, I(,x, dK, I ( 00 
and finally i%%, I ( xk dK, I < CO. 

(iii) =S (i) E, uu, dK,) < co obviously implies ik?i, K,(C U) < co for 
all U E U(G). The inequalities 

and 

G T IIx,P)u II / 1, xi &z / + +g lI&W~,Ph4 Jv, Q, &x 

(Taylor’s formula) prove the second statement. m 

COROLLARY. If we have K, = c:pj pak, pak Ed'(G) for all 
k = l,..., k(a) and all a E I, then the following assertions are equivalent: 

(i) lim, - hm, E 
iz,’ II$,k(D)u - u[I < co fir all D E Irr(G), u E&“(D), and 

Cf’$p,k( U) < cx) for all UE U(G). 

(ii) lim, xi?) IQZok(D)u - u, u)l < 00 for all D E Irr(G), u E&“,(D), 
and lim, zip/ p,k(? U) < 00 for all U E U(G). 

(iii) lim, CiPj (j~&,~) < 00 and lim, xi!?! I Ix1 dpakl < 00 for 
i = l,..., p. 
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Proof. This follows by the same arguments as those in the proof of 
Lemma 5.4. I 

II. LIMIT THEOREMS FOR DISTRIBUTIONS 
ON LOCALLY COMPACT GROUPS 

6. Convergence of Convolution Semigroups: Necessary Conditions 

Let G be a locally compact group. By G(G) we denote the system of all 
convolution semigroups in A’(G). Clearly 6(G) can be considered as a 
subspace of the space g(G) of all continuous mappings of R + into 
(A’(G), gw). We equip g(G) with the topology 5 of compact convergence. 
Obviously G(G) is a gc-closed subspace of g(G). 

Let I be an index set directed by >. For any a E I let there be given a 
(fixed) convolution semigroup S, := (u!“))~>~ in M’(G) with generating 
functional A, and Levy measure r,. In this and the next section we shall 
study the &,-convergence of the net (Sa)ael in terms of the A, and r,r,. 

If s = Wf>O is a further convolution semigroup in M’(G) we have gc,- 
lim S, = S iff e‘,-lim, ,@) = puI uniformly in t E [0, d] for all d > 0. Since 
the topologies &, and gU coincide on M’(G) this is equivalent with g”;- 
lim,,@ = ,uu, uniformly in t E [0, d] for all d > 0 (cf. [ 16, Chap. 71). 

The Kc-convergence of sequences in 6(G) admits the following convenient 
characterization: 

PROPOSITION 6.1. Let I = IN. Then the following assertions are 
equivalent: 

(i) The sequence (SJn>, is q-convergent. 

(ii) For each t E R + there exists a measure ,u, E X(G) such that Kf 
lim,,@ = p,. 

Proof: We only have to prove (ii) + (i). Let 7j”’ and T, be the 
convolution operators corresponding to ,u!“’ and ,u,, resp. By Lemma 2.1 we 
have &w-lim,#’ = pcll and thus lim,,T’,“’ = T, strongly on Q’(G) (cf. 
Section 2). Therefore (T,),, o is a strongly measurable semigroup and thus 
even strongly continuous [30, p. 233, proof of the theorem]. Consequently 
Wf>O is a convolution semigroup. 

Let A> 0 and f E go(G) be fixed. Define 

f,(t) := 1) e-*frjn)f- eeAf TJII, (t > 0). 

Then we have limfj,(t) = 0 for all t > 0. FurthermorefJt) < 2 ]lfl]coe-lf for 
all n E N. By Lebesgue’s theorem we conclude 
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Kii 
/II 

a3 
n 0 

emar fl”)fdt - S,m eeat Ttfdtll 

Thus lim Ry)f = RJfor allf E Q’(G). (Here Ry’ and R, are the resolvents 
corresponding to the semigroups (7j:n))l>o and (7’Jtao, resp.) The Trot- 
ter-Kato theorem [30, p, 2691 yields lim fl”’ = T, strongly on go(G) and 
uniformly in t E [0, d] (d > 0). This proves (i). 1 

Remark. Proposition 6.1 seems to be well known. For the sake of 
completeness we have included a proof. 

LEMMA 6.1. Let D E Rep(G) and u E &i(D) such that 
=a II&(D)u II < co. Then we have: 

(i) There exist a0 E I and c > 0 such that ]]@‘(D)u -,@‘(D)u]( < 
c]s-tlforalls,t>Oanda>a,. 

(ii) rf Ew-lirn,&“’ =p, EM(G) exists for all t E IR + then 
lim, ]{&“)(D)u -,bt(D)u]] = 0 uniform& in t E [0, d] for all d > 0. 

Proof: (i) There exist a, E I and c > 0 such that ]]A,(D)u]] <c for all 
a > a,. Thus by Corollary 1 of Proposition 3.1 we have, for a > a0 and 
s, t a 0, 

IIFl”‘Wu - PXD)u II 

= dr 

<Is - 4 II4@)uII <Is - 4 c. 

(ii) This is an immediate consequence of (i). 1 

PROPOSITION 6.2. Let there exist a convolution semigroup (,u,),>, in 
X’(G) with generating functional A such that B,-lim, pi”’ = pt for all t > 0. 

Then for each representation D E Rep(G) such that Ti;ii, ]]A,(D)u]] < co 
and fi, ]]&(D)u]] < co for all u EZo(D), we have lim,(A,(D)u, v) = 
(A(D)u, v) for all u E X0(D), v ES’(D). 

Proof. Let us fix u, v EX,(D). We have Tiili, I(A,(D)u, v)l < 
E, IP,P)u II II v II < co. Substituting I by a universal subnet we may 
assume that a := lim,(A,(D)u, v) exists. 
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By assumption there exist a, E I and c > 0 such that IIA,(D)u)I < c for all 
(r > a,. Thus by Corollary 1 of Proposition 3.1 we obtain the following 
estimation (for some t > 0): 

Lemma 6.l(ii) applied to the adjoint measures @’ and p, yields 
lim, ($F’(D)v -&(D)v/I = 0 uniformly in s E [0, t]. Going with a to the 
limit in the inequality above yields 

Since cU;>,>o is a convolution semigroup we get 

i.e., lim,(A,(D)u, v) = (A(D)24 v). S ince this limit is independent of the 
universal subset chosen above the result holds for the original net too. 

7 
Since hm, \IA,(D)uJJ < co and since X0(D) is dense in Z“(D) we finally 

have lim,(A,(D)u, v) = (A(D)u, V) for all u E R(D) (and u E Ro(D)). 1 

Now let G be a Lie group of dimension p > 1, {X, ,..., X,,} a basis of Y(G) 
and {xl ,..., x,) a system of canonical coordinates in g(G) adapted to this 
basis and valid in the neighbourhood U, E U(G). Finally let q be a Hunt 
function for G (cf. Section 5). Let 
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&(f) = 2 4*Mf)(e> + 2 4~‘Wixjf>(e> 
i=l i.j= 1 

+ J 
GX 

[I(Y) -f(e) - 5 Xi(Y)(x,f)(e)] 4%(Y) 
i=l 

df E 8’(G)) be the canonical decomposition of A, (cf. (LLC) in Section 3). 

PROPOSITION 6.3. Let there exist a convolution semigroup S = @,),>,, in 
X’(G) such that &,-lim S, = S. 

Then we have 

Proof. 1. Let us denote by d, the maximum of the numbers ) a j”’ I, ) af) (, 
I, qdq, (16 i, j < p). We have to show i&ii, d, < 00. 

Let us suppose i&i, d, = co. Selecting an appropriate subnet we can even 
assume lim, d, = co. Let c, := d;‘. Then we have lim, c, = 0. We define 
bj”) := c,aja), bi;) := c,ajT), <, := c,)I, and B, := c,A,. Then B, is the 
generating functional of the (unique) convolution semigroup (~j=))~>,, in 
M(G) such that vjp) = pz”{, and B, admits the canonical decomposition 
w9 b!$ L)l< ,j<p. Since” lim,c, =0 and K,-lim, S, = S we have g,- 
lim, vj”) = is, for all t > 0. 

2. Let D E Rep(G) and u E&*,(D). By the corollary of 
Proposition 3.2 we have 

B,(D)u = ~ bj”‘X,(D)u + ~ b~‘Xi(D) Xj(D)U 
i=l i,j= I 

+ DC9 - D(e) - i xi(x) X,(D) u &Ax) 
i=l I 

and thus 

IIB,(D)uII Q i lIXi(D)U II + i IIXi(D)x~(DhII + c(D, ~1 I=1 ij=l . 

with some constant c(D, u) > 0, i.e., i%, IIB,(D)ull < co. [We have 
Ibj”)I< 1, lbg)l Q 1 and jGxqdkJ,< 1. The definition of 9 yields 
<,(C U,,) < co. Together with Lemma &l(ii) this proves the existence of 
c(D, u). I 

The generating functional 8, of the adjoint convolution semigroup 
(vl”‘>oo admits the canonical decomposition (Ajo), bv’, %)r < lJ+, . Thus 
the inequalities 1411~) I< 1, I b?’ I < 1, (GI 9 d& = jGx 9 dr, 4 1 are fulfilled 
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again. 
7 As above we conclude hm, I]$JD)u)( < co. Now Proposition 6.2 

yields fl;;;,(B,(D)u, v) = 0 for all u E Z(D) (the generating functional of 
the trivial convolution semigroup (E,) is zero). 

3. Let us define f := Re((Du, u)). (D and u will be appropriately 
chosen later on) f is real valued and positive definite. Therefore it attains its 
maximum at e. This yields (XJ)(e) = 0 for i = l,..., p. By Q,(g) := 
Cl,j biy’(XiXjg)(e) (g E B(G)) there is defined a quadratic form Q, on 
g(G). It follows: Re(B,(D)u, u) = Re(B,((Du, u))) = B,(f) = Q,(f) + 
SGx If - f(e)1 dL But f <f(e) implies Q,(f)<0 and 
JGx[f - f(e)] dr, < 0 (a E 1). Thus lim,(B,(D)u, u) = 0 yields 
lim, Q,(j) = 0 and lim, lCX [f(e) - f ] d<, = 0. 

(a) By Lemma 5.2 there exist D E Rep(G) and u E&%“,(D) such that 
p(x) < c(f (e) - f(x)) for all x E U, where U E U(G) and c > 0 are chosen 
appropriately. Since Q, is a quadratic form we get 0 < Q,(p) < - cQ,(f) 
and thus lim, Q,(p) = 0. But Q,(p) = 2 xi bj?’ and the positive semi- 
definiteness of (bjT)),(iJ<p yield lim, bi?’ = 0 (1 < i, j < p). Moreover we 
have lim, Jute1 qdT, = 0. 

(b) Let us choose for D the left regular representation L of G and 
for u a function g E a+(G) such that ( g2do = 1 and supp(g) c V, where 
VE U(G), VV-’ c U, then we have supp(f) c U (cf. Section 1, example a). 
Therefore c,(C U) < jcX [f(e) - f ] d&. Thus lim, (,(C U) = 0 and taking 
into account (a), finally lim, IGx pd<, = 0. 

4. By Lemma 5.3 there exist a representation D E Rep(G) and vectors 
U, wj E q(D) such that (Xi(D)u, wj) = 6, (1 < i, j < p). If fk : = (Dv, w,J 
we have 

(B,(Dh ‘%) = B,t(Du, wd) = Ba(fk) 

=V’+Q,CP,)+/ Ifk-fk(e)-xkldL 
GX 

Applying parts 2 and 3(a, b) we get lim, by’ = 0 (1 < k < p). 
5. But now we have arrived at a contradiction to 

for all a E I. Our assumption lim, d, = co was incorrect. This finishes our 
proof. I 

Let us return to an arbitrary locally compact group G. By Fat(G) we 
denote the system of all representations D E Rep(G) with the following 
property: There exists a compact normal subgroup K in G (depending on D) 
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such that G/K is a Lie group and a representation D’ E Rep(G/K) such that 
D = D’ o n, where rr is the canonical mapping of G onto G/K. Obviously 
D’ o II E Fat(G) for all D’ E Rep(G/K). For a Lie projective group G we 
have Irr(G) c Fat(G) [3, p. 247, Korollar 21. 

PROPOSITION 6.4. Let G be a Lie projective group and let there exist a 
convolution semigroup S = (t~,),,~ in J’(G) with generating functional A 
and Levy measure q. We assume Kc-lima S, = S. Then following assertions 
are valid: 

(i) ik’i, /A,(D)ull < co and lim, IIA,JD)ull < 03 for all D E Fat(G) 
and u E q(D). 

(ii) lim,(A,(D)u, v) = (A(D)% v) for all D E Fat(G), u E X0(D) and 
v E R(D). 

(iii) There exists a basis U of closed neighbourhoods for e E G such 
that 

&w-limq,)CU=qICU ford1 UEU 
(I 

In particular, we have Ku;-lim, qn = 11. 

Proof (i) By the definition of Fat(G) we may assume without loss of 
generality that G is a Lie group. But then the statement follows immediately 
from Proposition 6.3, (LLC) in Section 3 and Lemma 5.l(ii). 

(ii) This statement follows from (i) and Proposition 6.2. 
(iii) Since G is a Lie projective group there exists for any U E U(G) a 

compact normal subgroup K in G such that G/K is a Lie group and a 
neighbourhood YE U(G) such that VK c U. Thus we may assume again 
that G is a Lie group. In this case we have Fat(G) = Rep(G). 

1. We first prove Ku;-lim, q, = q. [Let h E Z’(G”) be real valued 
and C := supp(h). Since e E C there exists an open neighbourhood U E U(G) 
such that e fZ CU. Let E > 0. Then there exists a compact neighbourhood 
YE U(G) such that Vc U, Y= Y-l and Ih*(x)- h*(y-lx)) <E for all 
y E V and x E G. Let us choose a function g E 5?+(G) such that supp(g) c V 
and I gdo = 1. Then we have, for any x E G, 

I h* (4 - ( g * h*)(xl 
= 

/J V 
h*(x)g(y)dy-Jh*(y-‘x)g(y)dy 

< J g(y) I h*(x) - h*(y-‘x) I dy < & g(y) dy = s. 
V J V 
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Since (g * h*)(x-‘) = (t(x)g, h) we have I/r(x) - (L(x)g, h)] < E for all 
x E G. Furthermore supp({lg, h)) c supp(h)(supp(g))-* c CV. Since CV is 
compact and e & CV there exists a constant c > 0 such that p(x) > c for all 
xECV. Thus we get (h-(Lg,h)(<ec-‘q. 

By Proposition 6.3 there exist a constant d > 0 and an index o0 E I such 
that JGX u, dr], < d for all a > a,, and Icx 9 dq ,< d. 

e @ supp((lg, h)) and g ES%(L) imply (A,(L)g, h) = IGx (Lg, h) dv, and 
(A(L)g, h) = jcx (Lg, h)dq (cf. (LLC) in Section 3). Thus we can estimate 
I1‘w h drl, - (A&k, h)l = I J’cr P - (Lg, h>l&,l <EC-’ .kp 9 drl, Q-X-~ d 
for a > CL~ and analogously JIG’ h dq - {A(L)g, h)) < EC-‘d. Finally by (ii) 
we have lim,(A,(L)g, h) = (A(L)g, h). Since E > 0 was arbitrary we get 
lim, Icx k dq, = .fGx h dv. 1 

2. Let U E U(G) be closed. There exists a function f E g,(G) such 
that with g := (Lf, f) we have g(e) = 1, g* = g and supp(g) c U. Since 
fERO(L) we havef @fE&(L@L) (28, 4.4.1.101. Moreover (g-l)‘= 
8* - 2g + 1 = ((L 0 L)(f 0 f), (f@f)) - 2(Lf, f) + (El, 1). (Here E 
denotes the trivia1 representation of G on @.) Thus by (ii) we obtain 
lim, A,((g - I)‘) =A((g - I)‘). 

For any primitive orquadratic form B on B(G) the defining equation 
yields B((g- I)*) = 0 115, 4.4.61. Therefore we have A,((g- l)‘)= 
J,,(g- l)*dv, and A((g- l)‘)=jGx(g- l)*dq. Thus lim,j,,(g- l)*dq, = 
Icx (g - l)*dq. Taking part 1 into account this yields Kw-lim,(g - l)* I n, = 
(g- l)*,rl (4Ch ap. IX, p. 61, Proposition 9). 

If the boundary of U has q-measure zero it follows lim, r,r,(c U) = 
lim, [cLI (g - l)*dq, = Jcu (g - l)*dq = q(C U) 120, p. 401 (we have 
g(i) = 0 for all i E C U). 

Since C U is open we may consider x(C U) as a subspace of Z(G”). 
Thus keeping part 1 in mind we can conclude &,-lim, v,I C U = q ) C U. 

3. We finish the proof by exhibiting a basis U of closed 
neighbourhoods for e whose boundaries have q-measure zero. [For any 
r E R; the set U, := q-‘([O, r]) is a closed neighbourhood for e E G. By the 
definition of q~ the system (Ur),ERt is a basis for U(G). Since q is a Levy 
measure we have q(q)(]r, co [) = q(p-‘( Jr, co [)) = q(C U,) < co for all 
rElFq. Thus there exists an at most countable subset Z in IR; such that 
o(r,~)( jr}) = 0 for all r E R;\Z. For these I- the q-measure of the boundary of 
U, is zero since it is contained in p-‘((r)). Obviously U := (Ur)rER;p is also 
a basis for U(G).] I 

7. Convergence of Convolution Semigroups: Suflcient Conditions 

Again we consider a net (Su)n., in G(G) with S, = @~j~))~>~. A, and v, 
denote the generating functional and the Levy measure of S,, respectively. 



FOURIER ANALYSIS AND LIMITTHEOREMS 141 

PROPOSITION 7.1. Let G be a Lie projective group and let the following 
conditions be satisfied: 

(a) lim, 1 (A,(D)u, u)l < co for all D E Irr(G) and u E&(D). 

@I (II, I c u)os, is a compact net for any open U E U(G). 

Then (SaLI is a compact net in (G(G), EC). Moreover (qa)ael is a 
compact net in (J+(GX), Ku). 

Proof: By Remark 5.2, condition (a) is equivalent with 

(a’) ~,l(~,(D)~, v>l < co for all D E Irr(G) and u, v ER”(D). 
Without loss of generality let I be a universal net. We then have to show 

that @Jasl is KC-convergent and (~f,&~ is &,-convergent. 
1. Let G be a Lie group with canonical coordinates {xl,...,xpl valid in 

U, E U(G) adapted to the basis {Xi ,..., X,} of Y(G) and with Hunt function 
v. Id (P9 +), 5cAGlJ<p be the canonical decomposition of A,. (One 
should compare the arguments in (a) and (b) infra with those given in 
parts 3 and 4 of the proof of Proposition 6.3).) 

(4 BY Q,(g) := C 1,, ajy’(X,X,g)(e) there is defined a quadratic 
form on B(G). Let f := Re(Du, u), where D is a finite direct sum of 
irreducible representations of G and u E q(D). Then we have 

--Re(UD)u, u> = Q,(f (e) - f) + I [f(e) - f 1 h9 
GX 

and both summands on the right-hand side are non-negative. By condition 
(a) we have ihii, ] Re(A,(D)u, u)] < co; hence %i, Q,(f (e) - f) < co and 
ii%, jGx [f(e) - f ] dy, < co. By a proper choice of D and u (cf. 
Lemma 5.2) and taking into account condition (b) we obtain 

= Q,(v) < ~0 and 7 hm v dv, < ~00. n (I 5 GX 

But Q,(p) = 2 C, aiS) and the positive semi-definiteness of the matrix 
@~j91 < ijGp yield 

iii 1 ai?’ I < co for i, j=l,..., p. 
a 

(b) Let us choose D,, v, wk (1 < k < p) as in Lemma 5.3. If 
fk : = (D,v, wk) we have 

@,(Ddv, wd = U.fi) = UP) + Q&i> 

+ I [fk - fk(4 - 4 haa GX 

601/39/2-3 
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Applying condition (a) and the results of part (a) of the proof we obtain 7 
hm, ]@)I < 00 for i = l,..., p. 

(c) Without loss of generality we can assume 

sup la;*‘] < co, sup ]ujT’I < co, sup 
i v &a < 00 (l<i,j<p). a (I a G’ 

We recall that Z is a universal net. Hence there exist 

ai := lim a!“) , 7 b.. *= lima!?) 
I/’ (I V ’ 

a := lim (P&m. (I a 

Moreover by condition (b) there exists (for all open U E U(G)) 

(d) Let ?jU := qv 1 C (U-). If U, V E U(G) are open and U c V we 
have tft, I C(T) = fV. [Let f E Z&(T)). Since C(V) is open x&(v-)) 
may be considered as a subspace of x(C v) as well as of x(C U). Hence 
C%(f) = sv(f) = lim,(v, I C v)(f) = W&L I C Wf) = a&f> = %Wl 

Hence there exists a unique measure r~ E A+ (G”) such that r~ ] C(U-) = ff” 
for all open U E U(G). We have gU-lim, v, = r~. [Let f EX(G”). There 
exists an open U E U(G) such that suppdf) c C(V). Considering f also as 
an element of z(c(U-)) and x(C U) we obtain PDF) = q,(f) = r”(f) = 
lim,(r, I c v)(f) = lima ram1 

We have IGX rp dq < m; i.e., v is a Levy measure. [Let U E U(G) be 
open. Then Iccu-, P dv = I (v, I CV)) dff, < i (v I C U> ha = lima I@ I C u) 
d(v, I C u) < lim, JGX rp dy, = a < co. Hence JGx(p dy = sup{(~~-, rp dq I UE 
U(G) open} < a.]. 

If U E U(G) is open and if the boundary of U has v-measure zero we have 
gw-lim, q, I C U = 9 I*C U. [Let VE U(G) be open and I’- c U. Then we 
have C U c C(P) c C V and U-\U c C(V-). Hence 0 = q(U-\U) = 
ii”V\U> = vYw\u); i.e., the boundary of U has also qV-measure zero. 
Therefore Kw-lim, q, ] C V= qV implies Kw-lim, ‘I, ] C U = qv 1 C U [20, 
p. 401. But r~ ] C(V) = r&, = r,r, ) C(V) and C U c C(V) finally yield 
~Ylc~=?Iw 

Finally there exists a basis U of open neighbourhoods for e E G whose 
boundaries have q-measure zero (cf. part 3 of the proof of 
Proposition 6.4(iii)). 

(e) For any E > 0 there exists cij(s) := lima j,,,,, xixi dq, and 
1 cij(s)J ,< c for some c > 0 (1 < i, j < p). [There is a constant b > 0 such that 
lxixjl < bp. Th en im, jGx v, dv, = a yields the statements with c := ub.] 1 
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There exists c,, := limEi,, cU(s). [Let 0 < E’ < E. Then there exists U E U 
suchthatC:={xEGI&‘~V)(x)9&}cCU.Sinceg,-lim,tl,)CU=tl(C~ 
and since C is closed we obtain ]c(E) - c(E’)( = lim, ]jc,..V<r~,~, dq,] Q 
lim, jc ]xIx,] dq, Q jc ]xrx,( dq < b (O<(p<gv) dq. But the last term tends to 
zeroifs10.1 

(f) Let Uij := b, + {cij SO that 

u,~= li 
i” [ 

lim 
so Q 

@’ + +J x,x,& . 
O<rp<f 1 

Obviously (~ij)i<ii<~ is a real symmetric positive semidefinite matrix. Let us 
define (for all fE 8’(G)) 

Then A is the generating functional of a convolution semigroup S E G(G). 
We have (*) sup, IA,(f)] < co and (**) lim,A,(f)=Adf) for all 

f E g(G). 
[Let f E 8’(G) be real valued. Then for any sufficiently small U E U(G) 

we have the Taylor expansion 

f(X) =f(d + i xi(x)W$)(e> 
i=l 

+ f 1 t l xi(x) xj(x)(xlxjf)(t(x))9 

where x, r(x) E U. Hence If-f(e) - C x,(XJ)(e)] < c(p for some c > 0. 
Now (*) follows immediately from (c). 

Condition (**) is a consequence of the definitions of a, and ail, of gw- 
lim, q, ] C U = q( C U for all U E lI (cf. (d)) and of the Taylor expansion 
above. (This has been pointed out in [9, 196 ff.].)] 

Now Hazod has proved [ 11, p, 361 that conditions (*) and (**) imply K,- 
lim, S, = S. Hence in the Lie group case the proposition is proved. 

2. Let G be a Lie projective group. By 8 we denote the system of all 
compact normal subgroups H in G such that G/H is a Lie group. For HE 8 
let n, denote the canonical mapping of G onto G/H. Then 
%(S,) := hr~IQ)))t>O is a convolution semigroup in -@(G/H). If AZ is the 
generating functional of rrM(SJ and ~9 its Levy measure we obviously have 
A:(D) = A,@ o ?rM) for all D E Irr(G/H) and j,,,&dqf = .fGr (.fo nH)dtfa 
for all f E X((G/H)x). H ence conditions (a) and (b) also hold for the nets 
(dSJLa1* 
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By part 1 there exist convolution semigroups S,, = C+&>,-, in J’(G/H) 
with Levy measures r~” such that gC-lim, n,(S,) = S, and &,-lim, 6 = r,r” 
(all HE 8). Since the family (x~(S~))~~~ is consistent for each a E Z the 
same holds for the family (SH)HEB (i.e., for H, H’ E 9, H’ c H we have 
nHH,(SH,) = S,, where rrHHH, denotes the canonical mapping of G/H’ onto 
G/H). Hence there exists a unique convolution semigroup S = @,),>, in 
J’(G) with Levy measure r~ such that n&S) = S, (i.e., a&J =pr for all 
r> 0) for all HE !?j (cf. [15, 1.2.17, 1.2.181). Moreover lGX (fo n,)dy = 

! ,G,H,,fd$’ forf E X((G/H)X) and H E 8. 
Finally we have &,-lim, S, = S and KU-lima r~, = 7 since 

if~4fE-UG/W, HE91 is a dense subspace of (X(G), I] a I],). Thus 
the proposition is completely proved. 1 

COROLLARY 1. Let G be a Lie projective group, (Sa)as, a net in G(G) 
and S E G(G). Let A, and A be the generating finctionals and n, and n the 
Levy measures of S, and S, resp. Then the following assertions are 
equivalent: 

(i) KC-lima S, = S. 

(ii) (a) lim, (A,(D)u, u) = (A(D)& u) for all DE Irr(G) and 
u E X0(D). 

@I (rl, I c 3x,, is a compact net for any open U E U(G). 

Proof: (i) * (ii) We apply Proposition 6.4. Then condition (a) follows 
immediately. As for (b) let U E U(G) be open. Then there exists V E U such 
that V c U and Kw-lim, q, I C V= r~ I C I’. Hence (q, I C I’)crE, is a compact 
and hence tight net (cf. preliminaries). Given E > 0 there exists a compact set 

- 7 KC C V such that hm, q,(C v\K) < E. Then hm, q,(C v\(K n C U)) < E 
and K n C U is compact since C U is closed. Thus also (q, I C U) is a tight 
and hence compact net. 

(ii) * (i) Obviously condition (a) implies condition (a) of 
Proposition 7.1. Hence (Sa)asl is a compact net in (G(G), KC,). Let (SaCi))jcJ 
be a convergent subnet with limit S’ E G(G). If A’ is the generating 
functional of S’ we have by condition (a) (together with Remark 5.2) and 
Proposition 6.4(ii) (A’(D)u, v) = (A(D)u, v) for all D E Irr(G) and 
u, v E q(D). Since q(D) is dense in X(D) (Lemma 1.1 (ii)) this implies 
A’(D) ] q(D) = A(D) ] flO(D) for all D E Irr(G). Proposition 4.2 yields 
S’ = S. Thus we must have gC-lim, S, = S. 1 

COROLLARY 2. We keep the notations of Corollary 1. Then the following 
assertions are equivalent: 
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(0 (SOL, is a compact net in (G(G), KC). 

(ii) (a) l%%, ](A,(D)u, u)] < co for all D E Irr(G) and u E 4(D). 

@I 01, I c v),,, is a compact net for any open U E U(G). 

Proof. (i) + (ii) By Corollary 1 above conditions (a) and (b) hold for 
any universal subnet of (S&,. Since a net of measures is compact iff any 
of its universal subnets is compact conditions (a) and (b) also hold for 
(SaLI’ 

(ii) * (i) This is Proposition 7.1. 1 

COROLLARY 3. Let G be a Lie projective group and 2 a subset of G(G). 
For any S E 2 let A, denote the generating functional of S and qs its L&y 
measure. Then the following assertions are equivalent: 

(i) 2 is relatively compact in (G(G), gC). 

(ii) (a) sup{((A,(D)u, u)l IS E 2} < CO for all DE Irr(G) and 
u E 4(D). 

(b) lMCWI=~I is relatively K,-compact for any open 
U E II(G). 

Proof: This follows immediately by Corollary 2 since a set Y in a 
completely regular space X is relatively compact iff any net in Y is a 
compact net. I 

Remark. On a locally compact Abelian group G our compactness 
criteria for subsets of (G(G), K,) yield the compactness conditions of 
Parthasarathy for infinitely divisible probability measures on G [20, IV, 
Theorem 9.11. This can be seen in the following way: 

Let (@)) ae, be a net of infinitely divisible measures ,D(“) E @(G) without 
idempotent factors. Using Fourier transformation it can be easily proved that 
there exists a unique convolution semigroup S, = (v~“‘)~>~ E G(G) of 
symmetric measures such that vy) =,uta) *pta) (a E I). Let p(a) have the 
Parthasarathy representation (x,, F,, p,) (20, IV, Theorem 7.11. If A, 
denotes the generating functional of S, then we obviously have A&) = 
2LfPex- 11 dF,-d.xN f or all characters x of G. Moreover rlo = 
(F, + F=) 1 GX is the Levy measure of S,. 

Let us now assume that there exist elements y, E G such that the net 
(D(“) * E,,&, K,-converges to a measure p E J’(G) without idempotent 
factors. Applying Fourier transformation we obtain the existence of a 
convolution semigroup S = (v,),>O E G(G) with v1 =p * d such that gc,- 
lim, S, = S. Hence Corollary 3 of Proposition 7.1 yields Parthasarathy’s 
result [20, IV, Theorem 9.11. 



146 EBERHARD SIEBERT 

8. Infinitesimal Systems of Probability Measures 

Let 3 = Olrzk)k=l,...,k,;n>l be a (triangular) system of probability measures 
on the locally compact group G. For any n E N we define 
Pu, :=Pu,I * -.a * rllnk, and call 01,),~, the sequence of row products of 3. 

‘3 is said to be infinitesimal if we have 

for all u E U(G). 

3 is said to be commutative if we have 

pnk * I% =&I/ * pnk for k, 1 = l,..., k, and for all n E N. 

3 is said to be convergent with limit p if we have 

,u E < H’(G) and gw-liF p, = p. 

LEMMA 8.1. 3 is infinitesimal if and only iffor any D E Irr(G) and for 
all u E q(D) we have 

(1) 

Proof. 1. Let 3 be infinitesimal. For D E Irr(G) and u E q(D) we 
define 1, E { l,..., k,} by [l$,,,(D)u - u ]I= max{I]$,k(D)u - u I( 11 < k < k,}(all 
n E N). By assumption we have lim, ,u,& U) = 0 for all U E U(G), i.e., Kw- 
lim,p”,, = E,. But this implies lim, II,t?,t,(D)u - u II = 0. 

2. We assume (I). Let UE U(G). We define 1, E { l,..., k,} by 
,uu,,,(C 17) := max{p,,,(C U) I 1 <k < k,} (all n E N). By (I) we have 
lim, ]I ,t$t,(D)u - uI] =,O for all D E Irr(G) and u E X0(D). Lemma 2.1 yields 
gw-lim, pnln = E, and thus lim, ,u,,,(C U) = 0. 1 

We define &,, := &,k - Eev v,k := exp(&k) (1 < k < k,) and 
v -=v n* nl * .‘. * Vnk , A,, := Et-, Ank, K ,I := ckk”_,a%k* 3, := (%k)k=l,...,k.;n>l 

is called the accompanying system of 3; its sequence of row products is 
(VJ,, 1. If 3 is commutative 3, is commutative too and we have 
v, = exp(A,) (n E N). 3, is infinitesimal if and only if 3 is infinitesimal. 
[This follows from vnk > eP1pnk respectively from I] Cnk(D)u - u )I < 
II,&,k(D)u - u I] together with Lemma 8.1.1 

PROPOSITION 8.1. Let 3 be a commutative and inJnitesima1 system 
which satisfies‘ the condition 

(B) F k$l lI&(D)u - UlI < 00 for all D E Irr(G), u E ZO(D). 
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Then we have lim, @,(D)u, u) - (F,,(D)u,u)( = 0 for all D E Irr(G), 
u E ZO(D) and u E Z(D). 

Proof: We fix a representation D E Irr(G) and define Tnk := 
,&(D) - D(e) (for all k, n). Then we have ]( T,,kll Q 2. Furthermore with 
S,, :=4,,(D) ...P,,k-,(D)~~n,k+,(D) B.. fink,(D) we have IIS,,AI < 1 and 
(since 3 is commutative) 

P,(D) - fin(D) = % S,,(D)cU^,,(D) - ~nnk(D))- 
k=I 

Finally we define 

We have [lAnkI < l/2! + (1/3!)2 + (1/4!)2’ + ... < e* and Pnk(D) - C,,k(D) = 
Pnk(D) - [D(e) + T,, + (1/2!)TL,, + *** ] = -ki,,?-$. Obviously A,,k, s,, 
and Tnk are pairwise permutable (1 < k < k,). 

Let u E RO(D), u E Z(D). We have the following estimation: 

lW,P) - W)lu, u>l 

= 1 2 (snk[~nk(D) - t,,(D)h 0) 1 
k=l 

4 2 I(&kAnkckU, u>l = : I(S,,kAnkT,,k& ck”>j 
k=l k=l 

< 2 lIs,,II IlAnkll IIT,,fill II%“ll <e2 9 iITn,Ull II~k”ll- 
k=l k=l 

We are left to show lim, Cp=i I] Tnkull I] qku]] = 0: Condition (B) yields the 
existence of a constant c > 0 such that Cp=, ]I Tnku 1) < c for all n E IN. Thus 
it suffices to prove lim, max {]I q,u ]I ] 1 < k < k,} = 0: Since 3 is 
infinitesimal the system @,,k)k=,+A..,k,:n>, is infinitesimal too. Now ck = 
pnk(D)* - D(e) =,&,(D) -D(e) and part 1 of the proof of Lemma 8.1 yield 
the statement. I 

COROLLARY. Let G be a Lie projective group and let 3 be a commutative 
and iqf?nitesimal system in M’(G) satisfying Eii, Ckk, 1 &k(c U) < co for all 
UE U(G) and the condition 

WB) “.” 2 Icu^,,(D)U -u, u)l < CO for all D E Irr(G), u E &JO). 
k=l 

Then 3 satisfies condition (B); hence the conclusion of Proposition 8.1 is 
uaiid. 



148 EBERHARD SIEBERT 

ProoJ This is an immediate consequence of the corollary of Lemma 5.4 
since any D E Irr(G) can be factorized over a Lie quotient group of G (cf. 
Section 6). 1 

Remark 1. Let 3 be a commutative and infinitesimal system satisfying 
condition (B). Then 3 enjoys the following property: 

(C) 3 is convergent if and only if the accompanying system 
3, is convergent, and in the affirmative case their limits coincide. 

[This is an immediate consequence of Proposition 8.1 and Lemma 2.1.1 

Remark 2. Proposition 8.1 becomes incorrect if we substitute condition 
(B) by the weaker condition 

-7 - - -  

(B’) l’,” ;’ (j,JD)u -u) < 00 
II k=l /I 

for all D E Irr(G), u E ZO(D). 

Let us consider the following counterexample: 
Let G = R and ,u,, := E,..~, where x,,~ := (-l)“/$z for all k = l,..., k, := n 

(n E N). Obviously the system 3 := gnk) is commutative and infinitesimal. 
We have x, :=x,i + a.. + x,, = 0 for even n and x, = - l/fi for odd n, 
thus lim x, = 0 and consequently lim ,u,, = limax, = E,,. Therefore 3 is also 
convergent. Furthermore we have pnk(y) = exp[iy((-l)k/fi)]; hence 
Xi=1 [pnk(y) - 1] = n[cos(y/+) - 1] for even n resp. =(n - 1) 
[cos(y/&) - l] + [exp(-iy/fi) - 1] for odd n. But lim n(1 - cos(y/$)) 
= y2/2. Consequently we have lim, xi=, [pnk(y) - I] = - y2/2 for all 
y E R.In particular, condition (B’) is satisfied for 3. On the other side we get 
lim F,(y) = 1 and limA(y) = lim exp{Ci, 1 [pnk(y) - 11) = exp(-y2/2) for 
all y E R. Therefore lim l&,(y) - $,( y)l = 1 - exp(-y2/2) > 0 for y # 0. By 
Proposition 8.1 condition (B) cannot be satisfied for 3. 

Remark 3. Let the system 3 = (u,,,) be identically distributed, i.e., 
P nl = . . . =pnk 

5 
for any n E N, and lim, k, = co. Obviously 3 is 

commutative. satisfies condition (B) if it satisfies condition (B’) and in the 
affirmative case 3 is infinitesimal. [We have C:L 1 I[fink(D)u - u (I= 
k, II&,(D)u - u[I = 11 C&i (LI,~(D)u - u)]l, i.e., the equivalence of (B) and 
(B’) for 3. Furthermore if 3 satisfies (B) we get lim II,Gnl(D)u - u(I = 0 for 
all D E Irr(G), u E X0(D) (observe lim k, = co). Hence 3 is infinitesimal by 
Lemma 8.1. ] 

Remark4. Let G be a Lie group with canonical coordinates {x,,...,xp} 
and Hunt function (D as usual (cf. Section 5). Wehn [29] derived 
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Proposition 8.1 (for a commutative and infinitesimal system c1 = (&J) 
assuming the validity of the following two conditions: 

W2) 
k, Kiir 

’ k?, 
for i = l,..., p. 

But (Wl) and (W2) imply condition (B) by the corollary of Lemma 5.4. 
Thus Wehn’s result follows from Proposition 8.1. 

Remark 5. Let 3 = bnk) be a commutative and infinitesimal system in 
M’(G). One may ask for conditions other than (B) that imply property (C) 
for 3. There are the following two interesting results: If G is totally discon- 
nected and in addition compact or Abelian then 3 always has property (C). 
Conversely if any system 3 has property (C) then G is necessarily totally 
disconnected [ 10, Theorem 2.11. 

We are now going to apply our compactness criteria from Section 7 to 
triangular systems of probability measures. 

PROPOSITION 8.2. Let G be a Lie projective group and let 
3 = @nk)k=l.....k,;n>l be a commutative and iltfinitesimal system in A'(G) 
satisfying condition (WB). Moreover for any open UE U(G) let 
(x2=, ,u,, 1 C v),,> 1 be a compact sequence. 

Then the sequences (,u,),.+~ and (I),),>~ of row products of 3 and 3,, 
respectively, are untformly tight. Their limit points coincide, and any of these 
limit points is embeddable into a convolution semigroup. 

Proof Let us define K, := Ck= r pu,, and vj”) := exp t(lc, - K,(G)&,) 
(n E N, t > 0). Obviously A ~ := K, - K,(G)&, is the generating functional of 
the Poisson semigroup S, := (v!“))~>~ and K, ] GX is its Levy measure. By 
Proposition 7.1 (S,),, I is a compact sequence in (G(G), EJ. Hence the 
sequence (vY))~> I of row products of the accompanying system 3, of 3 is 
compact and thus uniformly tight. 

Let us assume that @,),.+r is uniformly tight too. Then by the corollary of 
Proposition 8.1 the limit points of 01,) and (vy’) coincide. But since the 
sequence (S,),, 1 is compact any limit point of (@I) lies on a convolution 
semigroup. Thus we are left to show that @,,),>r is uniformly tight. 

Let H be a compact normal subgroup in G such that G/H is a Lie group 
and let n denote the canonical mapping of G onto G/H. Since H is compact 
it suffices to prove that the sequence (Q,)) is uniformly tight. Obviously 
(n(vp’)) is uniformly tight. Thus without loss of generality let G be a Lie 
group. Then G and therefore also (Ml(G), KJ are metrizable [20, p. 431. We 
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choose a subsequence (u,,) of 01,). Then there is a further subsequence (u,,,,) 
of (u,,) such that K;-lim VI”“) = v exists. By Proposition 8.1 we have 
lim(@In,,(D)U, U) = lim(~“‘(D)u, u) = (v^(D)u, o) for all D E Irr(G), 
u, v E q(D). Now Lemma 2.1 implies &,-limp,,,, = V. Hence 01,) is a 
compact sequence and therefore uniformly tight. 1 

Remark 6. It should be mentioned that for root compact groups some of 
our convergence theorems can be slightly improved (cf. [ 15, 21 I). If G is a 
compact group the last assumption of Proposition 8.2 follows from 
condition (WB). 

9. Central Limit Theorem and Law of Large Numbers 

Let G be a locally compact group. A family (j&,, of non-degenerate 
measures in J’(G) is called a Gaussian semigroup if we have ,u, * pI = ,D~+~ 
for all s, t > 0, and lim,l,(l/t)pu,(C 17) = 0 for all U E U(G). A (non- 
degenerate) measure (u EM’(G) is called a Gaussian measure if there exists 
a Gaussian semigroup (‘,u,),>~ in X(G) such, that p, =p [ 15, 6.2.11. 

Remark 1. Any Gaussian semigroup is a convolution semigroup. 

Remark 2. If (u,),>~ is a Gaussian semigroup then any pt, t > 0 is a 
Gaussian measure and is supported by the connected component of e in G 
[ 15, 6.2.31. 

Remark 3. Let (+a&, be a non-degenerate convolution semigroup in 
M(G) with canonical decomposition (A, ,A*, q). (u,),>~ is a Gaussian 
semigroup if and only if q = 0 or equivalently if lim,l,(l/t)pu,df) = 0 for all 
f E g’(G) with e & suppdf) (cf. Section 3). 

PROPOSITION 9.1. Let G be a Lie projective group and let (S&, be a 
net in G(G). Let n, be the Levy measure of S,. We assume that the net 
(S,LI gc-,-converges to a non-degenerate semigroup S E G(G). Then the 
following assertions are equivalent: 

(i) S is a Gaussian semigroup. 
(ii) lim, s,(c U) = 0 for all UE U(G). 

ProoJ This follows immediately from Proposition 6.4(iii) and Remark 3 
above. 1 

COROLLARY. Let G be a locally compact group and (S,),,, a net of 
Gaussian semigroups in 6(G) that gc-converges to a non-degenerate 
semigroup S E G(G). Then S is a Gaussian semigroup too. 

ProoJ By Remark 2 we can assume that G is connected and hence Lie 
projective. But then Proposition 9.1 and Remark 3 apply. i 
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Remark 4. This corollary was first proved by Hazod (cf. [ 15, 6.2.231). 

PROPOSITION 9.2. Let G be a Lie projective group and let (IC,),~, a net 
in Mb,(G) which satisfies the following two conditions: 

(a) Ti;;;, ((&(D)u - K,(G)u, u)] < co for UN D E Irr(G), u E X0(D). 
(b) lim, KJC U) = Ofor all UE U(G). 

For any a E I we define the Poisson semigroup S, = (v{~‘)~>~ by vj”’ := 
eXpt(K, - K,(G)&,) (d t>o). 

Then (KJael is a compact net in (G(G), K,). Any of its limit points is a 
Gaussian semigroup or a degenerate semigroup. 

Proof: A p := K, - K,(G)&, is the generating functional of S, and K, ] G” 
is its Levy measure. Hence by Proposition 7.1 (So)os, is a compact net in 
(G(G), g,). 

Without loss of generality, now let (S&, be a universal net that KC- 
converges to S E 6(G). Let g be the Levy measure of S. By condition (b) 
and Proposition 6.4(iii) we have q = 0. Hence by Remark 3 the semigroup S 
is Gaussian or degenerate. 1 

Now we are ready for a version of the central limit theorem. 

PROPOSITION 9.3. Let G be a Lie projective group and 3 = 
Olnk)k= I ,...,k,.n>, a commutative system in A”(G) satisfying condition (WB). 
Moreover we assume 

for all U E U(G). 

Then the sequence (,u,),> 1 of row products of 3 is uniformly tight and any 
of its non-degenerate limit points is a Gaussian measure. 

Proof. First of all we remark that condition (G) implies the 
infinitesimality of 3. 

Let us define K, := = xi:, &,&, vj”) := exp t(K, -K,(G)&,) and 
S, := (~j”)),>~ (n E n\J, t > 0). By Proposition 8.2 the sequence @,),>, is 
uniformly tight and has the same limit points as (vy)),,> I . But by 
Proposition 9.2 the sequence (S,) is compact and its limit points are 
Gaussian or degenerate semigroups. 1 

Remark 5. Proposition 9.3 admits the following partial converse: Let G 
be a locally compact group and v EM(G) a Gaussian measure. Then there 
exists a commutative system (,u,~)~= I,...,k,;n>, in M’(G) satisfying 
conditions (B) and (G) and convergent with limit v. [There exists a Gaussian 
semiww Wt>o in X’(G) with generating functional A such that v, = v. 
We define pnk : = vi,, for k= l,..., k, := n (all n E N). Since 
lim n[v^&D)u - u] = A(D)u (D E Irr(G), u E S$(D)), lim nv,,,(C v> = 0 
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(U E U(G)) and u$,, = v(n E N) the system (u,,) obviously has the desired 
properties.] 

Our version of the law of large numbers is merely a special case of 
Proposition 9.3. 

PROPOSITION 9.4. Let G be a Lie projective group and 3 = 
CUnk)k= I . . . ..k..n> 1 a commutative system in M’(G) satisfying conditions 
(WB), (G) and 

(D) lim t’ Re@^,,(D)u -u,u)=O for all D E Irr(G), u E ZO(D). 
n k:l 

Then the sequence (uJ,,>, of row products of 3 is uniformly tight and has 
only degenerate limit points. 

Proof. We keep the notations of the proof of Proposition 9.3. But by this 
very proposition and its proof the sequence @,),>, is uniformly tight and 
has the same limit points as the sequence (vy))“>, . Hence it suffices to show 
that any limit point of the sequence (S,J”>,, S, := (v!~)) in G(G) is a 
degenerate semigroup. 

Let tnW,,, be a universal subnet of N and S := gC-lim, SnCaj. If 
A, = IC,, - K,,(G)&, and A denote the generating functionals of S, and S, 
resp., we have lim,(A ,&D)u, u) = (A(D)u, u) for all D E Irr(G), 
u E X0(D) (Proposition 6.4(ii)). On the other hand condition (D) yields 
lim, Re(A,JD)u, u) = 0. H ence Re(A(D)u, u) = 0 for all D E Irr(G), 
u EZ,(D). By Proposition 4.3(i) S is a degenerate semigroup. I 

COROLLARY. Let G be a Lie projective group and 3 = (&k)k=l....,k,:n>l 
a commutative system in M’(G) satisfying conditions (WB), (G) and 

(D’) lim * l~?,,~(D)u - u, u) = 0 for all D E Irr(G), u E X0(D). 
n k:l 

Then we have gw-lim,u, = E, for the sequence (u,),,>, of row products 
of% 

Proof: Keeping the notations of the proof of Proposition 9.4 we observe 
that condition (D’) and Proposition 4.3(ii) imply S = (E,). Hence the 
sequence (S,) has only one limit point, namely, the trivial semigroup, i.e., gC- 
lim S, = (E,). I 

Remark 6. If the system CJ is identically distributed (Remark 8.3) then 
condition (D’) obviously implies condition (WB). 
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Remark 7. On Lie groups a central limit theorem and a law of large 
numbers have already been proved by Wehn [29]. The results are contained 
in [9, Theorems 4.4.2, 4.3.la]. The corollary of Lemma 5.4 shows at once 
that the conditions posed on the system Cr by Wehn imply our conditions 
(WB) and (G) in Proposition 9.3, respectively, (WB), (G) and (D) in 
Proposition 9.4. 
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