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Ferulic acid is a potent ubiquitous plant antioxidant. Its incorporation into a topical solution of 15% L-ascorbic acid

and 1% a-tocopherol improved chemical stability of the vitamins (CþE) and doubled photoprotection to solar-

simulated irradiation of skin from 4-fold to approximately 8-fold as measured by both erythema and sunburn cell

formation. Inhibition of apoptosis was associated with reduced induction of caspase-3 and caspase-7. This anti-

oxidant formulation efficiently reduced thymine dimer formation. This combination of pure natural low molecular

weight antioxidants provides meaningful synergistic protection against oxidative stress in skin and should be

useful for protection against photoaging and skin cancer.
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Ultraviolet (UV) radiation generates oxidative stress in skin
creating photodamage. Mechanistically, a photon of radia-
tion interacts with trans-urocanic acid in skin generating
singlet oxygen (Hanson and Simon, 1998). This reaction
occurs maximally at about 345 nm. Singlet oxygen can
generate the entire oxygen free radical cascade with oxi-
dation of nucleic acids, proteins, and lipids, resulting in skin
cancer and photoaging changes. The body deals with oxi-
dative stress by employing a series of low molecular weight
antioxidants that neutralize the reactive oxygen species
before they can produce oxidative changes in tissues
(Podda and Grundmann-Kollmann, 2001). In skin the pre-
dominant antioxidant is vitamin C; vitamin C protects the
fluids of the body (Shindo et al, 1994). The lipid phase in-
cluding cell membranes and stratum corneum is protected
by vitamin E (Thiele, 2001). Plants make vitamins E and C to
protect themselves from sunlight (Smirnoff et al, 2001; Mu-
nne-Bosch and Alegre, 2002). Most animals make vitamin C
but humans have lost this ability; a necessary gene is mu-
tated (Nishikimi et al, 1994). Therefore, humans typically get
vitamins C and E from diet and/or vitamin supplements.
Body controls related to absorption, metabolism, and dis-
tribution, however, limit the amounts that can eventually be
delivered into skin (Herrera and Barbas, 2001; Padayatty
et al, 2003). Moreover, when these vitamins neutralize oxi-
dative stress in skin, they are used up (Darr et al, 1992). With
daily oral supplements of 3 g vitamin C and 2 g vitamin E,
protection against photodamage in skin is increased ap-
proximately 1.5 times; either vitamin alone is ineffective
(Fuchs and Kern, 1998).

New formulation methods make it possible to augment
protection in skin against photodamage using topical vita-
mins C and E, achieving significantly greater protection than
ever was possible by ingestion. We have previously re-
ported that a stable aqueous solution of 15% vitamin C
(L-ascorbic acid) and 1% vitamin E (a-tocopherol) when
applied topically to skin can provide 4-fold photoprotection
for skin (Lin et al, 2003). The solution must be formulated at
a pH of 3.5 or lower for the vitamin C to be absorbed into
skin: at this pH the vitamin C is protonated and the molecule
is uncharged (Pinnell et al, 2001). The formulation concen-
trations were maximized for percutaneous absorption. Fif-
teen percent L-ascorbic acid saturates skin in 3 d; its tissue
half life is about 4 d (Pinnell et al, 2001). Once inside skin it
cannot be removed by washing or rubbing. Vitamins C and
E interact synergistically to protect each other and increase
overall effectiveness (Pinnell et al, 2001).

In an attempt to improve the stability of this solution of
vitamins C and E, we explored the effectiveness of a series of
known low molecular weight antioxidants that are available in
chemically pure form. Chemical stability was determined after
1 mo at 451C. We have learned that addition of ferulic acid, a
ubiquitous plant antioxidant, provided stability of more than
90% for L-ascorbic acid and 100% for a-tocopherol (Zielinski
and Pinnell, 2004). A concentration of 0.5% gave the best
combination of formulation stability and effectiveness.

We were surprised to find that in addition to improving
stability, adding 0.5% ferulic acid to the solution of 15% L-
ascorbic acid and 1% a-tocopherol doubled photoprotec-
tion when applied topically to skin from 4- to 8-fold. In this
article, we detail these photoprotection experiments, show
reduction in thymine dimer formation generated by UV ra-
diation and demonstrate reduction of apoptosis in keratin-
ocytes with lowered caspase-3 and caspase-7 generation.This work was done in Durham, North Carolina, USA.

Abbreviations: MED, minimal erythema dose; UV, ultraviolet
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Results

Antioxidant protection factor is designed to reflect relative
photoprotection to solar-simulated radiation provided by
daily topical applications of the solution for 4 consecutive
days. Both 0.5% ferulic acid alone and 15% L-ascorbic acid
þ1% a-tocopherol together provided about 4-fold protec-
tion (Fig 1a, b). Similar photoprotection has been previously
reported for 15% L-ascorbic acid þ 1% a-tocopherol (Lin
et al, 2003). The combination of 15% L-ascorbic acid, 1% a-
tocopherol, 0.5% ferulic acid provided approximately 8-fold
protection and was statistically different than ferulic acid
alone or the combination of vitamins C and E (Fig 1a, b).
These observations were confirmed by colorimetric meas-
urements of erythema (Fig 1c) and sunburn cell counts (Fig
1d). Colorimetric measurements of combination of vitamins
C, E, and ferulic acid were statistically different from control
and vehicle at all minimal erythema dose (MED) tested; dif-
ferent from ferulic acid alone at 2 � , 6 � , and 8 � MED;

and different from combination vitamins CþE at 4 � and
6 �MED. Sunburn cell counts of combination of vitamins C,
E, and ferulic acid were statistically different from control
and vehicle at all MED tested and different from ferulic acid
alone as well as from the combination of vitamins CþE at
2 � , 4 � , 6 � , and 8 � MED.

In an effort to explore the mechanism of apoptosis in
these experiments, western blots were carried out to de-
termine levels of caspase-3 and its downstream effector,
caspase-7. Figure 2a reveals protection by antioxidant so-
lutions of activation of caspase-3 by 4 � and 8 �MED of
solar-simulated radiation. Figure 2b shows relative quanti-
fication of antioxidant protection of solar-simulated radia-
tion. With 8 �MED of irradiation, protection of vitamin C, E,
and ferulic acid is almost complete and is better than
vitamin C and E or ferulic acid alone. Figure 2c shows
activation of caspase-7 by 4 � and 8 � MED of solar-sim-
ulated radiation and protection by antioxidant solutions.
Figure 2d shows relative antioxidant protection, which is

Figure 1
Photoprotection by topical antioxidant formulations. Skin was pretreated with vehicle, 0.5% ferulic acid, 15% vitamin C and 1% vitamin E, 15%
vitamin C and 1% vitamin E, and 0.5% ferulic acid and irradiated with solar-simulated radiation 2 � to 10 � minimal erythema dose (MED) at
2 � MED intervals. Evaluation was carried out 1 d later. (a) Visual erythema of photoprotection provided by antioxidant solutions. (b) Antioxidant
protection factor of antioxidant formulations. �po0.01 vs 0.5% ferulic acid and 15% Cþ1% E (n¼ 6). (c) Colorimeter measurements of pho-
toprotection by antioxidant solutions. �po0.05 vs control and vehicle, ��po0.05 vs 0.5% ferulic acid, ���po0.05 vs 15% Cþ 1% E (n¼ 6). (d)
Sunburn cell measurements of photoprotection by antioxidant solutions. �po0.01 vs control and vehicle, ��po0.01 vs 0.5% ferulic acid and 15%
Cþ 1% E (n¼ 6).
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virtually complete by vitamins C, E and ferulic acid. Figure 3
shows immunohistochemistry of activation of caspase-3 by
4 � MED of solar-simulated light. Activation occurs in both
epidermis and dermis (Fig 3a–c); in epidermis, activation is
particularly strong in the basal layer. Ferulic acid alone (3b)
and vitamins CþE (3c) provide partial protection but vita-
mins C, E, and ferulic acid (3d) provides virtually complete
protection.

We have previously demonstrated that topical vitamins
CþE could prevent UV-induced thymine dimer formation
(Lin et al, 2003). In order to determine whether the addition
of ferulic acid augmented this protection, we investigated
the relative dose–response protection of these formulations
(Fig 4). With 4 � MED of solar-simulated irradiation, both
control and vehicle-treated skin showed virtually uniform
nuclear fluorescence in both epidermis and papillary dermis
(Fig 4a). After 4 �MED, ferulic acid-treated skin was still
positive in approximately 25% of both epidermis and de-
rmis (data not shown). As previously reported, vitamins
CþE almost completely protected skin irradiated with
4 � MED (data not shown). After 8 �MED, ferulic acid-
treated skin was about one third positive (Fig 4b) and
vitamin CþE-treated skin was about 15% positive and
fluorescence was less intense (Fig 4c). Skin treated with
vitamins C, E, and ferulic acid was completely negative
(Fig 4d).

Discussion

Ferulic acid not only provides increased stability to a so-
lution of vitamins CþE, but also adds a substantial

synergistic photoprotection, essentially doubling its
efficacy. Moreover it provides additional protection against
thymine dimer formation that should prove useful for pre-
vention of skin cancer. These studies support the hypoth-
eses that UV radiation produces apoptosis by triggering the
caspase cascade in both epidermis and dermis, and topical
vitamins C, E, and ferulic acid can protect against caspase
activation.

Ferulic acid is a potent phenolic antioxidant found ubiq-
uitously and at high concentrations in plants (Graf, 1992;
Rice-Evans et al, 1996; Ou and Kwok, 2004). It serves to
cross-link polysaccharides and proteins during lignin cell
wall synthesis (Wallace and Fry, 1994; Mathew and Abra-
ham, 2004) and may be important for the health effects of
bran; corn bran contains 3.1% ferulic acid (Mathew and
Abraham, 2004). It is abundant in the diet and has low tox-
icity (Ou and Kwok, 2004; Zhao et al, 2004). Ferulic acid is a
potent antioxidant with synergistic interactions with ascor-
bic acid (Trombino et al, 2004). It readily forms a resonance
stabilized phenoxy radical which accounts for its potent
antioxidant potential (Graf, 1992). Ferulic acid protected
membranes from lipid peroxidation and neutralized alkoxyl
and peroxyl radicals (Trombino et al, 2004). It protected
against iron-induced oxidative damage (Hynes and O’Coin-
ceanainn, 2004). Ferulic acid scavenged hydroxyl radical
(Ogiwara et al, 2002; Wenk et al, 2004), nitric oxide (Wenk
et al, 2004), peroxynitrite (Pannala et al, 1998; Dinis et al,
2002), and superoxide radical (Kaul and Khanduja, 1999;
Kikuzaki et al, 2002). It was antimutagenic (Yamada and
Tomita, 1996; Ferguson et al, 2003), protected against
menadione-induced oxidative DNA damage (Burdette et al,
2002) and demonstrated anticarcinogenic effects in animal

Figure2
Activation of caspase-3 and ca-
spase-7 by solar-simulated irra-
diation and relative protection
by antioxidant formulations. Skin
was pretreated with vehicle, 0.5%
ferulic acid, 15% vitamin C and 1%
vitamin E, 15% vitamin C and
1% vitamin E, and 0.5% ferulic
acid and exposed to 4 � and 8 �
minimal erythema dose (MED).
Levels of of caspase-3, caspase-
7, and a-tubulin were determined
after 24 h. Relative caspase-3 or
caspase-7 levels corrected for
a-tubulin are presented (n¼ 3).
(a) Western blot of caspase-3 after
4 � and 8 � MED and relative
antioxidant protection. (b) Densito-
metric levels of caspase-3 and rel-
ative antioxidant protection (n¼ 3).
(c) Western blot of caspase-7 after
4 � and 8 � MED and relative
antioxidant protection. (d) Densito-
metric levels of caspase-7 and rel-
ative antioxidant protection (n¼3).
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models of pulmonary (Lesca, 1983) and colon carcinoma
(Kawabata et al, 2000; Wargovich et al, 2000). Topical
application inhibited 12-O-tetradecanoylphorbol-13-ace-
tate (TPA)-induced ornithine decarboxylase activity and de-
creased TPA-induced skin tumor formation (Huang et al,
1988). Topical application of ferulic acid inhibited UVB-in-
duced erythema (Saija et al, 2000). In a mouse model of
multiple sclerosis, oral ferulic acid had a striking effect on
syncytin-mediated inflammation and death of oligodendro-
cytes induced by redox reactants (Antony et al, 2004).
Ferulic acid absorbs UV radiation with an absorption max-
imum at 307 nm (log e¼4.19) (Graf, 1992). Theoretically this
absorption could result in a sunscreen effect providing top-
ical protection against UV radiation. Our studies revealed no
evidence of a dose–response effect to support a sunscreen
mechanism (Fig 5).

The mechanism of ferulic acid’s stabilizing effect on vi-
tamins C and E is unknown. It would not be expected to
directly protect these vitamins since its redox potential
(0.595) is appreciably higher than vitamin C (0.282) or vita-
min E (0.48) (Lu and Liu, 2002). Since it provides protection

against vitamin C degradation, it may preferentially interact
with pro-oxidative intermediates, or serve as a sacrificial
substrate. It is also possible that its interactions may be
enhanced at the low pH of the formulation. Ferulic acid’s
effect on photoprotection is most likely related to its anti-
oxidant activity. It had no appreciable effect on ascorbic
acid absorption (data not shown).

Ferulic acid augments the protection of vitamins CþE
previously demonstrated to prevent UV-induced thymine
dimer formation when applied topically to skin (Lin et al,
2003). A recent study of actinic keratoses and squamous
cell carcinomas of skin using laser capture microdissection
reveals 8-oxo guanine mutations in the basal germinative
layer and thymine dimer mutations at suprabasal locations
(Agar et al, 2004). The results support the hypothesis that
UVA-induced oxidative DNA modifications are responsible
for the carcinogenic mutations in stem cells and UVB-in-
duced mutations promote the carcinogenic process. The
hypothesis fits with the superficial penetration of UVB and
the deeper penetration of UVA into skin. Although we have
not yet been able to measure the effect of antioxidants on
UV-induced 8-oxo guanine formation, protection would be
predicted. The demonstrated protection of topical applica-
tion of vitamins C, E, and ferulic acid against UV-induced
thymine dimer formation supports its use for the prevention
of skin cancer.

Recent studies substantiating the shortcomings of sun-
screen protection support the need for a different approach

Figure 3
Immunochemistry of activated caspase-3 after solar-simulated ir-
radiation. Skin was pretreated with 0.5% ferulic acid, 15% vitamin C
and 1% vitamin E, or 15% vitamin C and 1% vitamin E, and 0.5%
ferulic acid and exposed to 4 � minimal erythema dose. After 24 h
formalin-fixed tissues were stained with antibodies to activated ca-
spase-3. (a) Vehicle-treated irradiated skin; (b) 0.5% ferulic acid-treated
irradiated skin. (c): 15% vitamin C and 1% vitamin E-treated irradiated
skin; (d) 15% vitamin C and 1% vitamin E, and 0.5% ferulic acid-treated
irradiated skin.

Figure4
Immunochemistry of thymine dimers after solar-simulated irradi-
ation. Skin was pretreated with vehicle, 0.5% ferulic acid, 15% vitamin
C and 1% vitamin E, or 15% vitamin C and 1% vitamin E, and 0.5%
ferulic acid and exposed to 4 � or 8 � minimal erythema dose (MED).
After 24 h formalin-fixed tissues were stained with antibodies to thy-
mine dimers. (a) Vehicle-treated skin after 4 � MED; (b) 0.5% ferulic
acid-treated skin after 8 � MED; (c) 15% C and 1% vitamin E-treated
skin after 8 � MED; (d) 15% vitamin C and 1% vitamin E, and 0.5%
ferulic acid-treated skin after 8 � MED.
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to photoprotection. Sun protection factor is measured at 2
mg per cm2, yet in actual use, sunscreen application is only
0.4–0.5 mg per cm2 (Wulf et al, 1997; Autier et al, 2001).
Since SPF is an exponential measurement, at reduced lev-
els, relative photoprotection of any sunscreen is no more
than 3–4-fold. In addition, SPF is a measurement of UVB
only and reveals nothing about UVA photoprotection,
protection necessary to protect against oxidative stress.
Indeed a recent study of three high SPF broad-screen sun-
screens revealed that at 2 mg per cm2 application, UVA-
induced free radical formation was reduced only 55% with
even worse protection when application levels were de-
creased (Haywood et al, 2003). Sunscreens are designed to
be shields for the skin, protecting the skin by absorbing
harmful UV radiation. Since they work at the surface of the
skin, they are easily removed by washing or rubbing. Anti-
oxidants, in contrast, are designed to work not only at the
skin’s surface but also inside skin. Following topical appli-
cation, once the skin is saturated with L-ascorbic acid, it
remains with a half-life of about 4 d (Pinnell et al, 2001).
Approximately one third of UVA-induced oxidative stress in
skin occurs at the surface of skin (Ou-Yang et al, 2004).

Vitamin E is delivered to the surface of skin through sebum
to protect the stratum corneum from this oxidative insult
(Thiele, 2001). Direct topical application of antioxidants
would be expected to facilitate this protection. Using both a
properly formulated topical combination antioxidant prod-
uct containing vitamins C and E with ferulic acid, and also
a broad-spectrum sunscreen, would be expected to pro-
vide optimal photoprotection. Since they work by different
mechanisms, they should be supplemental (Darr et al,
1996).

Materials and Methods

L-ascorbic acid, DL-a-tocopherol, and trans ferulic acid were pur-
chased from Sigma (St Louis, Missouri). Aqueous solutions were
prepared in a vehicle containing diethylene glycol monoethyl ether,
1,2-propanediol, Brij-35, and phenoxyethanol at pH 3.

Treatment and irradiation procedure The experimental design
has previously been published in detail (Lin et al, 2003). Experi-
ments were performed on weanling white Yorkshire pigs in accord
with the guidelines prepared by the Committee on Care and Use of
Laboratory Animals of the Institute of Laboratory Resources, Na-
tional Research Council (National Institutes of Health, publication
No. 86–23, revised 1996). Unless otherwise noted, 500 mL aliquots
of vehicle; 0.5% trans ferulic acid; 15% L-ascorbic acid, 1% DL-a-
tocopherol, and 15% L-ascorbic acid, 1% DL-a-tocopherol, 0.5%
trans ferulic acid were applied to patches of back skin (7.5 � 10
cm) daily for 4 d. A 1000 W solar simulator (Lightning Cure 200,
Hamamatsu, Japan) fitted with a WG295 Schott filter to eliminate
wavelengths less than 295 nm delivered UV radiation to the skin’s
surface through a liquid light guide at an intensity of 5 mW per cm2

of UVB and about 40 mW per cm2 of UVA as measured by a
radiometer (IL1700, International Light, Newburyport, Mississippi).
MED was determined as the lowest dose resulting in erythema with
perceptible borders (40 mJ per cm2 of UVB). Each patch was given
solar-simulated irradiation in triplicate from 2 � to 10 � MED at
2 � MED intervals. Evaluation was carried out 24 h later.

Evaluation of antioxidant protection factor, erythema, and
sunburn cells Antioxidant protection factor was calculated as the
ratio of the MED in antioxidant-treated skin in comparison with
untreated skin. Erythema was measured by colorimeter evaluation
in the ‘‘a’’ mode (ColorMouse Too, Color Savvy Systems Ltd,
Springboro, Ohio) of 8 � 12 in enlargements of skin photographs.
Each spot and adjacent unirradiated skin was measured in trip-
licate. The difference between irradiated and unirradiated skin
determined the erythema. Sunburn cells were determined in for-
malin-fixed 8 mm punch biopsy sections stained with hematoxylin
and eosin. When irradiation damage was extensive, the number 35
sunburn cells per mm were used as an upper limit.

Evaluation of caspase-3 and caspase-7 For western blotting,
cell protein was extracted from freeze-fractured skin in a solution
containing 1% NP-40%, 1% sodium deoxycholate, 0.3% SDS,
0.15 M NaCl, 2 mM EDTA, 50 mM sodium fluoride, 10 mM sodium
phosphate, pH 7.2, and a pre-formed protease inhibitor mixture
(Sigma). Protein extract (50 mg) mixed with mercaptoethanol and
SDS-PAGE sample buffer was heated at 1001C for 5 min, and
separated on 12% SDS-polyacrylamide gel, electrotransferred to
PVDF membrane (Millipore, Bedford, Massachusetts), blocked in
TBS (100 mM Tris-HCl, pH 7.5, and 150 mM NaCl) containing 0.1%
Tween-20% and 5% milk for 1 h at room temperature and incu-
bated with primary antibody: rabbit anti-human cleaved caspase-
3, or cleaved caspase-7 diluted 1:1000 (Cell Signaling Technology,
Beverly, Massachusetts) overnight at 41C. After reaction with
horseradish peroxidase-conjugated goat anti-rabbit IgG, immuno-
complexes were visualized using ECL (Amersham Pharmacia

Figure 5
Effect of dosage on photoprotection provided by vitamins C, E,
and ferulic acid. Skin was pretreated by 75, 150, and 250 mL of 15%
vitamin C, 1% vitamin E, and 0.5% ferulic acid and irradiated with
solar-simulated radiation 1 � to 5 � minimal erythema dose (MED) at
1 � MED intervals. Evaluation was carried out 1 d later. (a) Colorimeter
measurements of photoprotection by vitamins C, E, and ferulic acid
(n¼ 3). (b) Sunburn cell measurements of photoprotection by vitamins
C, E, and ferulic acid (n¼3).
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Biotech, Piscataway, New Jersey). For internal control, the blots
were stripped and reprobed with anti-a tubulin monoclonal anti-
body (Santa Cruz Biotechnology, Santa Cruz, California). Densi-
tometry was performed using Kodak ID image analysis software
(Kodak, Rochester, New York).

Formalin-fixed skin was prepared for caspase-3 or caspase-7
immunocytochemistry by following manufacturer’s protocol. Brief-
ly, sections were deparaffinized/hydrated, heated in 10 mM sodium
citrate buffer (pH 6) for antigen unmasking, incubated in 1% hy-
drogen peroxide, followed by incubation with 5% horse serum.
Sections were incubated with primary antibody solution (1:200 di-
lution) overnight at 41C, followed by biotin-labeled anti-rabbit IgG
secondary antibody according to ABC biotin/avidin method (Vector
Laboratories, Burlingame, California). Finally, sections were incu-
bated in peroxidase substrate solution (DAB, Vector Laboratories),
and counterstained with hematotoxylin.

Evaluation of thymine dimers The procedure was modified from
the method described by Mitchell et al (2001). Briefly, sections
were deparaffined/rehydrated and washed with phosphate-buff-
ered saline (PBS), denatured in 0.1 N NaOH/70% EtOH for 5 min,
dehydrated in EtOH, air dried, and incubated with protease XXV
(Labvision, Fremont, California) at 371C for 7 min. After washing
with PBS, sections were blocked with 5% goat serum for 20 min,
washed, incubated with anti-thymine dimer, clone KTM53 diluted
1:200 (Kamiya Biomedical Company, Seattle, Washington) at 371C
for 1 h, followed by anti-mouse IgG conjugated with fluorescein
isothiocyanate diluted 1:200 at 371C for 30 min. Sections were
visualized using Olympus BX41fluorescence microscope coupled
with a Q-Fire camera.

Statistics Results are expressed as mean � SD. The p-values
were calculated by two-tailed Student’s t-test.
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