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Abstract

We present an algorithm for computing instantmmbers of curve singularities. A comparison is
made between these and some other invariantamecsingularities. The gbrithm is implemented
in Macaulay2, and can be downloaded frattp://www.math.nmsu.edu/~iswanson/instantonon2
from http://emmy.nmsu.edu/~gasparim/m2code
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We start with any polynomiap(x, y) defining a plane curve with singularity ate0C?.
Let 7:C2 — C? denote the blow-up of? at the origin and lef be a positiventeger.
The dataj, p) determines a holomorphic bundig j, p) on C2 with splitting typej and
extenson classp. We dgorithmically compute numerical invariants of the bunglg, p)
and use them as invariants of the curve.

Tablesgiving examples of these new invariants of the curve together with some classical
invariants are given iection 1A specially interesting example appearsTiable 4 where
we give two inequivalent singularities that have all the same classical invariants, but are
distinguished by instanton numbers.

The holomorphic bundlé€(j, p) and its numerical invariants have interpretation in
mathematical physics as instantons @A and numerical invariants of the instantons.
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Here we mention briefly some properties of these invariants. More details are given in
Gasparim(2002. Instantons are well known to have a topological invariant called the
charge, which in the case of compact surfaces corresponds to a second Chern number of
a vector bundle. For the case of bundles on a blown-up surface, the local Chern number
around the exceptional divisor decomposes as a sum of two numerical invariants (denoted
w andh), which are local analytic invariants of the bundleBallico and Gasparirt2002

it is shown that the pair of invariants, h) is strictly finer than the Chern numbers in the
following sense. The paiw, h) provides the coarsest stratification of moduli of instantons

on the blown-up plane for which the strata are Hausdorff. In contrast, the stratification
by topological charge does not provide Hausdorff str&allico and Gasparimn2002
Theorem 4.1). Hence, the pdiw, h) gives strong numerical invariants, detecting more
than topological information.

The idea of using these invariants for curves is natural given that, as a first step toward
resolving the singularity of the plane curve defined fayone blows up the plane, thus
arriving atC?, the base space of the bundles we construct. _

Firstly, let us eplain how to pass from curves of? to vector bundles orC2. In
what follows we fix, once and for all, éhfdlowing coordinate charts. Letx, y) be the
coordinates oi©2. Write C2 = U U V where

U={zuw}=C?={E )=V

with (§,v) = (z'1,zu) in U N V. Note hat in these coordinates, the blow-up map
7:C2 — C? givesx = u, y = zu. We denote by¢ the exceptional divisor.
Once these charts are fixed, there is a carawhoice of transition matrix for bundles

on C2. If E is a holomorphic rank 2 bundle 062 with c;(E) = 0 then here ejsts an
integer j, called thesplitting typeof E, such hatE|, = O(j) @ O(—j). By Gasparim
(1998 Theorem 2.1)E has a canonical transition matrix of the form

(Z(; ij) @

fromU to V, where

2j-2 j-1
C
q:= E gz u'
i=1 l=i—j+1

is apolynomial inz, z-1 andu.
In this paper, we start with a polynomiple C[x, y] and for each positive integgrwe
associate with the pairj, p) aholomorphic bundlé€E(j, p) onC2 obtained as follows.

Definition 0.1. Given a polynomial p(x, y) definedover C[x, y] we first consider the
polynomial p(u, zu) = Y > pi 2 u' obtained fromp by makingx =uandy = zu. If
furthermore a positive integgris chosen, we definp = ", > fi Zu' by the rule

i ifl<i<2j-2and0<l<j—-1
Pir= {0 otherwise )
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We then seE := E(j, p) to be the bundle given in canonical coordinates (as above) by
the transition matrix

T:(Zoj Z"_’j). @3)

We have therefore associated with each pgirp) formed by an integer and a

polynomial p(x, y) a unique vector bundlé€(j, p) over C2. We now defie instanton
invariantsw andh for these vector bundles.

Definition 0.2. Given abundleE overC2 we define he shealQ by the exact sequence
0> mE - (7:E)"Y > Q-0

and set
wE) =1(Q),  h(E) =IRrE).

Ininstanton terminologyy is called the width of the instanton ahds called he height
of the instanton. The charge of the instantortis= w + h. These are early analytic
invariants of the bundle. To use them as invariants of the singularity, and to perform the
calculations, we choose charts for the bundle and a represenfativehe singularity.
Such choice works particularly well in tlease of quasi-homogeneous singularities, where
preferred representatives are known to existSefto(1971) or Arnold (1981, page95).

If a different representativp’ of the germ of the singularity is chosen, then by classical
theory it is known that there exists a batorphic change of coordinates takipgo p’.

The same change of coordinates has to be made to take the HrifjdIp) to a bundle
E’(j, p)). E andE’ are isomorphic bundles and therefore have the same invariants. In this
sense the numbers can be considered as anahytaciants for germs of curve singularities.

In this pger we prove that the computation of and w can be automated. We
implemented our algorithm in the symbolkomputer algebra package Macaulay2 (due
to Grayson and Stillman(1996). Having implemented algorithms to compute both
invariants, we obtained a large amount of examples, which lead us to a simple formula
for h.

Theorem 3.3. Let m deote the largest power of u dividing. If E is the bundle defined
by data(j, p), then KE) = (}) — ('5™).

The algorithm we present here has as input data the polyngt¥aly) and the integer
i, and asoutput the values of the instanton heigfiE(j, p)) and widthw(E(j, p)). Our
implementation on Macaulay? is farwith rational coefficients.

1. Sometables

Before giving the algorithm, we illustrate some instanton numbers by tabulating them
together with some classical invariantables land2 give examples of instanton numbers
of monomials.

Table 3illustrates that for a fixed polynomial, we may get different invariants as we vary
the splitting type.
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Table 1

Pdynomial  Splitting type 2
w h Charge

X 1 1 2

y 1 1 2

Xy 2 1 3
Table 2

Pdynomial  Splitting type 3
w h Charge

X 1 2 3

y 1 2 3

x2 3 3 6

Xy 2 3 5

y2 3 3 6

x2y 4 3 7

Xy? 4 3 7

x2y2 5 3 8
Table 3
Pdynomial  Splitting type 7 Splitting type 8

w h Charge w h Charge
x2 — y? 2 11 13 3 13 16
x2 —y3 3 11 14 3 13 16
X2 —y° 3 11 14 3 13 16
x3—y3 4 15 19 4 18 22
x3 — y4 6 15 21 6 18 24
x3—y° 6 15 21 6 18 24

Our interest in instanton numbers was partially fueled by the fact that in some cases,
instanton numbers give finer informatiohan the classical invariants. We considered
the invariants: multiplicitym, §p = dim (O/0), © = Milnor number, andr =
Tjurina number. Note that the Milnor and Tjurina numbers are defined only for isolated
singularities, but instanton numbers are wedfided for non-isolated singularities as well.

In Table 4we give an example where instantoambers distinguiskhe singularities,
but other invariants do not. Note that the first polynomial is irreducible, whereas the second
is reducible in the local ring, cHartshorne(1977 ex. | 514), so they define inequivalent
singularities. We believe that the faittat the classical invariants, §p, 1, andt do not
distinguish some inequivalent singularities sdence that finer inariants are useful.
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Table 4

Polynomial m dp w t© Sgitting type 3
w h Charge

x3-x2y+y3 3 3 4 4 4 3 7
x3-x2y24+y3 3 3 4 4 5 3 8

Table 5

Polynomial m ép u t  Sgitting type 4
w h Charge

x2-y" 2 3 6 6 3 5 8
x3-y* 3 3 6 6 6 6 12

Table 6

Polynomial m dp u T Sqitting type 4
w h  Charge

x4 — xy? 4 9 17 17 10 6 16

xXA-x2y3—x2y5_y®8 4 9 17 15 8 6 14

Table 7
Polynomial m dp u T Sgitting type 8
w h Charge
xB+x2y3+y94xyY 3 9 15 16 6 B 24
By +x2y34xyb+y?’ 4 9 14 15 7 2 29
x4 + x2y3 + y6 4 8 15 15 10 22 32
2 +y3H2 4 xy? 4 7 12 13 9 2 31
2 +y3H2 4+ xy® 4 6 9 9 6 22 28

In Tables 57 we give examples of inequivalentgjularities which are distinguished by
instantomumbers, and also by one other classical invariant.

Table 6 comes fromHarthorne (1977, ex. V 3.8) on page 395. However, in the
statement of this exercise, the first polynohtiantains an incorrect exponent: it is written
as ‘x*y — y* but it should be %%y — y*".

Table 7comes from the list of bimodular singularities given by Arnoldhimold (1981,
page 159).

Table 8below comes from the list of exceptional families of unimodal singularities in
Arnold (1981, page95).
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Table 8
Pdynomial Splitting type 7
w h Charge
x3+y7 +xy® 6 15 21
X3+ y8 4 xyP 6 15 21
By +xy*+x2y3 7 18 25
X3 + xy° + y8 6 15 21
X3y + y° + xy? 7 18 25
X3y +y8 + xy° 7 18 25
x4 + xy* + y© 9 18 25

2. Computing the instanton width

In this section we present an algorithm that takes as input the pgi and computes
the instantn widthw = 1 (Q), whereQ is the skyscraper sheaf as giverDgefinition 0.2
Since Q is supported at zerd,(Q) is the dimension of the stalk at zero. Ligt be the
completion of the stalkr, E at zero, that isM := (7.E)j. Then he length ofQ equals
the dmension of the cokernel of the canonical map frbdinto its double dual. If we can
computeM, we can also comput® via the following lemma:

Lemma 2.1. Let R be a commutative Noetherian ring and A ar m matrix with entries

in R.Let M be the R-module such that'/R> R" > M — 0is an exct sequence. Let
N be the kernel of the transpose of A. Then N is a submodul€'o6&/ gaerated by t
elements. Let B be thext matrix whose columns are the given generators of N. Let C

be the matrix such that'RS> Rt — N — 0iis exact. LetY = Homgr(_, R). Then

(i) MYV is isomophic to the kernel of the transpose of C,
(i) the imageof the canonical map M~ M"Y isisomorphic to the module generated by
the colmns of the transpose of B,
(i) MVY/M is isomaphic to (kernel C")/(image B").

Proof. By left-exactness of the Hom functdv)¥ = Homgr(M, R) is the kernel of the
map defined by the transposeAfThusN = MY. Smilarly, by the definition ofC, M¥Y

is the kernel of e transpose of. Let f1, ..., f; generateM” C R". Thenatural map
M — MYV takesmto ¢m, where for eachf € MY, oim(f) = f(m). Thus, h coordinates,
the imaye ofm € M in MY € Rt is the vector f1(m), ..., f(m)), therdore the image

of M in MYV is generated by the columns of the transpos®of [J

OnceQ is computed as in the prmus lemma, its length can be computed as well. Thus
it remains b conrpute theC[[x, y]]-moduleM. By the Thesem on Formal Functions,

M = lim HO(¢n, E|n)
<«

asC[[x, y]]-modules, wheré, is thenth formal neighborhood of. We use thedllowing
lemma:
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Lemma2.2 (Gagparim, 200Q Lenma2.}. Set M = H0(£2j_2, E|gzj_2), and let
p:M < MYV be the natural inclusion ofl into its bidual. Then(Q) = dim cokerp.

This lemma greatly simplifies the calculations. Using this lemma, for the purpose of
findingl (Q), we mayassumeM = M. Under this identification, and with our choice of
transition matrixT in (3), it then follows thatM is generated by aliolomorphic vectors
overC[[z, u]] for which Tv is aholomorphic vector ove€[[z 1, zu]] Thus, we need to
find all vectorsv = (a, b), given bya = ) ; 1 aZu, b= > 1 biiZu', where alli and
| are non-negative, ara, by are (unknowns) in the field, for Whlc'ﬁv is holomorphic
overC[[z1, zu]]. This restriction yields relations among the unknownsbj . To getall
such relations, ate beginning we trea;; andb; as variables.

Lemma 2.3. Whenever b i + j, then b = 0. Whenever | > i, then g = 0.

Proof. The second coordinate afv is z- /b = Y7 by Z2 Ju' = 3 by Z2 =1 (zw'. In
order for this to be holomorphic it andzu, necessarily the coefficienty with| > i+ j
must vanish.

The first entry ofT v is

ZJ Zalz u + pzblﬂl |1Z|1

i1,l1
2j-2 ji—1 . ) . .
—ZauZ' ey + ) Z Piolo (210270 ) " by, 21711 (2"
io=1lp=ip—j+1 i1,l1

Letm be the nmimum u-degree occurring irp, i.e., the minimumig suchthat pjg, # 0.
Then for eachi < m, the cefficient ofu' in the first entry ofTv is 3 ai (zw)'Z~'*1. In
order for this to be holomorphic inuandz—*, necessarily for all >i — j, aj = 0. Now
consider the case> m. The ce&fficient of(zu)' Z+i-1 in the first entry ofTv is

2j-2  j-1

a+|+z Z Biglobi—ig,1+j—lo»

io=1lg=ip—j+1

whereby |- is treated as zero wheneviéror |’ is negative. By the established bounds,
whenevet > i —ig + o, thenbi_jy 1+j-1, = 0. Sincep is a subpolynomial ofp(u, zu),
theonly pairs(io, lo) to consider are those with < ig. Thus whenevdr > i —ig+Ip, then
bi i, |+J —1, = 0. In particular, iflt > i, then allbj_j,+j-1, are zero, so that the coefficient
of (zu)i 2+ in the first entry ofT v is & . But if T is to beholomorphicinzu, z~1, then
necessarilg; = 0. O

Thus for each, we reed only to consider finitely many unknowas, bj to construct
the vectory as in the set-up above, anddirelations on these. Usingemma 2.2we may
assume thaMl = H0(£2j_2, E|gzj_2). This means that we only need relations involving
ajl, by fori < 2j—2. Butthe relatns invdving by withi < 2j —2 arisihg fromzia+ pb
being holomorphic oveE[[u, zu]] involve variablesy andb;; withi” < 2j —2+deg, p,
so that
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Lemma24. Let N be te sumof 2] — 2 plus the u-degree gb. Then M is gnerated by
vectors(a, b) with a = Zi!l aZu, b= Zi!l biiZ u', where all i and | are non-negative,
aj, by € C,and

() &1 = by = O0wheneeri > N.
(i) by = Owheneerl >i + j.
(i) & =Owheneerl >i. O

The conditions on the; andb; as in the lemma above are not the only ones that
arise from the requirement th@w be holomorphic irg~%, zu. Finding all the conditions
amounts to finding the generatorsif

Definition 2.5. All the remaining relations on the variablas, by arise from the condition
that in the first entry off v, wheneverl > i, then he coefficient oi'Z must be 0. From
now on, we refer to these coefficients as glerer ating relations.

Note that these coefficients are all linear forms in the fitg; , bj ].

As in Gasparim(2000, we find these relations successively in the zeroth thrdwtih
neighborhoods. Below follows our algorithm which computes the generating relations,
arising from ensuring that the first coordinateTaf is holomorphic inzu, z—1. We wiite all
algorithms in this paper in pseudocode, cltséhe Macaulay?2 code that we implemented.

Algorithm “getrelations’ to get the generating relations on the &, bj
Input: non-negative integer N,

fTv = first entry of Tv

ring R, the polynomial ring in u, z, all &), bj
Output: ideals nonfree and relations in R

nonfree = zero ideal in R
relations = zero ideal in R
k=0
while (k < N) (
tempoly = truncation of fTv to terms of U-degree at most k
while (tempoly != 0) (
tempterm = leading term of tempoly
i = u exponent of tempterm
1l = z exponent of tempterm

partp = coefficient of u'z in tempoly, linear form in aj, bj

tempoly = tempoly - partp * u'zZ!
fTv = £fTv - partp * u'z
if (1 > i) then (

relations = relations + ideal(partp)

nonfree = nonfree + ideal (leading variable in partp)

)

)
k=k+1
)

return nonfree, relations

)
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The ideal of all the generating relations obtained in this way is cakddtions. The
idealnonfree contains the leading variable of eachat®n: in the sense of linear algebra,
these leading variables are not free. We use the following ordering of the monomials.

Definition 2.6. We say thatsy > a if i > i’ orifi =i’ andl > I’, and sinilarly
by > by ifi >i’orifi =i’ andl > I’, and futhermore that; > b, foralli,l,i’,l".

Thus by the form ofT v, each relation contains at most o&g and eachs;) appears at
most once in a generating relation. Observe that if all the coefficienpgxafy) are in a
subfield F of C, then allthe generating relations have coefficientsFinThe afjorithm
"getrelations" above computes the relations among the giggnb;, but sone of
these relations are “fakén the following sense:

Example. Let p(x,y) = x? — y3, j = 3. Then with notations as abov®l = 7,
p = u? — u®z%. Forholomorphica = Y aju'Z, b = Y bju'Z, the cefficient ofu8z® in
Zia+ pbis 0 = age + bsg — bsg. However, if we restict the firstindex ofa; to only vary
from O toN, then"getrelations" gives the “fake” relation G= bgg — bse.

Thus, computation of the instanton width will have to account for and remove such
“fake” relations. We do this as follows. Such relations only involve variabjedy with
i > 2] — 2. Thus these variables are not allowed to be free variables in the sense of linear
algebra. Usind.emma 2.2 the remaiing free variables do give a generating setbfas
follows. For each of the free variables, set that variable to 1 and all the others ta,®bin
This produces a finite generating setMfas a module ove€[[x, y]] = C[[u, zu]] of
eIements whose entries are(i[u, z]]. As u is a non-zero divisorM is isomophic to
ukM for arbitrary integek. By Lemma 2.4ula andulb are both polynomials in(= x)
andzu(= y), so that he generators ofi/ M can be written as pairs of polynomials in
CIIx, y11.

Algorithm “polyconv” to convert C[u, z]-polynomials to C[x, y]-polynomials
Input: a polynomial f in u and z
Output: a “truncated” polynomial g(x, y) such that g(u, zu) =

where f' is that part of f for which this can be done

g = 0 zero element of Clu,z]
while (£ != 0) (

1f = leading term of f
i := the u exponent of 1f
1 := the z exponent of 1f

1f 1 < i) then

g = g+y*x
f=1f - 1f
)

return g
)
Algorithm “setvectors’ to express generators of uNti M
as vectors with entries in C[X, y]
Input: polynomials ul a, ul b, named Apoly, Bpoly, respectively,
lists changeables, allvars

-l % leading coefficient of 1f
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Output: A, a presentation matrix for the C[[x, y]]-module M

Mxy = zero submodule of (C[X,y]2
total = #changeables
k=0
while (k < total) (
tapoly = substitute in Apoly the ki changeable variable to 1

tbpoly = substitute in Bpoly the k" changeable variable to 1
tapoly = substitute in tapoly all other variables to 0
tbpoly = substitute in tbpoly all other variables to 0

A = convert tapoly into a polynomial in x and y (use polyconv)
B = convert tbpoly into a polynomial in x and y (use polyconv)

Mxy = Mxy + submodule of (C[x,y]2 generated by (A,B)
k k+1

)
return a presentation of the C[X, y]-module Mxy

The output of the last routine is the presentation matrix 6f®, y]-module, which by
faithful flatness ofC[[x, y]] overC[x, y] is also the presentation matrix of th&[x, y]]-
moduleM. Findly, tying it all together:

Algorithm to compute instanton width of the instanton with data (j, p)
Input: a polynomial p in C[x, y] and a non-negative integer j
Output: the width of the instanton with data (], p)

p = p(u,zu) truncated to u-degree at most 2j-2

N = 2j-2 + u-degree of p

R = Clu,z,aj, bj], i < N+1, ordered as in Definition 2.6
a= Y a u z

b= Y by v 2!

fTv =zl a+$ b

compute relations and nonfree variables as in algorithm getrelations
changeables = all aj|, bj| with i < 2j —2, which are not in nonfree
a = a after applying all the relatiomns

b = b after applying all the relatiomns

A the presenting matrix of the C[x,y]-module M,

output of setvectors(uy+Napoly, uy+Nbpoly, changeables, allvars)
Q = cokernel of the natural map M — M"Y, as in Lemma 2.1
return (length of Q)

3. Computing the instanton height

In this section we compute the instantaeight. Recall that the instanton heighis the
lengthl (R7.E(j, p)). Another use of the Theorem on Formal Functions gives

(R, E)§ =lim H(en, Ele,).
<«
We use e fdlowing lemma:

Lemma 3.1 (Gasarim, 2000 Lemma 2.3. | (R'7.E) = dimg H(¢2j 2, Eley_,).
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_ This lemma greatly simplifies the calctizns. We then proceed to compute the first
Cech cohomology.

Remark. We have twooptions to computeCech cohomology. Given that our open
cover of the base space is given by affine sets that are open in the analytic topology
as well as in the Zariski topology, we have the option to compute either holomorphic
Cech cohomology (by taking holomorphic cochains) or else algeliedth cohomology

(by taking algebraic, i.e., polynomial cochains). Sincés compact, so are its formal
neighborhoods. By Serre’s G.A.G.A., holomorphic bundles on a compact variety are
algebraic, thereforH iqn: Eley) = thol(zn, Ele,). It follows that theholomorphic

and the algebraic met ods give the same answer.

We conpute the instanton height using holomorpBich cohomology. The 1-cocycles
consist of the vector&, b) which areholomorphic functions defined on the intersection
U NV. Hercea, b € C[[u, z, z 1]]. The coboundaries consist of the vectors of the form
v+ T2/, wherev is holomorphicinz, u (onU) andv’ in z~%, zu (on V). First of all we
choose simple representatives for the cocycles:

Lemma 3.2. Every 1-cocycle has a representative of the form

j—2 -1 a
(3)e
=0 I=i—j+1

with & € C. In particular, every 1-cochain represented (i} )Z u' withi,| > Ois a
coboundary.

Proof. Leto be a 1-cocycle and let denote cohomological equivalence. A power series
representative for a 1-cochain has the farm= > 70> 2 (a")z'u' with &, by € C.

The 1-cochairs; = Y 20> 2o (g*i:)z'u' is holomorphic inU, hence is a coboundary.
Hence

oo -1
R T W (ED
After a change of coordinates

=i (zlau+ph|)zu

j
izol z- by

) it

but given thats, = S22 S (- Jbl)zu is holomorphicinV,
o0

—1 jan + B A
To~To—s=) Y (Z a"z)rph')z'u'
i

=0l=—00
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and going back to the -coordinate chart,

1TG”Z Z <a|+z pr”)zu

i=0l=—00

But p contains only termgX fork < j—1, therefore~| p contains only negative powers of
z. Reraming the coefficients we may write= Y0 S (ag)')z' u' for somea;, € C,

and consequentlfo = >, Yt (ngil')z'ui_. Here each terna, zJ'_Jr'ui satisfying

j +1 < i is holomorphic in thev-chart. Subtracting these holomorphic terms we are left
with an expession fora where thaéndex| variesad — j +1 < | < —1. Thisin turnforces

i < J —2, giving the claimed expression for the 1-cocyclé]

Thus we only have to consider cocycles of the f@gem0). Whichof the cocyclega, 0)
is a cboundary? In other words, which, 0) equal to(c, d) + T~1(c/, d’), wherec, d are
holomorphic orlJ andc’, d’ onV, or even more simly, for whatc andd holomorphic on
U is T(a+c, d) holomorphic orV ? The seond coordinate of (a+c, d)isz~!d, and in
order for that to be holomorphidj = 0 wheneverl > i + j. This is theonly restiction
on c andd obtained from the second coordinate. From the first coordinaig€®f+ c, d)
we obtain the constraint that (a+ c) + pd be holomorphic oV, that is,holomorphic on
coordinatez ! andzu.

Lemma 3.3. Let E be the bundle defined by datp p), and m the smallest exponent of u
appearing inp. Then

| (R, E) > (12) - (J _2m)

Proof. Let o = (a, 0) denote a 1-cocycle whem = Zu' with0 < i < m—1 and

i —j+1=<I| < -1 We claim thato represents a nonzero cohomology class. In fact, for
o to be a coboundary there must exisatndd, holomorphic inU, making theexpression
zi(a + ¢) + pd holomorphic inV. However,z/a is not holomorphic inV. Moreover,

by the choice ofm, no term in pd cancelszla. Consequently, no choice af and d
solves the problerof holomorphicity onV. Hercel (Rlz.E) is at least he number of
independent cocycles of the fomn= (a, 0), wherea = Z'u' with0 <i <m—1 and
i—j+l<l<-1 Thereare() ( ™) such terms. O

Theorem 3.4. Let E be the bundle defined by dat@ p), and m the smallest exponent of
u appearing inp. Then

| (R, E) = (12> - (j _2m)

Proof. Firstnote that, bytemma 3.2if | > j, then(Z~Ju', 0) is a coboundary. Using the
proof of Lemma 3.3 it suffices to show thatif > | > i > m, theno = (Z-iu,0)is

a coboundary. Writep = > 7_,a 2™ "u™ + p’, wheres € {0, ..., m} is some integer,

ar are constantsgs # 0, andp’ is a polynomial inu andzu each of whose terms has
u-degree at leash + 1. Observe that = a5 *u'~™Z ~™+S is holomorphic orlJ, since by
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assumptiori > mandl > m —s. Thereforeo ~ o’ = (Z~Ju', —d), where~ denotes
cohomological equivalence. Changing coordinates we fiave= (z'u' — pd, —z~/d).
Fromj > | > i > m > swe daluce thatz—!d is holomorphic onVv. We rewrite the first
entryTo’ as

s—1
Zlu' _ Fjd — Za_;lar ZI+sfru| + as71u|7mzlfm+s p/.
r=0

By assumption, — j +s—r <s—r <s < m < i, therefore the fest sum onlie right
sideof this expression is holomorphic ah It follows thatTo’ ~ (agtu'~MZ~™sp' 0).
Let z'u" be an arbitrary term inp’. Thenr > mandv < r. Ifi —m+r >
| —m+ s+ v, then he termc = a5 *u'~™Z~™S . u" 2% is holomorphic orV, therdore
To! ~ (as—lui—mzl—ers p/ —c,0).
Removig all such termg, we may now writeTo’ ~ (as‘lui‘mz"erS p, 0), where
p contains only terms irz’u’ suchthati — m+r < | — m 4 s + v. Consequently
o' ~ (z*Ja,Sflu'*mz'*ers p,0) and ad —m+r > i, by (reverse) induction onandl,
each term(u' ™Mz ~M+S. yr zz-1, 0) is a wboundary. Hence:’ is a um of coboundaries,
and is itself a coboundary.(J

Thus when starting withp(x, y) € C[x, y], the conputation of the instanton height
is very fast: oncem is determined, then the following routinetheight" finishes the
computation:

Algorithm “iheight” to compute instanton height
Input: a polynomial p and a non-negative integer j
Output: returns the length of R

p = p(u,zu) truncated to u-degree at most 2j-2
m = the largest power of u dividing p
M= j*(j-1)/2;
if (j > m+1) then M = M - (j-m)*(j-m-1)/2;
return M

We implemented in Macaulay? these algbms for computing the instanton
widths and heights. The computation of height of course only takes a negligible
amount of time, and the computation of widths takes a few seconds. For
exanple, "iwidth(x~4-x*y~5,4)" finishes in aLinux workstation in 17.07 s, and
"iwidth(x~4-x"2*y~3 -x~3*y~5-y~8,4)" finishesn32.02s.
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