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Abstract

Wepresent an algorithm for computing instantonnumbers of curve singularities. A comparison is
made between these and some other invariants of curve singularities. The algorithm is implemented
in Macaulay2, and can be downloaded fromhttp://www.math.nmsu.edu/~iswanson/instanton.m2or
from http://emmy.nmsu.edu/~gasparim/m2code.
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Westart with any polynomialp(x, y) defining a plane curve with singularity at 0∈ C2.
Let π : C̃2 → C2 denote the blow-up ofC2 at the origin and letj be a positiveinteger.
The data( j , p) determines a holomorphic bundleE( j , p) on C̃2 with splitting type j and
extension classp. We algorithmically compute numerical invariants of the bundleE( j , p)

and use them as invariants of the curve.
Tablesgiving examples of these new invariants of the curve together with some classical

invariants are given inSection 1. A specially interesting example appears inTable 4, where
we give two inequivalent singularities that have all the same classical invariants, but are
distinguished by instanton numbers.

The holomorphic bundleE( j , p) and its numerical invariants have interpretation in
mathematical physics as instantons oñC2 and numerical invariants of the instantons.
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Here we mention briefly some properties of these invariants. More details are given in
Gasparim(2002). Instantons are well known to have a topological invariant called the
charge, which in the case of compact surfaces corresponds to a second Chern number of
a vector bundle. For the case of bundles on a blown-up surface, the local Chern number
around the exceptional divisor decomposes as a sum of two numerical invariants (denoted
w andh), which are local analytic invariants of the bundle. InBallico and Gasparim(2002)
it is shown that the pair of invariants(w, h) is strictly finer than the Chern numbers in the
following sense. The pair(w, h) provides the coarsest stratification of moduli of instantons
on the blown-up plane for which the strata are Hausdorff. In contrast, the stratification
by topological charge does not provide Hausdorff strata (Ballico and Gasparim, 2002,
Theorem 4.1). Hence, the pair(w, h) gives strong numerical invariants, detecting more
than topological information.

The idea of using these invariants for curves is natural given that, as a first step toward
resolving the singularity of the plane curve defined byp, one blows up the plane, thus
arriving atC̃2, the base space of the bundles we construct.

Firstly, let us explain how to pass from curves onC2 to vector bundles oñC2. In
what follows we fix, once and for all, the following coordinate charts. Let(x, y) be the
coordinates onC2. Write C̃2 = U ∪ V where

U = {(z, u)} ∼= C
2 ∼= {(ξ, v)} = V

with (ξ, v) = (z−1, zu) in U ∩ V . Note that in these coordinates, the blow-up map
π : C̃2→ C2 givesx = u, y = zu. We denote by� the exceptional divisor.

Once these charts are fixed, there is a canonical choice of transition matrix for bundles
on C̃2. If E is a holomorphic rank 2 bundle oñC2 with c1(E) = 0 then there exists an
integer j , called thesplitting typeof E, such that E|� ∼= O( j ) ⊕ O(− j ). By Gasparim
(1998, Theorem 2.1)E has a canonical transition matrix of the form(

zj q
0 z− j

)
(1)

from U to V , where

q :=
2 j−2∑
i=1

j−1∑
l=i− j+1

qil z
l ui

is apolynomial inz, z−1 andu.
In this paper, we start with a polynomialp ∈ C[x, y] and for each positive integerj we

associate with the pair( j , p) a holomorphic bundleE( j , p) on C̃2 obtained as follows.

Definition 0.1. Given a polynomial p(x, y) definedover C[x, y] we first consider the
polynomial p(u, zu) = ∑

i
∑

l pil zl ui obtained fromp by makingx = u andy = zu. If
furthermore a positive integerj is chosen, we definēp =∑

i
∑

l p̄il zl ui by the rule

p̄il =
{

pil if 1 ≤ i ≤ 2 j − 2 and 0≤ l ≤ j − 1;
0 otherwise.

(2)
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We then setE := E( j , p̄) to be the bundle given in canonical coordinates (as above) by
the transition matrix

T =
(

zj p̄
0 z− j

)
. (3)

We have therefore associated with each pair( j , p) formed by an integer and a

polynomial p(x, y) a unique vector bundleE( j , p̄) over C̃2. We now define instanton
invariantsw andh for these vector bundles.

Definition 0.2. Given abundleE overC̃2 we define the sheafQ by the exact sequence

0→ π∗E→ (π∗E)∨∨ → Q→ 0

and set

w(E) := l (Q), h(E) := l (R1π∗E).

In instanton terminology,w is called the width of the instanton andh is called the height
of the instanton. The charge of the instanton isc = w + h. These are clearly analytic
invariants of the bundle. To use them as invariants of the singularity, and to perform the
calculations, we choose charts for the bundle and a representativep of the singularity.
Such choice works particularly well in thecase of quasi-homogeneous singularities, where
preferred representatives are known to exist, cf.Saito(1971) or Arnold (1981, page95).

If a different representativep′ of the germ of the singularity is chosen, then by classical
theory it is known that there exists a holomorphic change of coordinates takingp to p′.
The same change of coordinates has to be made to take the bundleE( j , p̄) to a bundle
E′( j , p′). E andE′ are isomorphic bundles and therefore have the same invariants. In this
sense the numbers can be considered as analyticinvariants for germs of curve singularities.

In this paper we prove that the computation ofh and w can be automated. We
implemented our algorithm in the symboliccomputer algebra package Macaulay2 (due
to Grayson and Stillman(1996)). Having implemented algorithms to compute both
invariants, we obtained a large amount of examples, which lead us to a simple formula
for h.

Theorem 3.3. Let m denote the largest power of u dividinḡp. If E is the bundle defined
by data( j , p̄), then h(E) = ( j

2

)− ( j−m
2

)
.

The algorithm we present here has as input data the polynomialp(x, y) and the integer
j , and asoutput the values of the instanton heighth(E( j , p̄)) and widthw(E( j , p̄)). Our
implementation on Macaulay2 is forp with rational coefficients.

1. Some tables

Before giving the algorithm, we illustrate some instanton numbers by tabulating them
together with some classical invariants.Tables 1and2 give examples of instanton numbers
of monomials.

Table 3illustrates that for a fixed polynomial, we may get different invariants as we vary
the splitting type.
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Table 1

Polynomial Splitting type 2
w h Charge

x 1 1 2
y 1 1 2
xy 2 1 3

Table 2

Polynomial Splitting type 3
w h Charge

x 1 2 3
y 1 2 3
x2 3 3 6
xy 2 3 5
y2 3 3 6
x2y 4 3 7
xy2 4 3 7
x2y2 5 3 8

Table 3

Polynomial Splitting type 7 Splitting type 8
w h Charge w h Charge

x2 − y2 2 11 13 3 13 16
x2 − y3 3 11 14 3 13 16
x2 − y5 3 11 14 3 13 16
x3 − y3 4 15 19 4 18 22
x3 − y4 6 15 21 6 18 24
x3 − y5 6 15 21 6 18 24

Our interest in instanton numbers was partially fueled by the fact that in some cases,
instanton numbers give finer information than the classical invariants. We considered
the invariants: multiplicitym, δP = dim (Õ/O), µ = Milnor number, andτ =
Tjurina number. Note that the Milnor and Tjurina numbers are defined only for isolated
singularities, but instanton numbers are well defined for non-isolated singularities as well.

In Table 4we give an example where instantonnumbers distinguishthe singularities,
but other invariants do not. Note that the first polynomial is irreducible, whereas the second
is reducible in the local ring, cf.Hartshorne(1977, ex. I 5.14), so they define inequivalent
singularities. We believe that the factthat the classical invariantsm, δP, µ, andτ do not
distinguish some inequivalent singularities is evidence that finer invariants are useful.
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Table 4

Polynomial m δP µ τ Splitting type 3
w h Charge

x3 − x2y+ y3 3 3 4 4 4 3 7
x3 − x2y2 + y3 3 3 4 4 5 3 8

Table 5

Polynomial m δP µ τ Splitting type 4
w h Charge

x2 − y7 2 3 6 6 3 5 8
x3 − y4 3 3 6 6 6 6 12

Table 6

Polynomial m δP µ τ Splitting type 4
w h Charge

x4 − xy5 4 9 17 17 10 6 16
x4 − x2y3 − x2y5 − y8 4 9 17 15 8 6 14

Table 7

Polynomial m δP µ τ Splitting type 8
w h Charge

x3 + x2y3 + y9 + xy7 3 9 15 16 6 18 24
x3y+ x2y3 + xy6 + y7 4 9 14 15 7 22 29
x4 + x2y3 + y6 4 8 15 15 10 22 32
(x2 + y3)2 + xy4 4 7 12 13 9 22 31
(x2 + y3)2 + xy3 4 6 9 9 6 22 28

In Tables 5–7 we give examples of inequivalent singularities which are distinguished by
instantonnumbers, and also by one other classical invariant.

Table 6 comes fromHartshorne (1977, ex. V 3.8) on page 395. However, in the
statement of this exercise, the first polynomial contains an incorrect exponent: it is written
as “x4y− y4” but it should be “x5y− y4”.

Table 7comes from the list of bimodular singularities given by Arnold inArnold(1981,
page 159).

Table 8below comes from the list of exceptional families of unimodal singularities in
Arnold (1981, page95).
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Table 8

Polynomial Splitting type 7
w h Charge

x3 + y7 + xy5 6 15 21
x3 + y8 + xy6 6 15 21
x3y+ xy4 + x2y3 7 18 25
x3 + xy5 + y8 6 15 21
x3y+ y5 + xy4 7 18 25
x3y+ y6 + xy5 7 18 25
x4 + xy4 + y6 9 18 25

2. Computing the instanton width

In this section we present an algorithm that takes as input the pair( j , p) and computes
the instanton widthw = l (Q), whereQ is the skyscraper sheaf as given inDefinition 0.2.
Since Q is supported at zero,l (Q) is the dimension of the stalk at zero. LetM be the
completion of the stalkπ∗E at zero, that is,M := (π∗E)∧0 . Then the length ofQ equals
the dimension of the cokernel of the canonical map fromM to its double dual. If we can
computeM, wecan also computeQ via the following lemma:

Lemma 2.1. Let R be a commutative Noetherian ring and A an n×m matrix with entries

in R. Let M be the R-module such that Rm A−→Rn → M → 0 is an exact sequence. Let
N be the kernel of the transpose of A. Then N is a submodule of Rn, say generated by t
elements. Let B be the n× t matrix whose columns are the given generators of N. Let C

be the matrix such that Rk
C−→Rt → N → 0 is exact. Let∨ = HomR( , R). Then

(i) M∨∨ is isomorphic to the kernel of the transpose of C,
(ii) the imageof the canonical map M→ M∨∨ is isomorphic to the module generated by

the columns of the transpose of B,
(iii) M∨∨/M is isomorphic to(kernel CT )/(image BT ).

Proof. By left-exactness of the Hom functor,M∨ = HomR(M, R) is the kernel of the
map defined by the transpose ofA. ThusN = M∨. Similarly, by the definition ofC, M∨∨
is the kernel of the transpose ofC. Let f1, . . . , ft generateM∨ ⊆ Rn. Thenatural map
M → M∨∨ takesm to ϕm, where for eachf ∈ M∨, ϕm( f ) = f (m). Thus, in coordinates,
the image ofm ∈ M in M∨∨ ⊆ Rt is the vector( f1(m), . . . , ft (m)), therefore the image
of M in M∨∨ is generated by the columns of the transpose ofB. �

OnceQ is computed as in the previous lemma, its length can be computed as well. Thus
it remains to compute theC[[x, y]]-moduleM. By the Theorem on Formal Functions,

M ∼= lim←− H 0(�n, E|�n)

asC[[x, y]]-modules, where�n is thenth formal neighborhood of�. We use the following
lemma:
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Lemma 2.2 (Gasparim, 2000, Lemma 2.2). Set M̄ = H 0(�2 j−2, E|�2 j−2), and let

ρ: M̄ ↪→ M̄∨∨ be the natural inclusion of̄M into its bidual. Then l(Q) = dim cokerρ.

This lemma greatly simplifies the calculations. Using this lemma, for the purpose of
finding l (Q), we mayassumeM = M̄. Under this identification, and with our choice of
transition matrixT in (3), it then follows thatM is generated by allholomorphic vectorsv
overC[[z, u]] for which Tv is aholomorphic vector overC[[z−1, zu]]. Thus, we need to
find all vectorsv = (a, b), given bya = ∑

i,l ail zl ui , b = ∑
i,l bil zl ui , where alli and

l are non-negative, andail , bil are (unknowns) in the field, for whichTv is holomorphic
overC[[z−1, zu]]. This restriction yields relations among the unknownsail , bil . To getall
such relations, at the beginning we treatail andbil as variables.

Lemma 2.3. Whenever l> i + j , then bil = 0. Whenever l> i , then ail = 0.

Proof. The second coordinate ofTv is z− j b = ∑
i,l bil zl− j ui = ∑

i,l bil zl− j−i (zu)i . In
order for this to be holomorphic inz−1 andzu, necessarily the coefficientsbil with l > i+ j
must vanish.

The first entry ofTv is

zj
∑
i,l

ail z
l ui + p̄

∑
i1,l1

bi1l1ui1zl1

=
∑
i,l

ail z
l−i+ j (zu)i +

2 j−2∑
i0=1

j−1∑
l0=i0− j+1

p̄i0l0(zu)i0zl0−i0
∑
i1,l1

bi1l1zl1−i1(zu)i1 .

Let m be the minimum u-degree occurring in̄p, i.e., the minimumi0 suchthat p̄i0l0 �= 0.
Then for eachi < m, the coefficient ofui in the first entry ofTv is

∑
l ail (zu)i zl−i+ j . In

order for this to be holomorphic inzu andz−1, necessarily for alll > i − j , ail = 0. Now
consider the casei ≥ m. The coefficient of(zu)i zl+ j−i in the first entry ofTv is

ail +
2 j−2∑
i0=1

j−1∑
l0=i0− j+1

p̄i0l0bi−i0,l+ j−l0,

wherebi ′,l ′ is treated as zero wheneveri ′ or l ′ is negative. By the established bounds,
wheneverl > i − i0 + l0, thenbi−i0,l+ j−l0 = 0. Sincep̄ is a subpolynomial ofp(u, zu),
theonly pairs(i0, l0) to consider are those withl0 ≤ i0. Thus wheneverl > i − i0+ l0, then
bi−i0,l+ j−l0 = 0. In particular, ifl > i , then allbi−i0,l+ j−l0 are zero, so that the coefficient
of (zu)i zl+ j−i in the first entry ofTv is ail . But if Tv is to beholomorphic inzu, z−1, then
necessarilyail = 0. �

Thus for eachi , we need only to consider finitely many unknownsail , bil to construct
the vectorsv as in the set-up above, and find relations on these. UsingLemma 2.2, we may
assume thatM = H 0(�2 j−2, E|�2 j−2). This means that we only need relations involving
ail , bil for i ≤ 2 j −2. But the relations involving bil with i ≤ 2 j −2 arising fromzj a+ p̄b
being holomorphic overC[[u, zu]] involve variablesai ′l andbi ′l with i ′ ≤ 2 j −2+degu p̄,
so that
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Lemma 2.4. Let N be the sumof 2 j − 2 plus the u-degree of̄p. Then M is generated by
vectors(a, b) with a =∑

i,l ail zl ui , b =∑
i,l bil zl ui , where all i and l are non-negative,

ail , bil ∈ C, and

(i) ail = bil = 0 whenever i > N.

(ii) bil = 0 whenever l > i + j .

(iii) ail = 0 whenever l > i . �

The conditions on theail and bil as in the lemma above are not the only ones that
arise from the requirement thatTv be holomorphic inz−1, zu. Finding all the conditions
amounts to finding the generators ofM.

Definition 2.5. All the remaining relations on the variablesail , bil arise from the condition
that in the first entry ofTv, wheneverl > i , then the coefficient ofui zl must be 0. From
now on, we refer to these coefficients as thegenerating relations.

Note that these coefficients are all linear forms in the ringC[ail , bil ].
As in Gasparim(2000), we find these relations successively in the zeroth throughNth

neighborhoods. Below follows our algorithm which computes the generating relations,
arising from ensuring that the first coordinate ofTv is holomorphic inzu, z−1. We write all
algorithms in this paper in pseudocode, closeto the Macaulay2 code that we implemented.

Algorithm “getrelations” to get the generating relations on the ail, bil

Input: non-negative integer N,
fTv = first entry of Tv
ring R, the polynomial ring in u, z, all ail, bil

Output: ideals nonfree and relations in R

nonfree = zero ideal in R
relations = zero ideal in R
k = 0
while (k ≤ N) (

tempoly = truncation of fTv to terms of u-degree at most k
while (tempoly != 0) (

tempterm = leading term of tempoly
i = u exponent of tempterm
l = z exponent of tempterm

partp = coefficient of ui zl in tempoly, linear form in ail , bil

tempoly = tempoly - partp * ui zl

fTv = fTv - partp * ui zl

if (l > i) then (
relations = relations + ideal(partp)
nonfree = nonfree + ideal (leading variable in partp)

)
)
k = k + 1

)
return nonfree, relations

)
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The ideal of all the generating relations obtained in this way is calledrelations. The
idealnonfree contains the leading variable of each relation: in the sense of linear algebra,
these leading variables are not free. We use the following ordering of the monomials.

Definition 2.6. We say thatail > ai ′ l ′ if i > i ′ or if i = i ′ and l > l ′, and similarly
bil > bi ′ l ′ if i > i ′ or if i = i ′ andl > l ′, and furthermore thatail > bi ′l ′ for all i , l , i ′, l ′.

Thus by the form ofTv, each relation contains at most oneail , and eachail appears at
most once in a generating relation. Observe that if all the coefficients ofp(x, y) are in a
subfield F of C, then all the generating relations have coefficients inF . The algorithm
"getrelations" above computes the relations among the givenail , bil , but some of
these relations are “fake” in the following sense:

Example. Let p(x, y) = x2 − y3, j = 3. Then with notations as above,N = 7,
p̄ = u2− u3z3. Forholomorphica =∑

ail ui zl , b =∑
bil ui zl , the coefficient ofu8z9 in

zj a+ p̄b is 0= a86+ b69− b56. However, if we restrict the firstindex ofail to only vary
from 0 to N, then"getrelations" gives the “fake” relation 0= b69− b56.

Thus, computation of the instanton width will have to account for and remove such
“fake” relations. We do this as follows. Such relations only involve variablesail , bil with
i > 2 j − 2. Thus these variables are not allowed to be free variables in the sense of linear
algebra. UsingLemma 2.2, the remaining free variables do give a generating set ofM as
follows. For each of the free variables, set that variable to 1 and all the others to 0 in(a, b).
This produces a finite generating set ofM as a module overC[[x, y]] = C[[u, zu]] of
elements whose entries are inC[[u, z]]. As u is a non-zero divisor,M is isomorphic to
ukM for arbitrary integerk. By Lemma 2.4, u j a andu j b are both polynomials inu(= x)

and zu(= y), so that the generators ofu j M can be written as pairs of polynomials in
C[[x, y]].

Algorithm “polyconv” to convert C[u, z]-polynomials to C[x, y]-polynomials
Input: a polynomial f in u and z
Output: a “truncated” polynomial g(x, y) such that g(u, zu) = f’,

where f’ is that part of f for which this can be done

g = 0 zero element of C[u,z]
while (f != 0) (

lf = leading term of f
i := the u exponent of lf
l := the z exponent of lf
if (l ≤ i) then

g = g + yl * xi−l * leading coefficient of lf
f = f - lf
)

return g
)

Algorithm “setvectors” to express generators of uN+ j M
as vectors with entries in C[x, y]

Input: polynomials uj a, uj b, named Apoly, Bpoly, respectively,
lists changeables, allvars
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Output: A, a presentation matrix for the C[[x, y]]-module M

Mxy = zero submodule of C[x, y]2
total = #changeables
k = 0
while (k < total) (

tapoly = substitute in Apoly the kth changeable variable to 1

tbpoly = substitute in Bpoly the kth changeable variable to 1
tapoly = substitute in tapoly all other variables to 0
tbpoly = substitute in tbpoly all other variables to 0
A = convert tapoly into a polynomial in x and y (use polyconv)
B = convert tbpoly into a polynomial in x and y (use polyconv)

Mxy = Mxy + submodule of C[x,y]2 generated by (A,B)
k = k + 1

)
return a presentation of the C[x, y]-module Mxy

)

The output of the last routine is the presentation matrix of aC[x, y]-module, which by
faithful flatness ofC[[x, y]] overC[x, y] is also the presentation matrix of theC[[x, y]]-
moduleM. Finally, tying it all together:

Algorithm to compute instanton width of the instanton with data ( j, p)

Input: a polynomial p in C[x, y] and a non-negative integer j
Output: the width of the instanton with data ( j, p)

p̄ = p(u,zu) truncated to u-degree at most 2j-2
N = 2j-2 + u-degree of p̄
R = C[u,z,ail , bil ], i < N+1, ordered as in Definition 2.6
a =

∑
ail ui zl

b =
∑

bil ui zl

fTv = z j a + p̄ b
compute relations and nonfree variables as in algorithm getrelations
changeables = all ail , bil with i ≤ 2 j − 2, which are not in nonfree
a = a after applying all the relations
b = b after applying all the relations
A the presenting matrix of the C[x,y]-module M,

output of setvectors(u j+Napoly, u j+Nbpoly, changeables, allvars)

Q = cokernel of the natural map M → M∨∨, as in Lemma 2.1
return (length of Q)

)

3. Computing the instanton height

In this section we compute the instanton height. Recall that the instanton heighth is the
lengthl (R1π∗E( j , p̄)). Another use of the Theorem on Formal Functions gives

(R1π∗E)∧0 = lim←− H 1(�n, E|�n).

We use the following lemma:

Lemma 3.1 (Gasparim, 2000, Lemma 2.3). l (R1π∗E) = dimC H 1(�2 j−2, E|�2 j−2).
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This lemma greatly simplifies the calculations. We then proceed to compute the first
Čech cohomology.

Remark. We have twooptions to computeČech cohomology. Given that our open
cover of the base space is given by affine sets that are open in the analytic topology
as well as in the Zariski topology, we have the option to compute either holomorphic
Čech cohomology (by taking holomorphic cochains) or else algebraicČech cohomology
(by taking algebraic, i.e., polynomial cochains). Since� is compact, so are its formal
neighborhoods. By Serre’s G.A.G.A., holomorphic bundles on a compact variety are
algebraic, thereforeH 1

alg(�n, E|�n) = H 1
hol(�n, E|�n). It follows that theholomorphic

and the algebraic methods give the same answer.

We compute the instanton height using holomorphicČech cohomology. The 1-cocycles
consist of the vectors(a, b) which areholomorphic functions defined on the intersection
U ∩ V . Hencea, b ∈ C[[u, z, z−1]]. The coboundaries consist of the vectors of the form
v + T−1v′, wherev is holomorphic inz, u (onU ) andv′ in z−1, zu (on V). First of all we
choose simple representatives for the cocycles:

Lemma 3.2. Every 1-cocycle has a representative of the form

j−2∑
i=0

−1∑
l=i− j+1

(
ail

0

)
zl ui ,

with ail ∈ C. In particular, every 1-cochain represented by
(ail

0

)
zl ui with i, l ≥ 0 is a

coboundary.

Proof. Let σ be a 1-cocycle and let∼ denote cohomological equivalence. A power series
representative for a 1-cochain has the formσ =∑∞

i=0
∑∞

l=−∞
(ail
bil

)
zl ui , with ail , bil ∈ C.

The 1-cochains1 = ∑∞
i=0

∑∞
l=0

(ail
bil

)
zl ui is holomorphic inU , hence is a coboundary.

Hence

σ ∼ σ − s1 =
∞∑

i=0

−1∑
l=−∞

(
ail

bil

)
zl ui .

After a change of coordinates

Tσ =
∞∑

i=0

−1∑
l=−∞

(
zj ail + p̄ bil

z− j bil

)
zl ui ,

but given thats2 =∑∞
i=0

∑−1
l=−∞

( 0
z− j bil

)
zl ui is holomorphic inV ,

Tσ ∼ Tσ − s2 =
∞∑

i=0

−1∑
l=−∞

(
zj ail + p̄ bil

0

)
zl ui
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and going back to theU -coordinate chart,

σ = T−1Tσ ∼
∞∑

i=0

−1∑
l=−∞

(
ail + z− j p̄ bil

0

)
zl ui .

But p̄ contains only termszk for k ≤ j−1, thereforez− j p̄ contains only negative powers of

z. Renaming the coefficients we may writeσ =∑∞
i=0

∑−1
l=−∞

(a′il
0

)
zl ui for somea′il ∈ C,

and consequentlyTσ = ∑∞
i=0

∑−1
l=−∞

(zj a′il
0

)
zl ui . Here each terma′il zj+l ui satisfying

j + l ≤ i is holomorphic in theV-chart. Subtracting these holomorphic terms we are left
with an expression fora where theindexl varies asi − j +1 ≤ l ≤ −1. Thisin turnforces
i ≤ j − 2, giving the claimed expression for the 1-cocycle.�

Thus we only have to consider cocycles of the form(a, 0). Whichof the cocycles(a, 0)

is a coboundary? In other words, which(a, 0) equal to(c, d)+ T−1(c′, d′), wherec, d are
holomorphic onU andc′, d′ on V , or even more simply, for whatc andd holomorphic on
U is T(a+ c, d) holomorphic onV? The second coordinate ofT(a+ c, d) is z− j d, and in
order for that to be holomorphic,dil = 0 wheneverl ≥ i + j . This is theonly restriction
on c andd obtained from the second coordinate. From the first coordinate ofT(a+ c, d)

weobtain the constraint thatzj (a+c)+ p̄d be holomorphic onV , that is,holomorphic on
coordinatesz−1 andzu.

Lemma 3.3. Let E be the bundle defined by data( j , p̄), and m the smallest exponent of u
appearing inp̄. Then

l (R1π∗E) ≥
(

j

2

)
−

(
j −m

2

)
.

Proof. Let σ = (a, 0) denote a 1-cocycle wherea = zl ui with 0 ≤ i ≤ m − 1 and
i − j + 1 ≤ l ≤ −1. We claim thatσ represents a nonzero cohomology class. In fact, for
σ to be a coboundary there must existc andd, holomorphic inU , making theexpression
zj (a + c) + p̄d holomorphic inV . However,zj a is not holomorphic inV . Moreover,
by the choice ofm, no term in p̄d cancelszj a. Consequently, no choice ofc and d
solves the problemof holomorphicity onV . Hence l (R1π∗E) is at least the number of
independent cocycles of the formσ = (a, 0), wherea = zl ui with 0 ≤ i ≤ m− 1 and
i − j + 1 ≤ l ≤ −1. There are

( j
2

)− ( j−m
2

)
such terms. �

Theorem 3.4. Let E be the bundle defined by data( j , p̄), and m the smallest exponent of
u appearing inp̄. Then

l (R1π∗E) =
(

j

2

)
−

(
j −m

2

)
.

Proof. Firstnote that, byLemma 3.2, if l ≥ j , then(zl− j ui , 0) is a coboundary. Using the
proof of Lemma 3.3, it suffices to show that ifj > l > i ≥ m, thenσ = (zl− j ui , 0) is
a coboundary. Writep̄ = ∑s

r=0 ar zm−r um + p′, wheres ∈ {0, . . . , m} is some integer,
ar are constants,as �= 0, and p′ is a polynomial inu andzu each of whose terms has
u-degree at leastm+ 1. Observe thatd = a−1

s ui−mzl−m+s is holomorphic onU, since by
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assumptioni ≥ m andl > m− s. Thereforeσ ∼ σ ′ = (zl− j ui ,−d), where∼ denotes
cohomological equivalence. Changing coordinates we haveTσ ′ = (zl ui − p̄d,−z− j d).
From j > l > i ≥ m ≥ s we deduce thatz− j d is holomorphic onV . We rewrite the first
entryTσ ′ as

zl ui − p̄d =
s−1∑
r=0

a−1
s ar zl+s−r ui + a−1

s ui−mzl−m+s p′.

By assumption,l − j + s− r ≤ s− r ≤ s ≤ m ≤ i , therefore the first sum on the right
sideof this expression is holomorphic onV . It follows thatTσ ′ ∼ (a−1

s ui−mzl−m+s p′, 0).
Let zvur be an arbitrary term inp′. Then r > m and v ≤ r . If i − m + r ≥

l −m+ s+ v, then the termc = a−1
s ui−mzl−m+s · ur zv is holomorphic onV , therefore

Tσ ′ ∼ (a−1
s ui−mzl−m+s p′ − c, 0).

Removing all such termsc, we may now writeTσ ′ ∼ (a−1
s ui−mzl−m+s p̄, 0), where

p̄ contains only terms inzvur suchthat i − m + r < l − m + s + v. Consequently
σ ′ ∼ (z− j a−1

s ui−mzl−m+s p̄, 0) and asi − m+ r > i , by (reverse) induction oni andl ,
each term(ui−mzl−m+s ·ur zvz− j , 0) is a coboundary. Hence,σ ′ is a sum of coboundaries,
and is itself a coboundary.�

Thus when starting withp(x, y) ∈ C[x, y], the computation of the instanton height
is very fast: oncem is determined, then the following routine"iheight" finishes the
computation:

Algorithm “iheight” to compute instanton height
Input: a polynomial p and a non-negative integer j
Output: returns the length of R1.

p̄ = p(u,zu) truncated to u-degree at most 2j-2
m = the largest power of u dividing p̄
M = j*(j-1)/2;
if (j > m+1) then M = M - (j-m)*(j-m-1)/2;
return M

)

We implemented in Macaulay2 these algorithms for computing the instanton
widths and heights. The computation of height of course only takes a negligible
amount of time, and the computation of widths takes a few seconds. For
example, "iwidth(x^4-x*y^5,4)" finishes in aLinux workstation in 17.07 s, and
"iwidth(x^4-x^2*y^3 -x^3*y^5-y^8,4)" finishes in 32.02 s.
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