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In this paper we discuss the uniqueness of supersymmetric attractors in four-dimensional N = 2
supergravity theories coupled to n vector multiplets. We prove that for a given charge configuration 
the supersymmetry preserving axion free attractors are unique. We generalise the analysis to axionic 
attractors and state the conditions for uniqueness explicitly. We consider the example of a two-parameter 
model and find all solutions to the supersymmetric attractor equations and discuss their uniqueness.
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1. Introduction

Understanding the origin of black hole entropy has remained 
to be an important topic of research in gravity and string theory 
since the seminal work by Bekenstein [1] on this issue. One of 
the important developments in this area is the so called attrac-
tor mechanism, which states that, in a theory of gravity coupled to 
several scalar fields admitting a single centred extremal black hole, 
the scalar fields run into a fixed point at the horizon whose value 
depends only on the black hole charges [2–5]. There are several as-
pects of attractor mechanism which have been studied thoroughly 
[6,7]. Multiplicity of the attractors is one of the puzzling issues 
which remains to be understood better. Because of the presence 
of multiple basin of attractors, the near horizon geometry of the 
black hole is no longer uniquely determined by its charges and 
one needs to specify the area code in addition to the black hole 
charges.

The existence of multiple basin of attractors for a given set of 
charges has been first discussed in [8,9]. Area codes in the con-
text of flux vacua and black hole attractors have been studied 
[10,11]. Subsequently, multiple supersymmetric attractors in five-
dimensional N = 2 supergravity theory have been discussed and 
explicit constructions in the simple case of a two parameter model 
have been carried out [12]. The analysis has been extended to four-
dimensional N = 2 supergravity [13] by using the known 4D–5D
correspondence of the attractor points [14]. Further, new mul-
tiple non-supersymmetric attractors which do not have obvious 
five-dimensional embedding have been constructed [13]. Multiple 
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attractors in a one parameter model in the presence of quantum 
corrections have already been studied [15].

The existence of multiple single centred supersymmetric at-
tractors might at first sight appear to be in contradiction with 
the uniqueness results [16]. (For homogeneous moduli spaces, the 
solution is always unique up to a duality transformation [17].)
However, as explained by Kallosh [18], this is not always the 
case, because the moduli space might in general possess several 
disconnected branches. The attractor solution in each of these 
branches remains unique. One might expect similar results in four-
dimensional N = 2 supergravity. However, though there exist mul-
tiple non-supersymmetric attractors and also multiple attractors 
with one of the attractor points being supersymmetric in these 
four-dimensional supergravity theories there is no known exam-
ple where both the attractor points are supersymmetric for these 
N = 2 supergravity theories in four dimensions [13]. This sug-
gests that, unlike the five-dimensional case, the supersymmetric 
attractors might be unique in these four-dimensional supergravity 
theories. The present work aims to investigate this issue in detail.

The plan of this paper is as follows. In the following section, we 
will briefly overview the N = 2 supergravity theory. In Section 3
we will prove that the axion free attractors in four dimensions 
are unique. Subsequently, we will generalise this result for ax-
ionic attractors. This will be followed by an explicit construction 
of all supersymmetric attractors in a simple two-parameter model 
in Section 4. Finally, we will be summarise our results in Section 5.

2. Overview

The Lagrangian density for the bosonic part of the four-
dimensional N = 2 supergravity theory coupled to n vector multi-
plet, is given by
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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L = − R

2
+ gab̄∂μxa∂ν x̄b̄hμν − μ��F�

μνF�
λρhμλhνρ

− ν��F�
μν ∗F�

λρhμλhνρ . (2.1)

Here hμν is the space–time metric, R is the corresponding Ricci 
scalar, gab is the metric on the vector multiplet moduli space 
parameterised by the corresponding n complex scalar fields xa

and A�
μ are the (n + 1) gauge fields with corresponding field 

strength F�
μν . The gauge couplings μ�� , ν�� and the moduli 

space metric gab̄ are uniquely determined by the N = 2 prepoten-
tial F .

We are interested in static, spherically symmetric configura-
tions. The line element corresponding to the space time metric hμν

in this case is given by

ds2 = e2U dt2 − e−2U γmndymdyn . (2.2)

The wrap factor U depends only on the radial coordinate r. For ex-
tremal black holes, the metric of the spacial section γmn must be 
identity. The equations of motion for these configurations simpli-
fies and the system can now be described in terms of an effective 
one-dimensional theory with a potential which is extremised at 
the horizon.

For the N = 2 Lagrangian (2.1), the effective black hole potential 
takes the form [4]:

V = eK
[

gab̄∇a W ∇b W + |W |2
]

. (2.3)

Here W and K are respectively the superpotential and the Kähler 
potential. The superpotential W is related to the central charge 
by Z = eK/2W . In terms of the dyonic charges (q�, p�) and the 
prepotential F , the expression for W is given by

W =
n∑

�=0

(q� X� − p�∂� F ) . (2.4)

The symplectic sections X� are related to the physical scalar fields 
by xa = Xa/X0. The Kähler potential is given in terms of F by the 
relation:

K = − log
[

i
n∑

�=0

(X�∂� F − X�∂� F )
]

. (2.5)

The covariant derivative is defined as ∇a W = ∂a W +∂a K W . For su-
persymmetric attractors ∇a W = 0. In general, the attractor points 
are determined by ∂a V = 0.

Throughout this paper, we will focus on the N = 2 prepotential 
which is of the form

F = Dabc
Xa Xb Xc

X0
. (2.6)

The above prepotential appears as the leading term in the com-
pactification of type IIA string theory on a Calabi–Yau manifold M
in the large volume limit. In this case, Dabc are the triple inter-
section numbers Dabc = ∫

M αa ∧ αb ∧ αc , where the two forms αa

form a basis of H2(M, Z). In this paper, we will use string theory 
terminologies to describe various charge configurations irrespec-
tive of whether the coefficients Dabc are actually associated with a 
Calabi–Yau compactification or not.

In the following we will describe some of the well known su-
persymmetric attractor solutions. For this purpose we need explicit 
expressions for the Kähler and the superpotentials. The Kähler po-
tential K corresponding to the N = 2 prepotential F has the fol-
lowing simple form

K = − log[−iDabc(xa − x̄a)(xb − x̄b)(xc − x̄c)] . (2.7)
(Now on we set the gauge X0 = 1 without any loss of generality 
and express our formulae in terms of the physical scalar fields xa .) 
The superpotential depends on the specific charge configurations. 
In this paper we will mainly focus on D0–D4 and D0–D4–D6
configurations. For the D0–D4 configuration, the superpotential is 
given by

W = q0 − 3pa Dabcxbxc , (2.8)

whereas for the D0–D4–D6 configuration, we have

W = q0 − 3pa Dabcxbxc + p0 Dabcxaxbxc . (2.9)

These configurations possess well known supersymmetric at-
tractor solutions [19]. For the D0–D4 configuration, we have

∇a W = −6Dabxb − 3Ma

M
W .

From here onwards we use the standard notations [20] Dab =
Dabc pc , Da = Dab pb , D = Da pa , Mab = Dabc(xc − x̄c), Ma =
Mab(xb − x̄b) and M = Ma(xa − x̄a). (Note that Ma is real where 
as Mab and M are pure imaginary.) Setting the ansatz, xa = pat , 
we find

∇a W = −3Da

2t D
(q0 + t2 D) ,

and hence,

xa = ipa

√
q0

D
,

for the supersymmetric D0–D4 configuration. The entropy of the 
corresponding supersymmetric black hole is S = 2π

√
q0 D .

The solution can be generalised in a straightforward manner 
upon adding D6 branes. We find

∇a W = −6Dabxb + 3p0 Dabcxbxc − 3Ma

M
W .

Setting the ansatz xa = pat , we find the supersymmetric configu-
ration corresponds to [19]

t = 1

2D

(
p0q0 ± i

√
4q0 D − (p0q0)2

)
. (2.10)

The entropy for this configuration is

S = π

√
4q0 D − (p0q0)2 .

3. The general solution

In this section, we will focus on the supersymmetric conditions 
more carefully and obtain the general solution without assuming 
any specific ansatz. We will first focus on the D0–D4 configura-
tion. Note that, in this case the superpotential contains only even 
powers of xa . Thus we can set the axionic parts of the scalar fields 
to zero: xa = ixa

2. The supersymmetry condition now becomes

Mab pb + Ma

M
(q0 − 3

4
Mb pb) = 0 . (3.1)

Note that, for any configuration xa
2 satisfying the above equation, 

we have q0 = − 1
4 Ma pa . We can see this by multiplying by (xa − x̄a)

and simplifying the above equation. Thus, we can further simplify 
Eq. (3.1) by substituting 1

4 Ma pa = −q0 in it. We find

Mab pb + 4q0
Ma = 0 . (3.2)

M
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Assuming the matrix Mab to be invertible, we can rewrite the 
above equation as

pa = −8iq0
xa

2

M
. (3.3)

This is a cubic equation in xa
2. To solve it exactly, use the RHS of 

the above for pa in D = Dabc pa pb pc to rewrite it as D = −64 q0
3

M2 . 
Solving this for M and substituting it in Eq. (3.3), we find xa =
ipa√q0/D as the most general axion free solution of the super-
symmetric condition (3.1).

We will now generalise this result in the presence of D6 branes. 
Note that in the presence of D6 branes it is no longer possible 
to set the axionic parts of the scalar fields to zero. We denote 
xa = xa

1 + ixa
2 and express the real and imaginary parts the super-

symmetric condition ∇a W = 0 as

4MMab(pb − p0xb
1) = 3Ma Mb(pb − p0xb

1)

− 4Ma(q0 − 3Dbcxb
1xc

1 + p0 Dbcdxb
1xc

1xd
1) ,

(3.4)

8M Dabcxb
1(2pc − p0xc

1) − p0MMa = 12Ma Mbcxb
1(2pc − p0xc

1) .

(3.5)

For convenience we introduce ωa = pa − p0xa
1. Expressing the 

above equations in terms of ωa and xa
2, we find

4MMabω
b = 3Ma Mbω

b − 4Ma

(p0)2

(
q0(p0)2 − 2D + 3Dbω

b

− Dbcdω
bωcωd) , (3.6)

8M

p0
(Da − Dabcω

bωc) − p0MMa = 12Ma

p0
Mbc(pb pc − ωbωc) .

(3.7)

We would like to find the most general solution of the above equa-
tions for the variables ωa, xa

2. We first rewrite these equations in 
a simpler form so that it will be easier for us to solve them. Con-
sider first (3.7). Multiplying (xa − x̄a) on both side of this equation 
and using the relation Da(xa − x̄a) = Mab pa pb we find

4Da(xa − x̄a) + (p0)2M = 4Mabω
aωb . (3.8)

Using the above relation in (3.7) we obtain

4Da + (p0)2Ma = 4Dabcω
bωc . (3.9)

We can similarly simplify (3.6). Multiplication of (xa − x̄a) on both 
sides of (3.6) provides

4
(
q0(p0)2 − 2D + 3Daω

a − Dabcω
aωbωc) + (p0)2Maω

a = 0 .

(3.10)

Putting back (3.10) in (3.6) we find

MMabω
b = Ma Mbω

b . (3.11)

Introducing μ = (2iMaω
a/M) the above equation can be rewritten 

as wa = μxa
2. Substituting ωa = μxa

2 in (3.9) we get

Da = −1

4
(p02 + μ2)Ma ,

which implies

xa
2 = 2i

Mab Dbc pc

02 2
. (3.12)
p + μ
Defining

Ia
b = 2i

Mac Dcb√
p02 + μ2

,

we can rewrite Eqs. (3.12) along with ωa = μxa
2 as

wa = μ√
p02 + μ2

Ia
b pb , (3.13)

xa
2 = 1√

p02 + μ2
Ia

b pb . (3.14)

It can be shown that the matrix Ia
b is involutory: Ia

b Ib
c = δa

c and 
it satisfies the relation

Dabc Ib
e Ic

f = Daef . (3.15)

Using the explicit expressions for μ and after some simplifications, 
we can rewrite Eqs. (3.13) and (3.14) in terms of the variables xa

1, 
xa

2 as

xa
1 = 1

p0

(
pa − D − 1

2 q0 p02

Dc Ic
d pd

Ia
b pb

)
, (3.16)

xa
2 = 1

p0

(
1 −

(
D − 1

2 q0 p02

Dc Ic
d pd

)2 )1/2

Ia
b pb . (3.17)

This is the most general solution for the supersymmetry conditions 
(3.6) and (3.7). Any involution Ia

b satisfying the relation (3.15)
will give us a new supersymmetric attractor. The standard solution 
(2.10) can be recovered by setting Ia

b = δa
b . We will have multi-

ple attractors if there exists nontrivial involutions satisfying (3.15)
and if the moduli space metric as well as the gauge kinetic terms 
remain positive definite at more than one attractor points for the 
same charge configuration.

For supersymmetric black holes the entropy is given by S =
πeK0 |W0|2, where K0 and W0 are the values of the Kähler and 
superpotential at the attractor point respectively. Substituting the 
value of K0 and W0 in the expression for entropy, we find

S = π

p0

√
4(Da Ia

b pb)2 − (2D − q0 p02
)2 . (3.18)

4. An explicit example

In the previous section we have derived the most general ex-
pression for the supersymmetric D0–D4–D6 attractors. They are 
given in terms of the involution Ia

b satisfying the constraint (3.15). 
In general it is not possible to solve (3.15) for arbitrary number 
of vector multiplets. Here we will consider the simplest case of a 
two-parameter model where this condition can be solved exactly 
to obtain new supersymmetric attractors.

A 2 × 2 involution can be parametrised as

Ia
b =

(
u v
w −u

)
(4.1)

with u2 + v w = 1. To solve (3.15) for the two parameter case, we 
denote D111 = a, D112 = b, D122 = c and D222 = d. Further we use 
the notations L = ad − bc, M = c2 − bd and N = b2 − ac for con-
venience. Using u2 + v w = 1 we find two linearly independent 
equations from the condition (3.15):

av − 2bu − cw = 0 , (4.2)

bv − 2cu − dw = 0 . (4.3)
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It is straightforward to solve the above set of equations. For L2 −
4MN > 0 they admit a solution of the form:

u = L√
L2 − 4MN

, v = −2M√
L2 − 4MN

, w = 2N√
L2 − 4MN

Thus we obtain a new D0–D4–D6 supersymmetric attractor in the 
two parameter case in addition to the standard solution (2.10). Us-
ing the above solution for the involutory matrix Ia

b we can obtain 
explicit expressions for the vector multiplet moduli x1 = x1

1 + ix1
2

and x2 = x2
1 + ix2

2 (for easy reading we denote χ = Da Ia
b pb in the 

following):

x1
1 = 1

p0

(
p1 − (D − 1

2 q0 p02
)(Lp1 − 2Mp2)

χ
√
L2 − 4MN

)
,

x1
2 = 1

p0

(
1 −

(
D − 1

2 q0 p02

χ

)2)1/2
(Lp1 − 2Mp2)√

L2 − 4MN
,

x2
1 = 1

p0

(
p2 − (D − 1

2 q0 p02
)(2N p1 −Lp2)

χ
√
L2 − 4MN

)
,

x2
2 = 1

p0

(
1 −

(
D − 1

2 q0 p02

χ

)2)1/2
(2N p1 −Lp2)√

L2 − 4MN
. (4.4)

Having obtained the above new configuration for the D0–D4–
D6 attractors we would like to ask if it coexists with (2.10) for the 
same set of charges. Both the solutions are well defined for L2 −
4MN > 0. However, this is not sufficient for the existence of the 
attractor solution and we need to make sure that both the moduli 
space metric and the gauge kinetic terms are positive definite.

We will first consider the moduli space metric gab̄ = ∂a∂b̄K . 
From the expression for it Kähler potential (2.7) it is straightfor-
ward to find

gab̄ = 3

M

(
2Mab − 3

M
Ma Mb

)
. (4.5)

At the attractor point (2.10) it takes the form

gab̄ = 9

q0
(
4D − q0 p02)

(
Da Db − 2

3
D Dab

)
, (4.6)

where as for the new solution Eqs. (3.16) and (3.17) we have

gab̄ = 9p02
χ

4
(
χ2 − (

D − 1
2 q0 p02)2

)
(

Da Db − 2

3
χ Dabc Ic

d pd
)

. (4.7)

For the two parameter model it is straightforward to diago-
nalise both the metrics. The explicit expressions for the eigenval-
ues are lengthy and we will not reproduce them here. For our 
purpose it will be sufficient to consider the determinant of the 
metric. From (4.5) we find

det g = (−1)n
(

3

M

)2n

det

(
Ma Mb − 2M

3
Mab

)

= (−1)n
(

3

M

)2n

×
((

−2M

3

)n−1(
εa1a2···an M1Ma1 M2a2 · · · Mnan + · · ·

+ εa1a2···an M1a1 M2a2 · · · M(n−1)an−1 Mn Man

)

+
(

−2M
)n

det Mab

)

3

Note that εa1a2···an M1Ma1 M2a2 · · · Mnan = εa1a2···an M1(xb1 − x̄b1 )×
Ma1b1 M2a2 · · · Mnan = M1(x1 − x̄1) det(Mab). There are n such terms 
and adding them all we get M det(Mab). Thus, the determinant of 

the moduli space metric is found to be −3n2(n−1) det

(
Mab
M

)
. Sub-

stituting the explicit solutions, we find, for (2.10),

det g = 18D2(N p12 −Lp1 p2 +Mp22
)

q0
2
(
4D − q0 p02)2

, (4.8)

where as, for Eqs. (3.16) and (3.17)

det g = − 18p04
χ2

(
4χ2 − (

2D − q0 p02)2)2
(N p12 −Lp1 p2 +Mp22

) .

(4.9)

From the above, we find that both the determinant are propor-

tional to (N p12 −Lp1 p2 +Mp22
) with the proportionality factor 

being positive for the first one where as negative for the second 
solution. Clearly, for a given set of charges, both the terms can’t be 
made positive simultaneously. Thus the moduli space metric be-
come positive definite in mutually exclusive regions of the charge 
lattice. The attractor solution becomes unique in each of these do-
mains. For the attractor point (2.10), this domain is specified by 
(N p12 −Lp1 p2 +Mp22

) > 0 where as for the solution (4.4) it is 
given by (N p12 − Lp1 p2 + Mp22

) < 0. We can explicitly verify 
that the eigenvalues become positive in these respective regions of 
the charge lattice. We have numerically verified that the gauge ki-
netic terms can also simultaneously be made positive definite by 
suitable choice of charges.

5. Summary

In this paper we have studied the uniqueness of supersym-
metric attractors in N = 2 supergravity theories in four dimen-
sions arising from type IIA compactification on a Calabi–Yau man-
ifold. We have proved the uniqueness for D0–D4 attractors. We 
found that the supersymmetry conditions admit more general so-
lutions if we include D6 charges in addition. These solutions 
are determined by involutions which satisfies certain constraints. 
For the two parameter model we can explicitly solve the con-
straint to find two independent solutions for the attractor equa-
tion. However, they exist in mutually exclusive domains of the 
charge lattice. Hence, the attractors are unique in the respective 
domains.
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