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Osteoblastic differentiation of vascular smooth muscle cells

(VSMCs) is involved in the pathogenesis of vascular

calcification. Hydrogen sulfide (H2S) is a gas endogenously

produced by cystathionine c-lyase in VSMC. Here we

determined whether H2S plays a role in phosphate-induced

osteoblastic transformation and mineralization of VSMC.

Hydrogen sulfide was found to inhibit calcium deposition in

the extracellular matrix and to suppress the induction of the

genes involved in osteoblastic transformation of VSMC:

alkaline phosphatase, osteocalcin, and Cbfa1. Moreover,

phosphate uptake and phosphate-triggered upregulation of

the sodium-dependent phosphate cotransporter (Pit-1) were

also prevented by H2S. Reduction of endogenous production

of H2S by inhibition of cystathionine c-lyase activity resulted

in increased osteoblastic transformation and mineralization.

Low plasma levels of H2S, associated with decreased

cystathionine c-lyase enzyme activity, were found in patients

with chronic kidney disease receiving hemodialysis. Thus, H2S

is a potent inhibitor of phosphate-induced calcification and

osteoblastic differentiation of VSMC. This mechanism might

contribute to accelerated vascular calcification in chronic

kidney disease.
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Vascular calcification is implicated in the pathogenesis of
various vascular diseases and can result in devastating clinical
consequences. It is related to an increased risk of cardio-
vascular morbidity and complications such as atherosclerotic
plaque burden,1–3 myocardial infarction,4,5 coronary artery
disease,6,7 post-angioplasty dissection,8 and increased
ischemic episodes in peripheral vascular disease.9 It has also
been shown to be a strong marker of cardiovascular events in
patients with diabetes and chronic kidney disease (CKD).6

Studies also indicate that coronary calcification may be
predictive of increased propensity for sudden cardiac
death.10,11 Strong associations between arterial calcification
and stiffness, pulse pressure, or mortality in dialysis patients
have also been shown to contribute to the high rates of
cardiac and peripheral ischemic disease and left ventricular
hypertrophy in this population.12–14 Although the precise
mechanisms of vascular calcification are not completely
understood, abnormalities in mineral metabolism are con-
sidered important risk factors. High extracellular phosphate
(Pi) has been widely established to induce vascular calcifica-
tion.15–19 Pi uptake through a sodium-dependent phosphate
cotransporter, Pit-1, is essential for vascular smooth muscle
cell (VSMC) calcification and phenotypic modulation in
response to elevated Pi.20 Contrary to previous conception,
accumulating evidence now suggests that vascular calcifica-
tion is a delicate and well-regulated cellular process in which
VSMC gain an osteoblastic phenotype. This is indicated
by the increase in expression of the core-binding factor
alpha-1 (Cbfa1), which is an osteoblast-specific transcription
factor required for osteoblast differentiation, bone matrix
gene expression, and, consequently, bone mineralization.21

Upregulation of alkaline phosphatase (ALP; an important
enzyme in early osteogenesis) and osteocalcin (OC; a major
non-collagenous protein in bone matrix that regulates
mineralization) was also shown to occur.22

Hydrogen sulfide (H2S) has traditionally been considered
a toxic gas; however, recently, it has been recognized as the
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third endogenous gaseous transmitter besides carbon mon-
oxide and nitric oxide.23 In mammals, H2S is produced by
two enzymes: cystathionine b-synthase and cystathionine
g-lyase (CSE) via the transsulfuration pathway using
homocysteine, cystathionine, and L-cysteine as substrates.
On the basis of the literature, the concentration of H2S in the
peripheral system ranges from 30 to 50 mmol/l,24 although
recently it has been suggested that this is an overestimation
(reviewed in ref. 25). It was shown that in the aorta, H2S
concentration is 20- to 100-fold higher than that in
other tissues.26 In the vasculature, H2S is generated mainly
by vascular smooth muscle cells by CSE.27 H2S exerts a
number of physiological actions in the cardiovascular system:
(i) it dilates blood vessels mostly, if not exclusively, by
a mechanism that involves opening of adenosine 50 tripho-
sphate-sensitive Kþ channels of smooth muscle cells,28 (ii) it
is cardioprotective against ischemic/reperfusion damage
and myocardial inflammation,29 and (iii) it preserves both
mitochondrial structure and function after injury.30 Accu-
mulating evidence suggests that it has direct inhibitory
effects on the development of atherosclerosis. H2S induces
apoptosis,31,32 suppresses endothelin-induced proliferation of
VSMC,33 and influences vascular inflammatory reactions.34 It
has also been demonstrated that H2S inhibits the oxidation of
low-density lipoprotein and lipids from atheromatous
plaques.35 In fact, the progression of atherosclerosis was
shown to be significantly slower in patients with Down’s
syndrome, a state of H2S overproduction.36 In the context of
CKD, plasma level of H2S was reported to be decreased in
stage 5 CKD patients.37 Calciphylaxis can be successfully
treated with intravenous administration of sodium thiosul-
fate,38,39 a drug that—as discovered recently—increases H2S
biogenesis by inducing CSE expression.40 In addition, H2S
was recently reported to ameliorate vascular calcification
induced by vitamin D3 plus nicotine in rats.41 However, the
mechanisms underlying the protective effect of H2S and the
role of CSE in vascular calcification in CKD have not been
explored. The purpose of this study was to investigate the role
that H2S and biogeneration of H2S may have in the process
of VSMC mineralization and transition of smooth muscle
cells into osteoblast-like cells. We observed that H2S from
both extracellular and intracellular origin suppresses high
Pi-induced calcification and osteoblastic differentiation of
human aortic smooth muscle cells (HAoSMCs) through
suppression of Pit-1, and that the enzyme activity of CSE is
decreased in stage 5 CKD.

RESULTS
H2S decreases HAoSMC mineralization in a dose–responsive
manner

To establish an in vitro model of human vascular calcification,
we cultured HAoSMC in calcification medium, which was
prepared by addition of 3 mmol/l Pi to the growth medium
(GM). HAoSMC was cultured in calcification medium in
the presence or absence of H2S for 7 days, followed by
calcium measurement (Figure 1a). As expected, Pi provoked

calcification, whereas in the control culture no deposits were
formed during this period. Importantly, H2S inhibited
calcium deposition in a dose–responsive manner, providing
a significant inhibition at concentrations of X50 mmol/l. To
confirm the effect of H2S on calcium deposition, we also
performed Alizarin red staining of HAoSMC (Figure 1b).
HAoSMC maintained in calcification medium showed
development of granular calcium deposits throughout the
cell culture. Supplementation of the calcification medium
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Figure 1 | H2S decreases HAoSMC mineralization in a
dose–responsive manner. (a–c) HAoSMCs were cultured in GM or
in calcification medium alone or supplemented with 25, 50, 100,
and 150 mmol/l of H2S for 7 days. (a) Calcium content is shown as
mean±standard deviation of three independent experiments
conducted in duplicates; *Po0.05, **Po0.01. (b) Representative
images of Alizarin red staining of plates (upper) and microscopic
views (� 100, lower) from three independent experiments are
shown. (c) MTT assay is shown as mean±standard deviation of
two independent experiments conducted in triplicates. GM,
growth medium; HAoSMC, human aortic smooth muscle cell;
H2S, hydrogen sulfide; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide.
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with H2S prevented the accumulation of calcium in the
extracellular matrix. To test the viability of cells exposed
to H2S, we carried out MTT (3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide) assay (Figure 1c). We did
not observe a decline in viability of HAoSMC challenged with
H2S in the concentration range of 25–150 mmol/l.

H2S inhibits osteoblastic differentiation of HAoSMC

It has been shown that vascular calcification in vivo resembles
bone mineralization; therefore, we examined whether H2S
suppresses the phenotype transition of HAoSMC into
osteoblast-like cells. Because upregulation of ALP, an
important enzyme in osteogenesis, and OC, a major non-
collagenous protein found in bone matrix, are implicated in
the pathogenesis of vascular calcification, we measured the
level of their expression in HAoSMC treated with H2S.
Although HAoSMC maintained in calcification medium
for 7 days exhibited around a 10-fold increase in ALP activity
compared with controls, addition of H2S to the calcification
medium resulted in a dose-dependent suppression providing
a complete attenuation at a dose of 100 mmol/l (Figure 2a).
Similar to ALP activity, the induction of OC was also
abolished by H2S. Maintaining HAoSMC in calcification
medium for 7 days led to a 410-fold increase in OC content
in the extracellular matrix compared with control. H2S
decreased the expression of OC to the basal level, observed in
HAoSMC (Figure 2b and c) cultured in GM.

Next, we examined the level of Cbfa1, a transcription
factor required for osteoblast differentiation, in our in vitro
model. Pi increased Cbfa1 mRNA level by B1.8-fold
compared with cells grown in control medium. As shown
in Figure 3, H2S completely suppressed the induction of
Cbfa1 mRNA provoked by elevated Pi.

Evidence suggests that the effects of hyperphosphatemia
are mediated via Pit-1, which facilitates entry of Pi into
vascular cells. To further explore the mechanism by which
H2S inhibits vascular calcification, we measured Pi uptake of
HAoSMC in the presence or absence of H2S. Intriguingly,
addition of H2S inhibited Pi uptake in a dose–responsive
manner, providing a significant and complete suppressions
at concentrations of 50 mmol/l and 100 mmol/l, respectively
(Figure 4a). To explore the mechanism underlying the
inhibition of Pi uptake, we examined the expression of
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Figure 2 | H2S inhibits Pi-mediated upregulation of osteoblast-
specific proteins in HAoSMC. (a–c) HAoSMCs were cultured in
GM or in calcification medium in the absence or presence of
different concentrations of H2S for 7 days. (a) ALP activity is
presented as means±standard deviation of three independent
experiments each conducted in duplicates; **Po0.01. (b)
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*Po0.05, **Po0.01. ALP, alkaline phosphatase; GM, growth
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hydrogen sulfide.
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Pit-1. Maintaining HAoSMC in calcification medium, we
observed a 1.6-fold elevation in Pit-1 mRNA level. Addition
of H2S into the calcification medium prevented the increase
in Pit-1 expression (Figure 4b).

It was recently reported that induction of ferritin prevents
Pi-mediated calcification and osteoblastic differentiation
of HAoSMC.42 We therefore tested whether H2S modulates
its expression in HAoSMC. As shown in Figure 5, the
expressions of H- and L-ferritin were not altered, suggesting
that the mechanism by which H2S prevents calcification is
independent of ferritin.

Endogenous production of H2S inhibits calcification and
osteoblastic differentiation of HAoSMC

In the vasculature, H2S is produced by VSMC expressing
the pyridoxal-50-phosphate-dependent enzyme CSE. On the
basis of our observations, we thereby hypothesized that
inhibition of CSE enzyme activity would lead to increased
mineralization. Therefore, first we inhibited CSE using dl-
propargylglycine (PPG), a well-known inhibitor of CSE
activity. Cells treated with PPG showed a gradual decrease in
CSE enzyme activity (Figure 6a). Suppression of CSE by PPG
almost doubled the deposition of calcium in the extracellular

matrix of HAoSMC maintained in calcification medium
for 7 days (Figure 6b), as compared with cells cultured in
calcification medium without PPG. Accordingly, PPG pro-
voked a significant additional increase in the activity of ALP
(Figure 6c) and expression of OC (Figure 6d and e) by 73%
and 120%, respectively. As a second approach to decrease CSE
activity, we transfected HAoSMC with CSE-specific small
interfering RNA (siRNA). Transfection provided an B70%
reduction in CSE enzyme activity, which was accompanied by
increased calcium deposition in HAoSMC (Figure 7).

Decreased plasma H2S levels are associated with reduced CSE
activity in stage 5 CKD patients

In agreement with previous observations,37 we found that
plasma concentration of H2S was decreased in stage 5 CKD
patients, and that H2S level was further lowered by
hemodialysis (Figure 8a). As the main enzyme responsible
for H2S biogenesis in the vasculature is CSE, we compared
its expression and activity in mononuclear cells derived
from stage 5 CKD patients treated with hemodialysis and
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healthy controls. Levels of CSE mRNA and protein expression
were similar in CKD patients and controls (Figure 8b–d).
Importantly, CSE enzyme activity—which was measured
by cystathionine consumption and cysteine production—was
markedly decreased in mononuclear cells derived from
stage 5 CKD patients treated with hemodialysis compared
with healthy individuals (Figure 8e and f).

DISCUSSION

Elevated Pi level has long been recognized as a significant
predictor of soft tissue mineralization. Such elevated Pi levels
are commonly seen in patients with end-stage kidney disease
in which the Pi homeostasis is deranged because of inability
of the kidneys to excrete phosphate. Evidence shows that
vascular calcification results in increased cardiovascular
mortality in hemodialysis patients.43–45 Vascular calcification
follows two distinct patterns: (i) intimal calcification, which
occurs with atherosclerotic plaques, and (ii) medial calcifica-
tion, which is characterized by diffuse calcification of the
media, particularly at the level of the internal elastic lamina
that is commonly seen in hemodialysis patients and is not
always accompanied by atherosclerosis. Furthermore, devel-
opment of calciphylaxis, which is a syndrome of diffuse
arteriolar calcification and skin necrosis, is almost exclusively
seen in patients with stage 5 CKD and correlates with
extremely high fatal rates.

Previous studies indicated that elevated phosphate could
induce VSMC calcification as well as an osteochondrogenic
phenotypic change.46,47 Evidence suggests that this transition
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is a highly regulated cellular process18,20–22 involving upregu-
lation of Cbfa1, a key regulatory transcription factor critical
for the differentiation of osteoblasts, and its downstream
transcript proteins such as ALP, a crucial enzyme in the
context of bone and teeth formation, and OC, which is a very
specific protein indicative of osteoblast activity.

H2S is now recognized as a gas with important functions in
the cardiovascular system.23 In the vasculature, it is produced
by VSMC by CSE enzyme,27 and is involved in the regulation
of vascular tone28 and myocardial contractility.48 H2S
deficiency was observed in various animal models of arterial49

and pulmonary hypertension.50 Exogenous H2S ameliorates
myocardial dysfunction associated with the ischemia/reperfu-
sion injury.51,52 More recently, it was reported that H2S
reduces vascular calcification induced by vitamin D3 plus
nicotine in rats.41 The potential inhibitory effect of H2S on
vascular calcification has recently emerged in calcific uremic

arteriolopathy/calciphylaxis, a life-threatening complication of
renal failure. Calciphylaxis can be successfully treated with
intravenous administration of sodium thiosulfate.38,39 Sodium
thiosulfate was shown to enhance H2S generation by inducing
CSE expression.40 However, the effector function(s) of H2S in
the treatment of calciphylaxis remained to be elucidated.

Drawing upon these previous observations, we examined
the role that H2S may have in VSMC calcification and
transition of VSMC into osteoblast-like cells. We observed
that H2S suppressed deposition of calcium in the extracellular
matrix of HAoSMC induced by Pi in a dose–responsive
manner. More importantly, the inhibitory effect of H2S
was not limited to calcium deposition. In fact, H2S
suppressed the induction of genes involved in osteoblastic
transformation of HAoSMC. H2S inhibited Pi-mediated
upregulation of ALP and OC in a dose-dependent manner.
Cbfa1 is required for osteoblast differentiation, bone matrix
gene expression, and, consequently, mineralization;21 there-
fore, we examined the effect of H2S on Cbfa1 expression in
HAoSMC. Similar to ALP and OC, the Pi-provoked
upregulation of Cbfa1 was attenuated by H2S.

Emerging evidence suggests that the effect of hyperpho-
sphatemia on VSMC calcification is mediated through Pit-1,
which facilitates entry of Pi into vascular cells.20 We therefore
tested whether H2S alters intracellular Pi level in HAoSMC.
Importantly, the marked increase in the level of intracellular
Pi due to phosphate exposure was substantially reversed by
H2S. We demonstrate that inhibition of entry of Pi into
vascular cells provided by H2S occurs through suppression of
Pit-1 expression, thus decreasing the intracellular level
of Pi that is fundamental to osteoblastic transformation of
HAoSMC. Apoptosis of VSMC is also implicated in the
pathogenesis of calcification in vessels, which is seen both in
the intima in advanced plaques and in the media in CKD.
Apoptotic smooth muscle cells may function as both a nidus
for calcification and actively concentrate both calcium and
phosphate to generate hydroxyapatite.53–55 H2S was shown to
induce apoptosis of HAoSMC. The concentration at which
H2S exhibits proapoptotic effect is X200 mmol/l. In our
study, we did not observe alterations in viability of HAoSMC
challenged with Pi or H2S at concentrations studied.

H2S is generated as an alternative product of the
transsulfuration pathway (Figure 9), and in the vasculature
it is produced mainly by VSMC via CSE-catalyzed reaction.27

Recently, it has been shown that deletion of CSE in mice
results in hypertension.56 Our data confirmed that the plasma
concentration of H2S was decreased in stage 5 CKD patients.
Moreover, the level of H2S was further lowered by
hemodialysis. We revealed that enzyme activity of CSE in
monocytes derived from stage 5 CKD patients treated with
hemodialysis was markedly reduced compared with healthy
individuals, without changes in mRNA or protein expression.
These results suggest potential post-translational modifica-
tions in CSE in CKD that remain to be determined.

To prove the role of CSE in inhibiting Pi-induced
HAoSMC mineralization, we used strategies to decrease
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expression was measured by quantitative reverse transcriptase-
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endogenous production of H2S via both pharmacological
inhibition of CSE enzyme activity and silencing of CSE gene
expression. By reducing CSE-mediated endogenous H2S
biogeneration, we observed a significant increase in both
HAoSMC calcification and the expression of ALP and OC.

Our findings further corroborate the imperative role of
H2S and CSE in the vasculature and suggest that reduced
activity of CSE and subsequent decrease in the level of H2S
in stage 5 CKD patients could exacerbate the cardiovascular
complications that commonly accompany this particular
group of patients.

In conclusion, our study demonstrates a novel role of
H2S in the process of Pi-provoked mineralization and
transition of HAoSMC into osteoblast-like cells (Figure 9).
We provide evidence that H2S, regardless of its exogenous or
endogenous origin, inhibits the upregulation of osteoblast-
specific genes such as ALP, OC, and Cbfa1. The inhibition of
Pi uptake through Pit-1 is essential for providing beneficial
effects against calcification and phenotypic modulation of
HAoSMC by H2S. Reduced CSE activity leading to decreased
H2S levels in stage 5 CKD patients might facilitate
calcification of vasculature. These results offer a new strategy
to prevent vascular calcification.

MATERIALS AND METHODS
Cell culture and reagents
HAoSMCs were obtained from Cambrex Bioscience
(Wokingham, UK) and fetal bovine serum from Invitrogen/GIBCO
(Carlsbad, CA). Unless otherwise mentioned, all other reagents were
obtained from Sigma (St Louis, MO). Cell cultures were maintained
in GM DMEM (high glucose) containing 15% fetal bovine serum,
100 U/ml penicillin, 100 mg/ml streptomycin and neomycin, and
1 mmol/l sodium pyruvate. Cells were grown to confluence and used

from passages 3–7. H2S was introduced as sodium hydrosulfide
dissolved in deionized water.

Patients
Controls were healthy subjects recruited among hospital staff without
any known diseases including hypertension, dyslipidemia, and liver and
kidney malfunctions (n¼ 23, mean age 53 years, F/M 9/14). Stage 5
CKD patients treated with hemodialysis were selected (n¼ 21, mean
age 61 years, F/M 13/8) from our dialysis unit. The patients were on
hemodiafiltration therapy of three 4-h sessions weekly, using High-Flux
Dialysers FX 60 and FX 600 (Fresenius, Fresenius AG, Homburg,
Germany). The Kt/V ratio was 1.25±0.3. Folate (3 mg/day) and
intravenous iron (Ferrlecit, Aventis Pharma, Dagenham, UK) (62.5 mg
every other week) were given to patients from the beginning of
hemodialysis therapy. They also received rHu-EPO depending on their
hemoglobin value. Blood was drawn in Vacutainers (BD, Franklin
Lakes, NJ) using ethylenediaminetetraacetate immediately before the
hemodialysis session from CKD patients by venipuncture. Participants
gave their informed consent to the study, which was approved by the
Regional and Institutional Ethics Committee of the University of
Debrecen, Medical and Health Science Center (Nr. DEOEC RKEB/
IKEB 3287A-2010).

Separation of peripheral blood mononuclear cells
Peripheral blood mononuclear cells (PBMCs) were separated from
blood by density gradient centrifugation using Histopaque 1077
(Sigma). Cells were disrupted by ultrasonication in 100 mmol/l
phosphate buffer, pH 7.4, for immediate determination of CSE activity
or in 100 mmol/l phosphate buffer containing 1% Triton X-100 and a
mixture of protease inhibitors (Sigmafast Protease Inhibitor Tablets,
Sigma). Cell lysate was maintained at �70 1C until use.

Measurement of plasma H2S concentration
Immediately after drawing, blood was centrifuged (3 min, 3000 g)
and 40 ml of plasma was rapidly added to the assay mixture that
contained 50 ml of 1% zinc acetate, 40 ml of FeCl3 (30 mmol/l in
1.2 mol/l HCl), and 50 ml of N,N-dimethyl-p-phenylenediamine
dihydrochloride (20 mmol/l in 7.2 mol/l HCl). To deprotonize
samples, 70 ml of 10% trichloracetic acid was added, and then the
mixture was centrifuged at 3000 g for 30 min at room temperature.
The absorbance of the supernatant was read at 670 nm, and
concentration was calculated using a calibration curve.

Induction of calcification
At confluence, HAoSMCs were switched to calcification medium,
which was prepared by adding 3 mmol/l of inorganic phosphate to
the GM. Both GM and calcification medium were changed every 2
days. For time-course experiments, the first day of culture in
calcification medium was defined as day 0.

Quantification of calcium deposition
Cells grown on 48-well plates were washed twice with phosphate
buffered saline and decalcified with 0.6 mol/l HCl for 24 h. Calcium
content of the supernatants was determined by the QuantiChrome
Calcium Assay Kit (Gentaur, Hayward, CA). After decalcification,
cells were solubilized with a solution of 0.1 mol/l NaOH and 0.1%
sodium dodecyl sulfate, and protein content of the samples were
measured with the BCA protein assay kit (Thermo Scientific,
Rockford, IL). Calcium content of the cells was normalized to
protein content and expressed as mg/mg protein. Mineralization was
also determined by Alizarin red staining.
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Figure 9 | Scheme of H2S biogenesis and its involvement in
Pi-induced osteoblastic transformation of VSMC. H2S is generated
as an alternative product of the transsulfuration pathway. H2S
inhibits all the steps of osteoblast transition of VSMC. Pi-induced
phosphate uptake, Pit-1 upregulation, Cbfa1, ALP, osetocalcin
(OC) expression, and Ca deposition are all inhibited by H2S. Blue
arrows represent responses to elevated Pi, whereas red arrows
represent the effect of H2S. ALP, alkaline phosphatase; Cbfa1,
core-binding factor alpha-1; CBS, cystathionine b-synthase;
CSE, cystathionine g-lyase; H2S, hydrogen sulfide; VSMC, vascular
smooth muscle cell.
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Alkaline phosphatase activity assay
HAoSMCs grown on six-well plates were washed with phosphate-
buffered saline twice, solubilized with 1% Triton X-100 in 0.9%
NaCl, and assayed for ALP activity. Briefly, 130 ml of Alkaline
Phosphatase Yellow Liquid Substrate (Sigma) was combined with
50 mg of protein samples, and then the kinetics of p-nitrophenol
formation was followed for 30 min at 405 nm at 37 1C. Maximum
slope of the kinetic curves was used for calculation.

Phosphate measurement
Pi content of the cell lysate was determined by the QuantiChrome
Phosphate Assay Kit (Gentaur). After 4 days of culture, cells were
washed twice with phosphate-buffered saline and solubilized with
1% Triton, and the cell lysates were assayed for Pi. Phosphate content
of the cells was normalized to protein content and expressed as
mmol/l/mg cell protein.

Quantification of OC
Osteocalcin was quantified as described previously.42

Detection of OC, CSE, ferritin H- and L-chain by western blot
To determine the protein expression level of OC, extracellular matrix
was dissolved in ethylenediaminetetraacetate (0.5 mol/l, pH 6.9) and
was electrophoresed in 16.5% Tris-Tricin/Peptide-PAGE (Bio-Rad
Laboratories, Hercules, CA). Ferritin western blot was performed as
described previously.42 For CSE determination, cell lysate of PBMC
was electrophoresed in 12.5% sodium dodecyl sulfate-polyacryla-
mide gel electrophoresis. Western blotting was performed with a
polyclonal anti-OC antibody at 1:200 dilution (Santa Cruz
Biotechnology, Santa Cruz, CA) and with anti-CSE antibody
(Sigma) at 1:100 dilution, followed by horseradish peroxidase-
labeled anti-mouse immunoglobulin-G antibody. Antigen–antibody
complexes were visualized with the horseradish peroxidase chemi-
luminescence system (Amersham Biosciences, Buckinghamshire,
UK). Chemiluminescence was quantified by using Alpha DigiDoc
RT quantification software (Alpha Innotech, San Leandro, CA).

Quantitative reverse transcription-polymerase chain reaction
Total RNA was isolated, reverse transcribed, and polymerase chain
reactions were performed using iQ SYBR Green Supermix (Bio-Rad)
and the following primers: Cbfa1 forward 50-ATGGCGGGTAACG
ATGAAAAT-30 and reverse 50-ACGGCGGGGAAGACTGTG-30 Pit-1
forward 50-GCCAAAGTGAGCGAAACCATCC-30 and reverse 50-
CCACACAGCAGAACCAAACATAGC-30. To measure CSE mRNA
levels in CKD patients and controls, blood mononuclear cell mRNA
was isolated from whole blood with the QIAamp RNA Blood Mini
kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Primers for CSE were the following: forward:
50-GCCTTCATAATAGACTTCGTTTC-30 and reverse: 50-GCAGCCC
AGGATAAATAACC-30. Polymerase chain reactions were carried out
using the iCycler iQ Real-Time PCR System (Bio-Rad). Results were
normalized by glyceraldehyde-3-phosphate dehydrogenase mRNA
levels.

Cystathionine c-lyase siRNA transfection
Small interfering RNA specific to CSE and negative control siRNA
were obtained from Ambion (Austin, TX). Transfection of siRNA
into HAoSMC was achieved using the Oligofectamine Reagent
(Invitrogen). Briefly, the cells were plated overnight to form 60–70%
confluent monolayers. CSE siRNA at 30 nmol/l and transfection

reagent complex were added to the cells in serum-free medium for
4 h. Fresh normal GM was added further and the cells were
incubated for another 20 h.

Cystathionine c-lyase activity measurement
CSE activity was measured according to the Stipanuk method.57 CSE
activity from PBMC was assessed by cystathionine consumption and
cysteine production. Lysed PBMC was incubated with cystathionine
(2 mmol/l), pyridoxal 50-phosphate (0.25 mmol/l) in Tris-HCl buffer
(100 mmol/l, pH 8.3) for 60 min at 37 1C. Thereafter, acid
ninhydrine reagent was added, and samples were boiled for 5 min.
After cooling the samples, optical densities at 455 and 560 nm were
determined and used for calculation of cystathionine and cysteine
concentrations, respectively.

MTT assay
MTT assay was performed as described previously.42

Statistical analysis
Data are shown as mean±standard deviation. Statistical analysis was
performed by analysis of variance test, followed by post hoc,
Newmann–Keuls test for multiple comparisons. A value of Po0.05
was considered significant and marked with *, and Po0.01 was
considered highly significant and marked with **.
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