
FEBS 29488 FEBS Letters 579 (2005) 2267–2272

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Hypothesis

RNA silencing: A remarkable parallel to protein-based immune systems
in vertebrates?

Weizao Chen, Mingqiu Liu, Gong Cheng, Weiyao Yan, Liang Fei, Zhaoxin Zheng*

State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, PR China

Received 24 February 2005; revised 24 March 2005; accepted 25 March 2005

Available online 2 April 2005

Edited by Takashi Gojobori
Abstract Sequence-specific gene silencing by double-strand
RNA has been observed in many eukaryotes. Accumulating data
suggest that it is the major antiviral defense mechanism in plants
and invertebrates. The discovery that this cellular mechanism is
also highly conserved though somewhat impaired in mammals
has stimulated debate about the evolution of antiviral systems.
Here we suggest that the existence of the interferon response
as an evolutionary intermediate could account for both the rela-
tive decline of RNA silencing and the development of protein-
based immune systems in vertebrates. In addition, we emphasize
the opportunities presented by RNA silencing and the deeper
understanding of vertebrate antiviral systems that is needed.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

RNA silencing or post-transcriptional gene silencing (PTGS)

is a process of degradation of cognate mRNA in response to

the introduction of a double-strand RNA (dsRNA). It is com-

monly accepted that RNA silencing is the major antiviral de-

fense system in plants and invertebrates. The important role

of short dsRNA molecules in initiating sequence-specific gene

silencing was first discovered in the nematode Caenorhabditis

elegans [1]. This process, also termed RNA interference

(RNAi), is mediated by small interfering RNAs (siRNAs)

(19–27 bp long), which are generated by cleavage of dsRNA

by an RNaseIII-like enzyme, Dicer [2]. There is recent evidence

that this form of gene silencing is conserved in mammals [3–5].

These remarkable observations have led to demonstrations of

a protective effect of siRNAs against mammalian viruses,

although it has been reported that siRNAs also activate the

protein kinase R (PKR)-RNase L pathway [6,7], an important

innate antiviral mechanism regulated by interferon (IFN) [8].

These findings raise a number of questions. Does RNAi oc-

cur naturally in virally infected cells of vertebrates thus repre-

senting a nucleic acid-based immune system, by analogy with
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the protein-based immune system? If so, what is the relation-

ship between the two, are they quite separate or linked in some

way? Why is this antiviral system in mammalian cells not pow-

erful enough to combat viral infection on its own without the

artificial introduction of siRNAs? How can we achieve a better

understanding of the capacity of vertebrates to defend against

viruses? What new approaches might lead to more effective

procedures for treating vertebrate viral diseases?
2. RNAi as a natural antiviral mechanism

Li et al. [9] postulated that RNA silencing is a natural anti-

viral response in mammals. Their hypothesis is supported by

three lines of evidence: first, the RNA silencing machinery is

conserved in mammals and can inhibit viral infection when

the formation of siRNAs is experimentally induced. Second,

mammalian viruses encode suppressors (e.g., the E3L and

NS1 proteins by the influenza and vaccinia viruses) of RNAi

as an essential feature, as has been established for viruses of

plants and invertebrates. Third, suppressors of RNAi also

act as inhibitors of the innate mammalian antiviral response

regulated by the IFN system.

These discoveries not only suggest a strategy for treating

viral diseases in mammals but also promise a deeper under-

standing of the evolution of mammalian antiviral potential.

Biology students are taught that the classical protein-based im-

mune response is the major antiviral mechanism in vertebrates.

Nevertheless there is increasing evidence that RNA silencing is

an evolutionarily conserved mechanism that protects genomes

from exogenous (viral) and endogenous (transposon) invasion,

and impacts on cellular programs of gene expression and

development [10–12]. Both protein-based and siRNA-based

mechanisms at least in part share the same function, namely

combating invaders. These facts prompted us to consider the

evolutionary relationship between them. Table 1 compares

the features of RNAi and of vertebrate protein-based immune

systems. They are comparable in at least seven crucial aspects,

some of which had been described by Ding et al. [13]. In addi-

tion, dsRNA (and even siRNA), induces a non-specific antivi-

ral response involving the PKR-RNase L pathway, similar to

that mediated by cytokines in protein-based immune systems.

Furthermore, RNA silencing leads to non-cytopathic viral

clearance [14,15], whereas the protein-based immune response

brings about widespread microphagocytosis or apoptosis of vi-

rally infected cells [16].
blished by Elsevier B.V. All rights reserved.
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Table 1
Comparison of protein-based immune systems and RNA silencing

Features Protein-based immune
system

RNA silencing

1 Antigen Viral genome/transposon/
aberrant RNAs/mRNA
expressed from plasmid
backbones

2 Antibody siRNA
3 Lymphocytes (B- and T-cells) Dicer/RISCa

4 Cytokines (IL, IFN, etc.) PKR/RNase L/IFN
pathways

5 Microphagocytosis/apoptosis Non-cytopathic viral
clearance

6 Immunological memory A rudimentary form of
memory

7 Immune response (several
days to a few months)

RNAi effect (several
hours to a few days)

aIn animal RNAi pathways, target RNA destruction is catalyzed by
the siRNA-guided, RNA-induced silencing complex (RISC).
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It seems likely that a nucleic acid-based immune system

evolved prior to the appearance of the protein-based immune

system of vertebrates [10]. Many scientists have suggested that

life originated as an RNA world and have proposed models of

the evolution of life from the late stages of the RNA world to

the emergence of eukaryotes and prokaryotes [17–19]. In the

hypothetical RNA world, RNA had both genotypic and phe-

notypic capabilities. RNAi is a mechanism in which gene-

specific dsRNA triggers the degradation of corresponding

transcripts. The observations that Entamoeba histolytica and

Giardia intestinalis have RNAi pathways and that RNAi genes

are present in Giardia support the view that gene silencing by

dsRNA appeared very early in the evolution of the eukaryotic

lineage [20]. Interestingly, Billy et al. [3] have demonstrated

that extracts of embryonal carcinoma (EC) P19 and F9 cells

contain much higher levels of Dicer than extracts of differenti-

ated cells such as rat REF52, mouse NIH 3T3 or human Hela

cells. Moreover, these researchers showed that specific RNAi

could be induced by long dsRNA in mouse embryonal terato-

carcinoma cell lines, whereas induction of RNAi in response to

long dsRNA has generally been unsuccessful in differentiated

mammalian cells, most likely due to non-specific effects of

dsRNA-dependent PKR and RNase L, both of which are

effectors of the IFN response [21]. It is well known that pro-

tein-based immune systems cannot function as strong defenses

against invaders early in mammalian embryogenesis. These

phenomena also imply that RNA silencing, which acts as the

major natural antiviral mechanism in plants and invertebrates,

could have become somewhat defective and have eventually

been functionally replaced by a superior protein-based im-

mune system during the evolution of vertebrates.

At present there is no evidence that RNAi is employed in

bacterial and archeal cells; hence one needs to be cautious in

suggesting a very early origin of RNAi. However, the existence

of ribozymes (or catalytic RNAs) discovered a little more than

20 years ago is suggestive [22]. Ribozymes catalyze sequence-

specific reactions (cleavage or ligation of the RNA phosphodi-

ester backbone) controlled by RNA–RNA interactions

between the ribozyme and its substrate molecules [23]. They

occur widely in viruses, bacteria, plants, and lower eukaryotes,

but are rare in vertebrates. The structure and functional simi-
larity, and cell type distribution of ribozymes and RNA silenc-

ing machinery inevitably suggest the idea that RNAi is a

mechanism that evolved from a primordial molecular informa-

tion-processing system such as ribozymes. To test this hypoth-

esis, it will be necessary to look for possible intermediates in

lower species.
3. RNAi could be a co-agent of protein-based immune systems in

vertebrates

Gitlin and Andino [10] have discussed the possibility that

RNA silencing, as a versatile antiviral system, may have been

conserved during evolution, since viruses (as well as other

molecular parasites like transposons) probably maintain an

unrelenting selective pressure on their hosts, despite the fact

that vertebrates have evolved a sophisticated immune mecha-

nism based on protein recognition. Since an impressive num-

ber of RNAi effects involving viral infection of mammals

have been demonstrated [14,24–28], we wish to emphasize

the possibility that RNA silencing acts synergistically with

conventional mammalian protein-based immune systems in de-

fense against viruses.

As described in Table 1, RNA silencing based on recognition

at the level of RNA, and sequence-specific and rapid inhibition

of viral infection, could complement and strengthen protein-

based immunity in controlling important vertebrate patho-

gens. First, RNAi has been shown to occur in the cytoplasm

[29,30], where protein-based recognition of virus by lympho-

cytes, antibodies and cytokines cannot take place. RNA silenc-

ing can be triggered by viruses or transposons that generate

dsRNA during their replication [31], and aberrant RNAs that

have not been well characterized are thought to be capable of

initiating RNAi responses in plants. Second, as mentioned,

RNAi as a natural antiviral mechanism involves non-cyto-

pathic viral clearance [14,15], whereas the protein-based im-

mune response induces broad range microphagocytosis, or

apoptosis, of virally infected cells [16]. Moreover, viral infec-

tions, acting on the protein-based immune system, can ablate

self-tolerance, mimic immune responses to self-antigens, and

induce autoimmune disease [32–34]. Third, RNAi leads to ra-

pid and efficient resistance against viral infection in response to

siRNA [35] and can achieve relatively long lasting viral sup-

pression in mammalian cells [36], whereas it takes traditional

vaccines based on inactivated virus or subunit peptides a few

days to induce an immune response strong enough to prevent

disease; even so-called emergency vaccines require 4–5 days to

elicit sufficient levels of interfering factors to achieve protec-

tion [37].

Is it possible that siRNAs generated by viral infection, chem-

ical synthesis or direct transcription from vectors (plasmid or

virus), could help to develop protein-based immunity? Previ-

ous work by Suzuki et al. [38] showed that the introduction

of fragments of dsRNA as short as 25 bp in length into the

cytoplasm of non-immune cells could cause abnormal expres-

sion of the major histocompatibility complex (MHC), as well

as the expression or activation of other genes or gene products

essential for antigen presentation. This effect was sequence-

independent, not duplicated by single-stranded polynucleo-

tides, and control experiments eliminated the involvement of

CpG motifs, which act directly on cells of the immune system.
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It suggests that dsRNA introduced into the cytoplasm may

cause normal cells such as rat FRTL-5 thyroid cells to become

‘‘non-professional’’ antigen-presenting cells (APCs) and trigger
Fig. 1. A brief schematic representation of the antiviral responses in
vertebrates. In addition to the lymphocytes, the non-immune cells have
been employed to elicit antiviral response in specific or non-specific
manner, due to activation by dsDNA and dsRNA generated by viral
infection or artificial methods. The non-specific response has shown an
interaction between the non-immune cells and the protein-based
immune system. A role of RNA silencing in inducing the immuno-
sitmulatory effect to or immunosurveillance by the traditional system
should be further determined.

Fig. 2. Representation of the relative activity of antiviral mechanisms in
conserved in mammals and naturally induced by viral infection, the potential
(A) development of mammals as a whole, (B) embryo period when challenged
period with an artificially established RNA silencing.
immunosurveillance of these cells by activating cells of the im-

mune system [38,39]. In the case of RNAi, the initial dsRNA is

cleaved to siRNAs, 19–27 nucleotides long, by a protein com-

plex containing Dicer [2], and induction of an IFN response by

siRNAs or RNAi vectors has been reported in mammalian

cells [6,7,40,41]. IFNs are involved in numerous immune inter-

actions during viral infection, and contribute to both the

induction and regulation of innate and adaptive antiviral

mechanisms [8]. Thus, it will be important to seek evidence

for the involvement of siRNAs in protein-based immune sys-

tems (Fig. 1).
4. The IFN response: A bridge between RNA silencing and

protein-based immune systems?

There is evidence of antiviral synergy between the RNAi

machinery and the IFN response during embryogenesis (Fig.

2). In embryonic cells of mammals, RNA silencing can be effi-

ciently and specifically induced by even long dsRNA, presum-

ably due to the high level of Dicer expression, and induction of

IFN genes by dsRNA or viral infection is defective because of

a lack of dsRNA- and IFN-activated enzymes [42–46]. In dif-

ferentiated cells, however, the specific RNAi effect seems to be

impaired due to downregulation of Dicer expression [3], while

IFN-a/b is produced rapidly in the early phase of a viral infec-

tion when viral factors interact with cellular pattern-recogni-

tion receptors (PRRs) [8]. Both RNA silencing and the IFN

response confer rapid resistance during the early phase of viral

infection. These results suggest that these two systems syner-

gize in their antiviral actions. Future work will be necessary

to determine if virus infection indeed elicits an RNA silencing
vertebrates. Based on the hypothesis that RNA silencing would be
ities of three antiviral mechanisms employed is simply described during
with virus, (C) adult period when challenged with virus, and (D) adult
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response in mammalian embryonic cells that is much stronger

than the IFN response or protein-based immunity (Fig. 2B).

Furthermore, we suggest that the IFN response may have

played a key role in the evolutionary development of pro-

tein-based immune systems, and that it served as a bridge be-

tween this adaptive system and RNA silencing during the

evolution of antiviral mechanisms. The following is a summary

of the published studies and theoretical ideas supporting this

hypothesis.

(a) As an apparently more primitive RNA-based surveil-

lance system, the RNA silencing pathway is not

only operational in mammalian cells, but there is evi-

dence that it is part of the mammalian innate antiviral

immunity. For example, the NS1 and E3L proteins en-

coded by mammalian viruses (influenza and vaccinia

viruses) function in mammalian hosts as inhibitors of

the innate antiviral response regulated by the IFN sys-

tem, which represents one of the first lines of defense

against viral infections [47]. These proteins were shown

recently by Li et al. [9] to act as suppressors of RNA

silencing.

(b) However, it is well known that the protein-based immune

system is the major antiviral mechanism in vertebrates

and that the RNA silencing machinery seems to be some-

how defective since no direct evidence has been found to

support a strong natural antiviral activity of RNAi. Thus,

it is conceivable that RNA silencing provided the impetus

for the evolution of more effective antiviral systems. The

induction of an IFN response by siRNAs has been re-

ported in differentiated mammalian cells [6,7]. This sug-

gests that siRNAs may have widespread and complex

effects beyond the selective silencing of target genes. Be-

cause of the very restricted specificity of siRNAs, the

RNA silencing system could have been selected against

in evolution but have laid the foundation for the evolu-

tion of a more efficient rapidly acting immunity mecha-

nism, such as the IFN system.

(c) From a theoretical point of view it is understandable that

there should have evolved a mechanism that responded to

a range of foreign entities to replace. RNA silencing is

triggered by siRNAs, since these latter are severely re-

stricted in structure. By contrast there is a wide range

of effectors of the IFN response including envelope glyco-

proteins, CpG motifs, random dsDNAs or dsRNAs, etc.

Moreover, RNA silencing occurs in the cytoplasm,

whereas rapid and direct recognition of effectors by cellu-

lar receptors on the cell membrane leading to the expres-

sion of IFN genes, is a key property of protein-based

immune systems.

(d) IFNs have been identified in non-mammalian vertebrates

such as chicken and fish, suggesting that the IFN re-

sponse as an antiviral defense appeared prior to the evo-

lution of the more sophisticated protein-based immune

systems. Gobel et al. [48] reported that release of IFN-c
by CD4+ T cells of the chicken can be stimulated by inter-

leukin 18 (IL-18). They therefore suggested that a fully

functional IL-18-IFN-c system arose before divergence

of birds and mammals from a common ancestor �300–

350 million years ago [49]. Interestingly, a recent study re-

vealed that high titers of a type I IFN were produced in

fish in response to infection with UV-activated grass carp

hemorrhagic virus (GCHV) [50].
(e) Later, in vertebrates, IFNs became involved in numerous

immune interactions as inducers, regulators, and effectors

of both innate and adaptive antiviral mechanisms. IFN-

a/b and IFN-c influence the activities of macrophages,

NK cells, dendritic cells (DC), and T cells by enhancing

antigen presentation, cell trafficking, cell differentiation

and expression profiles, ultimately enhancing and pro-

longing antiviral effector functions [8].

(f) Importantly, Sledz et al. [6] have shown, using cell lines

deficient in specific components of IFN action, that the

RNAi mechanism itself is independent of the IFN system.

Similarly the IFN system as an innate antiviral mecha-

nism can act independently of protein-based immune sys-

tems in vertebrates. It is therefore quite possible for the

IFN system to have served as an intermediate antiviral

mechanism during evolution.
5. Outlook: A challenging opportunity for RNA silencing

The discovery of RNA silencing machinery promises to open

up two major avenues of investigation. First, it raises the

opportunity of developing novel therapeutic approaches. This

conclusion derives in essence from the natural antiviral poten-

tial of RNA silencing. Second, RNAi is now routinely used in

reverse genetic approaches to study gene functions. However,

there remain many challenges, as described elsewhere [10]. Sev-

eral critical problems will need to be addressed before a fully

successful outcome can be achieved; these include: stabilization

and enhancement of RNA silencing, improved siRNA deliv-

ery, systemic effects and target mutation. Fortunately, recent

studies suggest that these hurdles can be overcome [35,36,51–

56].

In addition, RNA silencing may provide a key to under-

standing the evolution of modern cells (bacterial, archeal,

and eukaryotic cells). Several theories have already been pro-

posed in this area [57]. Typically, primitive attempts to model

cellular evolution focus on the fundamentally different types of

genetic machinery involved in information processing, namely

translation, transcription, and genome structure and replica-

tion. After biology entered the genomic era in the 1990s, hor-

izontal gene transfer (HGT) was recognized as an evolutionary

force comparable in power to classical vertical evolutionary

mechanisms [58]. RNA silencing and related cellular defenses

against alien genetic material could also have played a part

in evolutionary strategies.
6. Conclusions

We have summarized accumulating evidence that RNA

silencing acted as a natural antiviral mechanism during the

evolution of life and that a legacy of it remains in vertebrates.

Furthermore, we have argued that the existence of the IFN re-

sponse could account for both the decline in importance of

RNA silencing machinery in the vertebrate kingdom and the

development of protein-based immune systems. Although

more decisive evidence for a natural antiviral role of RNA

silencing and its synergistic interaction with the protein-based

immune system may be anticipated from studies of a variety of

viruses in vertebrates, an overall picture of the interaction of
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antiviral mechanisms is beginning to emerge. As mentioned

above, we believe that antiviral strategies based on a combina-

tion of nucleic acid-based and protein-based immune systems

would be more effective than either alone.
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