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Abstract 

The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal 
combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper pro-
poses an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing  
design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations 
and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed 
to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of in-
flatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise rela-
tionships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can 
guide general technological design optimization. 

Keywords: inflatable wing; orthogonal test; design parameter; support vector machines; optimization 

1.  Introduction1 

Inflatable wings are becoming increasingly attrac-
tive for potential use in the automotive, transportation, 
aeronautical and aerospace industries, with specific 
uses including aircraft, unmanned aerial vehicles 
(UAVs), airships and missile stabilization surfaces. 
Traditionally, UAVs have a need to stow their wings 
and control surfaces, but many military and commer-
cial applications have been identified for vehicles 
whose wings must be stowed in very small volumes. 
Examples include gun launch or aircraft mounted ae-
rial drop assemblies which have special packaging 
requirements. The development of these vehicles will 
require a design that uses deployable wings. One 
technology that has shown promise in achieving this 
goal is the inflatable wing, due to its low density, small 
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volume and ease of recyclables. 
However, its mechanical properties still do not sat-

isfy the demands of some important application fields. 
The successful development of this type of wing will 
also take significant priority in the future. Future re-
quirements include wing designs allowing the greatest 
possible endurance of platforms used for surveying 
targets of intelligence interest [1]. 

Inflatable wings have been demonstrated in many 
applications over the years. Recent system design 
challenges have ushered in advances in the areas of 
materials, manufacturing and configuration that have 
advanced this technology into a practical form for near 
term application. Inflatable wings were successfully 
demonstrated in the 1950s with the Goodyear 
inflatoplane. Recently, wings have been constructed of 
composite material that becomes rigid upon exposure 
to UV light. Information relating to the construction 
and materials used in these wings can be found in pre-
vious papers [2-4]. Flight characteristics, aerodynamic 
performance, aerodynamic analysis and wind-tunnel 
testing for inflatable/rigidizable wings are detailed in Open access under CC BY-NC-ND license.
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Refs. [5]-[6]. Furthermore, several methods have been 
developed to investigate the bearing capacity of an 
inflatable wing. W. Wang, et al. [7] analyzed the bear-
ing capacity by considering approaches of mechanics 
of both materials and structures. Z. F. Wang, et al. [8] 
presented a prediction method based on BP-artificial 
neural network to analyze the flexural rigidity of in-
flatable wings. 

The robust parameter design method is a traditional 
approach for robust experimental design that seeks the 
optimal combination of factors/levels for the lowest 
societal cost while fulfilling customer’s requirements. 
Over the past decade, the robust parameter design 
method has been widely applied to optimize the design 
parameter problems, which uses orthogonal array (OA) 
to arrange the experiments and employs sig-
nal-to-noise ratio (SNR) to evaluate the performance 
of the response of each experimental run [9-11]. The 
goal of this method is to choose the settings of the 
control factors (parameters) so that the performance of 
a system (product or process) is insensitive to variation 
in uncontrollable “noise” variables. In this case, statis-
tically designed experiments and data analysis meth-
ods have been used to implement design parameter. 
The commonly used setup is the product array where 
the control factors are varied according to a suitably 
chosen experimental design (control array) and at each 
setting of the control array, the pre-identified noise 
variables are systematically varied according to a noise 
array.  

The support vector machine (SVM) is a linear 
method in a high-dimensional feature space, which is 
nonlinearly related to the input space [12-13]. Though the 
linear algorithm works in the high-dimensional feature 
space, in practice it does not involve any computations 
in that space due to the usage of kernels; all necessary 
computations are performed directly in the input space; 
the combination of optimal parameters can be obtained 
by fewer steps searching in the parameters space. As 
an efficient method, orthogonal testing design is 
merged into the running of SVM, which can improve 
the precision and has low model complexity. 

Traditionally, various mathematical methods, such 
as linear, nonlinear and dynamic programming, have 
been developed to solve engineering optimization 
problems. However, these methods are difficult to op-
timize inflatable wing design parameter, because of the 
influence and constriction of many factors. It has be-
come one of the difficult tasks for the inflatable wing 
design parameter optimization to use mathematics and 
mechanics models. In order to obtain an optimal tech-
nique, a novels optimization design based on robust 
design parameter is proposed, which incorporates or-
thogonal testing and SVMs for solving the design pa-
rameter of the inflatable wing in this paper. The opti-
mal parameter settings can be referenced in the design 

of the inflatable wing.  

2. Design Methods 

Using the design methods based on OAs, the time 
and cost required to conduct the experiments can be 
reduced and an appropriate technique that renders an 
optimal design parameter can be found. On this basis, 
orthogonal testing and SVMs are introduced to opti-
mize the technique for the inflatable wing. 

2.1. Orthogonal testing design 

Orthogonal testing design is an optimization method 
for searching multiple factors and levels [13]. It utilizes 
an orthogonal table to arrange the experiment scien-
tifically and evaluate multiple factors. The five steps of 
the Taguchi method used in the present study are as 
follows: 

Step 1  Identification of the objectives. In the first 
step of the Taguchi method, identifying a specific ob-
jective is important. The objective of this work is to 
determine the optimum values of the design parame-
ters of the inflatable wing. 

Step 2  Selection of characteristics. The character-
istics are classified into three types: higher is better, 
nominal is the best and lower is better. There are two 
objectives in this paper. The first objective is mini-
mizing the deflection; therefore, it is a lower-the-better 
problem. The second objective is maximizing the SNR, 
a higher-the-better problem. 

Step 3  Selection of the controllable factors and 
noise factors. The selection of factors to be tested for 
(in terms of their influences on the quality characteris-
tic) is one of the most important procedures in the Ta-
guchi method. Careless selection of controllable fac-
tors and noise factors leads to a false conclusion. After 
selecting the factors, their desired number of levels is 
determined. In this paper, the controllable factors are 
pressure (A), applied load (B) and the number of 
chambers (C), as depicted in Table 1.  

 Table 1  Factor level table for an orthogonal test with 
one of the three factors 

Factor Level 1 Level 2 Level 3 

1 A1 A 2 A 3 

2 B 1 B 2 B3 

3 C1 C 2 C 3 

 
Step 4  Selection of an OA. The sequence of 

experiments with different combinations of factors 
and levels is determined by an OA. This array will 
determine the number of experiments to be per-
formed, ensuring that equal quantities of all levels of 
factors will be tested. The OAs are an important part 
of the Taguchi method. There are many different 
types of that can be used to perform the Taguchi 
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experiment. 
The selection of OA to be used depends predomi-

nantly on these items in the order of priority: 
1) The number of factors and interactions present. 
2) The number of levels for the factors present. 
3) The desired experimental resolution or cost limi-

tations. 
The orthogonal table L9(3) is used to arrange the 

experiments. For this reason, L9 is suitable for our 
study. Three factors are evaluated at each instance, and 
each factor possesses three levels. A blank column is 
added to represent the degree of interaction among the 
three factors, and the testing result is analyzed using 
the range analysis method. A traditional full factorial 
design requires either 34 or 81 experiments. In this 
situation, all major effects and interactions can be es-

timated. All of these factors result in a high-resolution 
experiment. Resolution power indicates the clarity 
with which individual effects of factors and interac-
tions may be evaluated in an experiment [9]. The num-
ber of columns of an array represents the maximum 
number of parameters that can be studied using that 
array. Note that this design reduces 81 configurations 
to nine experimental evaluations. This array reduces 
the total cost of experiments. The total testing time of 
experiments is shortened significantly by this array. In 
the literature, L9 OA is generally used for three factors 
and three levels in Refs. [14]-[20]. Therefore, we have 
chosen to use L9, which is shown in Table 2. In Table 
2, Ai, Bi and Ci are the factor values for the ith test; Yij 
is the jth performance value of the ith test, Yi the aver-
age value of the ith test; ηi the value of SNR. 

Table 2  L9 OA array with design factors 

Factor level/line number Deflection/m 
Sequence 

A B C Level 1 Level 2 Level 3 The mean 
SNR 

1 A 1 B1 C 1 Y11 Y 12 Y 13 Y 1 η1 
2 A 1 B 2 C 2 Y 21 Y 22 Y 23 Y 2 η2 

3 A 1 B 3 C 3 Y 31 Y 32 Y 33 Y 3 η3 

4 A 2 B 1 C 2 Y 41 Y 42 Y 43 Y 4 η4 

5 A 2 B 2 C 3 Y 51 Y 52 Y 53 Y 5 η5 

6 A 2 B 3 C 1 Y 61 Y 62 Y 63 Y 6 η6 

7 A 3 B 1 C 3 Y 71 Y 72 Y 73 Y 7 η7 

8 A 3 B 2 C 1 Y 81 Y 82 Y 83 Y 8 η8 

9 A 3 B 3 C2 Y 91 Y92 Y 93 Y 9 η9 

 
Step 5  Perform the experiment and analysis. The 

Taguchi method uses a special design of OA design to 
study the entire parameter space using only a small 
number of experiments. The experimental results are 
then transformed into an SNR. Taguchi recommends 
the use of SNR to measure the quality characteristics 
deviating from the desired values. Usually, there are 
three categories of quality characteristic in the analysis 
of SNR. The SNR for each level of process parameters 
is computed based on the SNR analysis. Regardless of 
the category of the quality characteristic, a greater 
SNR corresponds to superior quality characteristics. 
Therefore, the optimal level of the process parameters 
is the level with the greatest SNR. 

2.2. SVMs for design parameter regression 

An SVM can be applied not only to classification 
problems but also to regression problems. Even so, it 
contains all the major features that characterize maxi-
mum margin algorithm: a nonlinear function is learned 
by a linear learning machine mapping into high di-
mensional kernel induced feature space. The capacity 
of the system is controlled by parameters that do not 
depend on the dimensionality of the feature space. One 

of the most important ideas in cases of support vector 
classification and regression is that presenting the so-
lution by means of small subset of training points 
gives enormous computational advantages. Using the 
ε-insensitive loss function, we ensure the existence of 
a global minimum and in the mean time optimization 
of reliable generalization bound. 

In support vector regression (SVR), the input 
[ ]T

1 2 n=x x  x  x  is first mapped onto an m-dimen-
sional feature space using some fixed (nonlinear) map-
ping, and then a linear model is constructed in this feature 
space. Using mathematical notation, the linear model (in 
the feature space) ( , )f x ω is given by 

 
1

( , ) ( )
m

j j
j

f g bω
=

= +∑x xω  (1) 

whereω  is the weight vector, ( )jg x  ( j = 1, 2, , )m  
a set of nonlinear transformations, and b the “bias” 
term. Often the data are assumed to be zero mean (this 
can be achieved by pre-processing), so the bias term is 
dropped. The quality of estimation is measured by the 
loss function ( , ( , ))L y f x ω , where y is the corre-
sponding scalar output (target) value. SVR uses a new 
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type of loss function called the ε-insensitive loss func-
tion, proposed by Vapnik:  
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The empirical risk is  
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In specific terms, for classes iω and classes jω , the 
constructed SVM, denoted by SVMij can be obtained 
by solving the following optimization problem [16]: 

min T
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(5)

 

where ijω is the weight vector, ijb  the expression of 
bias, ij

iζ  slack variable ( 0ij
iζ ³ ); ( )iϕ x  the train-

ing vector, and C the penalty factor, which punishes 
the misclassified training examples and appointed by 
the user. After solving the optimization problem, we
can obtain N(N−1)/2 decision-making functions:

 T
, ( ) ( ) ( )ij ij

i jg b= +x xω ϕ  (6) 

The dual formulation provides the key for extending 
the SVM to nonlinear functions. The standard dualiza-
tion method utilizing Lagrange multipliers has been 
described as follows: 
 

1 1

1 1
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where ia and ia∗ ( 0, 0i ia a∗³ ³ ) are Lagrange multi-
pliers, iη and iη∗  ( 0, 0i iη η∗³ ³ ) the temporary vari-
ables, and the slack variables  iξ and  jξ are introduced 
for the situation that the target value exceeds. 

We can determine Lagrange multipliers a, a* and 
the weight in the regression function of Eq. (7) as fol-
lows: 
 

SV

( )
i

i i i
S

a a∗

∈

= −∑ω
x

x  (8) 

 
SV

( ) ( )( )
i

i i i
S

f b a a b∗

∈

= ⋅ + = − ⋅ +∑
x

x x x xω  (9) 

A nonlinear mapping can be used to map the data 
into a high dimensional feature space where linear 
regression is performed. The SV algorithm can be 
made nonlinear by simply preprocessing the training 
patterns xi by a map ϕ : → ζx  into some feature 
space ζ and then applying the standard SVR algo-
rithm. The expansion in Eq. (8) becomes  

 
1

( ) ( )
n

i i i
i

a a∗

=

= −∑ xω ϕ  (10) 

The next step is to perform an SVM to optimize the 
design parameters of the inflatable wing to obtain the 
optimal multi-response, as well as the corresponding 
combination values of the control factors from the 
space of possible solutions. The parameter bounds and 
the precision are determined according to the charac-
teristics of the system. The operational steps are given 
as follows: 

Step 1  Finish the orthogonal experiment, collect 
the patterns from the experimental data, and preproc-
ess the patterns. 

Step 2  Detemine the SVM learning model, set 
model parameters and choose kernel function k(·). 

Step 3  Obtain parameters (a*− a and b) by input-
ting learning patterns and determine the regression 
model.  

Step 4  Fix the level parameters within certain 
range, and the parameters form an arithmetic series. 

We used SVR to determine the best set of chosen 
inputs, which describe the deflection and SNR. The 
following criteria guide the choice of the set of inputs: 

1) The number of inputs should be as low as possi-
ble. 

2) Each input should be highly cross-correlated to 
the output parameter. 

3) The inputs should be weakly cross-correlated to 
one another. 

4) The selected input set should give the best output 
prediction, which is checked by using statistical analy-
sis metric (e.g., average absolute relative error 
(AARE), standard deviation). 

When choosing the optimal inputs, there is a com-
promise between the number of inputs and prediction 
accuracy. Based on different combinations of inputs, a 
trial-and-error method is used to finalize the input set 
which gives AARE when exposed to the SVR. 

3. Optimization Analysis of Design Parameters 
Using Two Different Methods 

3.1. Experimental apparatus 

The experimental apparatus shown in Fig. 1 consists 
of an inflatable wing by Beihang University, a PLC 
(S7-220) by Siemens, a flow sensor (APM-450) by 
Tokyo Meter, a tank, a throttle valve (AS3001F) by 
SMC, and a data acquisition card (USB-4711A) by 
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Advantech. The wing profile is based on a NACA 
4424 with a 3° incidence angle. The taper ratio is 1, 
with an aspect ratio of 15.38 and a full span of ap-
proximately 2 m. Wing dimensions are shown in Fig. 2. 
The wing is designed such that internal wing pressure 
is required to maintain the wing shape. It has a design 
pressure of 100 kPa, though the wing has been suc-
cessfully flight tested at values as low as 50 kPa with 
sufficient wing stiffness for low-speed applications 
carrying small, low-mass payloads. The present design 
uses the presence of internal span-wise spars to help 
maintain structural stiffness at lower internal pressures. 
The outer restraint areas of the wing and internal spars 
are constructed from a high-strength fabric. An internal 
gas-retaining bladder is contained inside the porous 
external structural restraint. Figure 3 shows the com-
ponents of the wing. 

 

Fig. 1  Configuration of experimental apparatus. 

 

Fig. 2  Inflatable wing dimensions. 

 

Fig. 3  Inflatable wing. 

The restraint is composed of a silicone coated plain 
weave Vectran fabric. The yarns are made from 200×2 
ply denier (400 denier total in each yarn) Vectran HS 
fiber. The breaking strength of the fabric is approxi-
mately16 000 kg/m, with a coated fabric weight of 
0.29 kg/m2. The thickness of the restraint is 0.013 inch 
(1 inch=25.4 mm). The wing is constructed in semi- 
span sections that can be attached to the aircraft fuse-
lage. The construction of the wings is such that the 

wings can be stored in volumes much smaller than 
the deployed wing volume. The inflatable wing, in 
its packed and deployed configuration, is shown in 
Fig. 4. 

 

Fig. 4  Inflatable wing in packed and deployed configuration. 

3.2. Orthogonal experimental procedure for opti-
mization 

Pressure, applied load and the number of chambers 
are considered as the variables for optimization. The 
orthogonal table L9(3) was used to arrange the ex-
periments. Their limiting constraints, testing factors 
and levels are shown in Table 3, where the Level 1 is 
lower limit and the Level 3 is upper limit. 

Table 3  Constraints of process parameters and factor  
levels for orthogonal test 

Factor Level 1 Level 2 Level 3 

Pressure/kPa 50 80 100 
Applied load/N 9.8 39.2 58.8 

The number of chamber 9 13 17 

 
In this experiment, we first opened the compressed 

air source, adjusted the regulator and set the pressure 
to a fixed value. Next, applied the load, making sure 
that distribution was uniform, and that the pressure of 
the air was maintained at an approximately fixed value. 
The last stage was data acquisition and preservation.  

Current research efforts are focused on warping an 
inflatable, non-rigidizable wing to provide lift through 
wing warping, so the deflection is the most important 
index. In the Taguchi method, SNR is used to rep-
resent quality characteristics, and the largest value 
of the SNR is required. There are three types of 
SNR—the lower the better, the higher the better, and 
the closest to nominal the best. According to the 
measurement methods above, the orthogonal tests 
were carried out, and the deflection of an inflatable, 
rigidizable wing along with the SNR were measured 
and assessed. An SNR with higher-the-better char-
acteristics can be calculated using Eq. (11): 

 2

1

110lg
n

i ij
j

Y
n

η
=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑

 (11) 
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where n the total number of tests. 
Experimental values of the deflection of the inflat-

able wing are listed in Table 4. 

Table 4  Experimental results from orthogonal test 

Deflection/m 
Sequence 

Level 1 Level 2 Level 3 The 
mean 

SNR 

1 0.028 6 0.037 3 0.033 7 0.033 2 24.75 

2 0.104 0 0.096 4 0.089 4 0.096 6 15.51 

3 0.144 0 0.139 6 0.150 8 0.144 8 12.01 

4 0.013 2 0.011 8 0.012 8 0.012 6 33.21 

5 0.056 4 0.057 6 0.049 8 0.054 6 20.47 

6 0.053 4 0.053 2 0.053 6 0.053 4 22.44 

7 0.041 0 0.040 7 0.039 5 0.040 4 23.10 

8 0.035 6 0.035 3 0.035 3 0.035 4 24.25 

9 0.085 6 0.086 5 0.087 1 0.086 4 16.49 

3.3. Parameter optimization using SVM 

Based on the above analysis, the input variables 
such as pressure, applied load and the number of 
chambers of the flowing medium were finalized to 
predict the deflection and SNR (Table 1). Table 5 

shows some typical data used for the SVR. 
To validate the robustness of our approach, the 

proposed method was evaluated using experimental 
data from the orthogonal experiment. After many tests, 
the best values of the regression model parameters of 
the SVM are set as follows: insensitive factor ε'=0.01, 
penalty factor C=500. The radial basic function (RBF) 
kernel is the best choice for this SVM because it is 
accurate and relatively fast. In this case, the RBF ker-
nel function type with σ=2 (σ is the width of RBF) is 
chosen as the parameter for the SVM. These parame-
ters are identified as the input for the SVM, and the 
deflection and SNR are put as targets. The data were 
then applied to the SVM model described above. The 
results obtained by using SVM are in agreement with 
the experimental results obtained from orthogonal test. 
These results are shown in Table 4. 

The regression capability of the SVM algorithm is 
plotted in Figs. 5-6. The low AARE may be consid-
ered to indicate regression performance considering 
the poor understanding of the slurry flow phenomena 
and a large data bank for training that comprises vari-
ous systems. 

Table 5  Comparison of the performance of optimum parameters vs non-optimum parameters 

Deflection/m SNR Serial No. A B C 
Predicted value Experimental value Predicted value Experimental value 

1 50 19.6 13 0.061 5 0.061 7 21.36 21.37 
2 79 9.8 9 0.013 2 0.012 6 33.24 33.21 
2 80 9.8 9 0.012 3 0.012 4 38.27 38.29 
3 81 9.8 9 0.012 9 0.012 6 33.50 35.48 
4 100 58.8 13 0.086 4  0.008 65 16.48 16.49 

 

 

Fig. 5  Deflection error regressed by an SVM-based model. 

 

Fig. 6  SNR error regressed by an SVR-based model. 

3.4. Results and discussion 

Experimental data samples can be processed using 
the following steps: 

Step 1  Calculate each level of the experimental 
data mean as follows:  

 1

2

3

1 2 3
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( ) / 3

( ) / 3
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Step 2  Calculate each level of the SNR of the 
mean as follows: 
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Step 3  Calculate the extreme difference of each 
level of the experiment data. 

Step 4  Draw experimental results with each factor 
as a variety relation diagram. 

According to Table 3, the following conclusions can 
be made: 1) the mean experimental data at each level: 
KA1=0.091 3 m, KA2=0.040 2 m, KA3=0.054 0 m, 
KB1=0.028 7 m, KB2=0.063 2 m, KB3=0.094 8 m, 
KC1=0.040 6 m, KC2=0.065 2 m, KC3=0.079 9 m. Each 
level of the experimental data of extreme difference: 
RKA=0.051 1, RKB=0.066 1, RKC =0.066 1; 2) Each 
level of the SNR of the mean: ηA1= 17.42, ηA2=25.37, 
ηA3=21.28, ηB1=27.02, ηB2=20.07, ηB3=20.08, ηC1= 
23.81, ηC2=21.73, ηC3=18.53. Each level of the ex-
perimental SNR data of extreme difference: RηA=7.95, 
RηB=6.95, RηB=5.28. 

The optimized results can be correlated with the in-
flatable wings of orthogonal testing specimens. The 
optimum condition of design parameters is given as 
A2B1C1 and the optimum values of the parameters for 
minimizing the deflection condition are given as fol-
lows: A2=80 kPa, B1=9.8 N and C1 =9. This is clearly 
observed from Table 3 and Fig. 7. 

 

Fig. 7  Effects of inflatable wing parameter levels on deflection. 

From Table 4 and Fig. 8, the optimum condition 
of design parameters is A2B1C1 and the optimum 
values of the parameters for maximizing the SNR 
condition are given as follows: A2=80 kPa, B1=9.8 N 
and C1 =9. 

We compared the experimental results and calcu-
lated results in terms of pressure, applied load and the 
number of chambers. 

 

Fig. 8  Effects of inflatable wing parameter levels on SNR. 

To find the optimal deflection and SNR while si-
multaneously varying all parameters, we extended de-
flection and SNR plots of our previous work by one 
more parameter. These results of the experiments are 
shown in Fig. 9. We varied A over its entire range, A∈  
[50 100] kPa, and B∈ {9.8, 15.925, 22.05, 28.175, 
34.3, 40.425, 46.55, 52.675, 58.8} N. We used C∈{9, 
10, 11, 12, 13, 14, 15, 16, 17}. Each surface shows 
two different parameters for a different deflection and 
SNR. 

Table 5 compares the values of the SVR with the 
experimental value. In general, the performance of the 
SVM prediction of that deflection and SNR can be 
evaluated from the results. It can be shown that SVM 
takes less time and has less cost. In terms of speed and 
accuracy, the SVM performs better than the OA. This 
feature is particularly important when used in real-time. 
In order to validate the proposed approach, confirma-
tion tests were conducted with the use of the levels of 
optimal design parameters and non-optimum parame-
ters, each of which contains the deflection and SNR 
with a predicted value and an experimental value. The 
results show that the levels of design parameters affect 
the performance of the inflatable wing, and the levels 
of optimal design parameters are the best combination. 
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Fig. 9  Regression surfaces of the deflection and SNR. 

4. Conclusions 

1) This experiment is rapidly and effectively com-
pleted using orthogonal method to experimental design. 
The experimental results show that among all the fac-
tors that affect the performance of the inflatable wing, 
the pressure is the most important, followed by the 
applied load and the number of chamber. 

2) The optimum factors for the lowest deflection 

and largest value of SNR are given as A2B1C1, and the 
optimum values of the parameters are given as follows: 
A2=80 kPa, B1=9.8 N and C1 =9. Because performing 
all the experiments would be time-consuming and 
costly, the orthogonal test method is successfully ap-
plied to the present work, with a very limited number 
of experiments and short duration of time.  

3) The SVM is more complete and accurate than the 
orthogonal testing in determining the bearing capacity 
of an inflatable wing. The low AARE of the prediction 
capability of the SVM algorithm is 0.18%. To optimize 
design values, the precise relationship between SNRs 
can be obtained.  

4) Simulated and measured models have been de-
veloped to validate the SVM approach. The experi-
mental results show that the presented model not only 
simplifies the measurement procedure, but also im-
proves computation efficiency with high accuracy of 
the measured results.  
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