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TheSylvester–Kacmatrix is a tridiagonalmatrixwith integer entries

and integereigenvalues that appears inavarietyof applicativeprob-

lems. We show that it belongs to a four dimensional linear space of

tridiagonal matrices that can be simultaneously reduced to trian-

gular form. We name this space after the matrix.
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1. Introduction

By knowing an eigenvector of a matrix M it is possible, at least in principle, to perform a step of

the reduction of M to triangular form, by similarity. For particular matrices the reduction step can be

repeated almostwithout effort, since the reduction preserves the structure ofM in such away that it is

easy to write down an eigenvector of the reduced matrix. At the end of this progressive reduction we

obtain a triangular matrix similar to M. In particular, this is possible for the Sylvester–Kac tridiagonal

matrix [3,4], also known as Clement matrix [2],
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Sn =

⎛
⎜⎜⎜⎜⎜⎝

0 n − 1

1 0
. . .

. . .
. . . 1

n − 1 0

⎞
⎟⎟⎟⎟⎟⎠ , (1)

that has integer eigenvalues and appears in a variety of applicative problems, see [4,1] and the ref-

erences therein. Vectors having all the entries equal to one, of the appropriate size, can be used as

eigenvectors at every step of the reduction of Sn in triangular form.

In this paper we show that Sn belongs to a four dimensional linear space of tridiagonal matrices

that can be progressively and simultaneously reduced to triangular form. Thus, in some sense, Sn is

not as special as it seems.

After some preliminaries, in Section 3 we study some conditions under which the matrix obtained

from a step of reduction from a banded matrix M is in turn banded with the same bandwidth of M

and with, as much as possible, the same entries in the outermost diagonals. In Section 4 we restrict

our attention to the case where M is tridiagonal. The property of progressive reducibility translates

into a linear system that, in spite of having more equations that unknowns, turns out to be under-

determined, as we show in Section 5. By solving the systemwe find a four dimensional linear space of

tridiagonalmatrices that can be progressively and simultaneously reduced to triangular form. It seems

appropriate to call this space the Sylvester–Kac matrix space.

2. Preliminaries

The Moore–Penrose pseudoinverse of a n × k full rank matrix A is given by

A+ =
{
AT (AAT )−1 if n � k,

(ATA)−1AT if n � k.

Observe that A+ is k × n and has full rank. Moreover A+ = A−1 in the case where n = k.

Let A and B be twomatrices of dimensions n × k and n × (n − k), respectively, where 1 � k � n − 1.

If A and B have full rank and ATB = O, then the n × n matrix V = (
A B

)
is nonsingular and it is easy

to verify that

V−1 =
(
A+
B+

)
.

Let M be a n × nmatrix such thatMA = A�, where � is k × k. Then

V−1MV =
(
A+
B+

)
M

(
A B

) =
(
� A+MB

O B+MB

)
. (2)

In the following we assume k = 1, so that A is a vector that we denote with a, and � is a scalar that

we denote with λ. With these notationsMa = λa. We assume that the vector a has no zero entries. By

virtue of this assumption we can set a(1) = 1.

For our purposes, we choose B as a unit lower bidiagonalmatrix such that B(i + 1, i) = −a(i)/a(i + 1)

for 1 � i � (n − 1). This implies aTB = 0. The following lemma provides a convenient form for B+. In
the lemma and throughout the paper we borrow colon and dot notations from MATLAB.1

Lemma 1. We have

B+ = tril((1./a(1 : (n − 1)))aT ) + waT ,

being w a suitable vector with n − 1 components.

Proof. We embed B in a n × n unit lower bidiagonal matrix B̃. It is simple to observe that B̃−1 =
tril((1./a)aT ). Since (̃B−1(1 : (n − 1), :) − B+)B = O it follows that the matrix B̃−1(1 : (n − 1), :) − B+ has

all its rows proportional to aT . �
1 MATLAB is a registered trademark of The Mathworks, Inc.
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Let us set L = tril((1./a(1 : (n − 1)))aT ), so that B+ = L + waT . Since aTB = 0 implies aTB+T = 0, by

using (2) and Lemma 1 we obtain

(
a B+T

)−1
M

(
a B+T

) =
(

λ a+MB+T

O BTMB+T

)
=

(
λ a+MB+T

O BTMLT

)
. (3)

Since we pursue a reduction process that starts with M we set M = M(1) and M(2) = BTM(1)LT . Obvi-

ously, we can compute M(2) from M(1) once we know the eigenvector a. We are interested in the case

whereM(2) bears a strong resemblance with M(1) in order that the reduction step can be repeated.

Example 1. Let us consider the Sylvester–Kacmatrix (1). If e = (1, . . . , 1)T then Sne = (n − 1)e. If we set

M(1) = Sn and a = e in (3) we findM(2) = Sn−1 − I, where I is the identity matrix.

In the preceding example we found that many entries ofM(1) appear again inM(2) and that the two

matrices have the same bandwidth. This is not accidental, as we are going to prove.

3. The case where M is banded

We are interested in the case where M(1) is banded. Let b � 0 be an integer, we say that M(1) has

lower (upper) bandwidth b ifM(1)(i, j) = 0 if i > j + b (j > i + b).

Theorem 1. The matrices M(2) and M(1) have the same bandwidths. Moreover, the more external lower

diagonal of M(2) coincides with the more external lower diagonal of the (n − 1) × (n − 1) leading principal

submatrix of M(1).

Proof. The claims about the lower bandwidth and the more external lower diagonals ofM(2) andM(1)

follow from the fact that LT and BT are unit upper triangularmatrices. Now assume thatM(1) has upper

bandwidth b and let p � b + 1. Then

[M(1)LT (:, p)](1 : p − b) = λ

a(p)
a(1 : p − b).

Hence the first p − b − 1 components of the vector BTM(1)LT (:, p) are equal to zero. �

Now, let us consider the more external upper diagonal of M(2).

Theorem 2. We have

M(2)(p − b, p) = M(1)(p − b + 1, p + 1)
a(p + 1)a(p − b)

a(p)a(p − b + 1)

for p = (b + 1), . . . , (n − 1).

Proof. Again, we assume thatM(1) has upper bandwidth b and let p � b + 1. Observe that

[M(1)LT (:, p)](p − b + 1) = 1

a(p)
(λa(p − b + 1) − M(1)(p − b + 1, p + 1)a(p + 1))

and this implies that

[BTM(1)LT (:, p)](p − b) = M(1)(p − b + 1, p + 1)
a(p + 1)a(p − b)

a(p)a(p − b + 1)
. �

As a consequence, themore external upper diagonal ofM(2) coincideswith themore external upper

diagonal of the (n − 1) × (n − 1) trailing principal submatrix of M(1) if

a(p + 1)a(p − b) = a(p)a(p − b + 1). (4)
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4. The case where M is tridiagonal

We now restrict our attention to the case whereM(1) is tridiagonal, i.e. has upper and lower band-

widths b = 1. The previous two theorems imply thatM(2) is tridiagonal and give detailed information

about the external diagonals ofM(2). The next one is about the main diagonal of M(2).

Theorem 3. If M(1) is tridiagonal then

M(2)(1, 1) = M(1)(1, 1) − 1

a(2)
M(1)(2, 1) (5)

and for p = 2, . . . , (n − 1)

M(2)(p, p) = M(1)(p, p) − a(p)

a(p + 1)
M(1)(p + 1, p) + a(p − 1)

a(p)
M(1)(p, p − 1). (6)

Proof. The equality (5) is immediate. To obtain the equality (6) we observe that, if M(1) is tridiagonal

then for p = 2 : (n − 1)

[M(1)LT (:, p)](1 : p − 1) = λ

a(p)
a(1 : p − 1),

[M(1)LT (:, p)](p) = 1

a(p)
(λa(p) − M(1)(p, p + 1)a(p + 1)),

[M(1)LT (:, p)](p + 1) = M(1)(p + 1, p),

[M(1)LT (:, p)](j) = 0 for j > p + 1.

This implies, for p = 2, . . . , (n − 1)

M(2)(p, p) = λ − a(p + 1)

a(p)
M(1)(p, p + 1) − a(p)

a(p + 1)
M(1)(p + 1, p). (7)

For p = 2, . . . , (n − 1)

λ = 1

a(p)

1∑
i=−1

M(1)(p, p + i)a(p + i)

and by substituting in (7) we obtain (6). �

If condition (4) holds our formulas become simpler as a consequence of the following fact, whose

proof is left to the reader.

Lemma 2. Let v be a vector without zero entries. Then

v(p + 1)v(p − 1) = v(p)2 (8)

for p = 2, . . . ,n − 1 if and only if v(i) = v(2)i−1/v(1)i−2 for i = 1, . . . ,n.

Since our vector a has no zero entries we can use the previous lemma. For shortness we set ρ = a(2)

so that, since a(1) = 1, a(i) = ρi−1. We find

M(2)(1, 1) = M(1)(1, 1) − 1

ρ
M(1)(2, 1) (9)

and for p = 2, . . . ,n − 1

M(2)(p, p) = M(1)(p, p) + 1

ρ
(M(1)(p, p − 1) − M(1)(p + 1, p)). (10)

If M(2) has an eigenvector of the form (1, σ , . . . , σn−2)T , then we can compute from M(2) a reduced

matrixM(3) in the sameway that led us fromM(1) toM(2). We limit ourselves to the case where σ = ρ,
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since we are interested in finding matrices for which the reduction process is as close as possible to

the one of the Sylvester–Kac matrix. With this assumption it is natural to look at ρ as to a known

parameter. We remark that ρ = 1 for the Sylvester–Kac matrix.

Theorem 4. Let thematrixM(1) have an eigenvector of the form (1, ρ, . . . , ρn−1)T associatedwith an eigen-

valueλ1. Then thematrixM(2) has an eigenvector of the form (1, ρ, . . . , ρn−2)T associatedwith an eigenvalue

λ2 if and only if

λ2 − λ1 = ρ(M(1)(p + 1, p + 2) − M(1)(p, p + 1))

+1

ρ
(M(1)(p, p − 1) − M(1)(p + 1, p)) (11)

for p = 1, . . . ,n − 1 where M(1)(1, 0) = M(1)(n,n + 1) = 0.

Proof. The matrix M(1) has an eigenvector of the form (1, ρ, . . . , ρn−1)T associated with an eigenvalue

λ1 if and only if, for p = 1, . . . ,n

λ1 =
1∑

i=−1

M(1)(p, p + i)ρi, (12)

whereM(1)(1, 0) = M(1)(n,n + 1) = 0. Analogously thematrixM(2) has an eigenvector (1, ρ, . . . , ρn−2)T

associated with an eigenvalue λ2 if and only if, for p = 1, . . . ,n − 1

λ2 =
1∑

i=−1

M(2)(p, p + i)ρi, (13)

whereM(2)(1, 0) = M(2)(n − 1,n) = 0. By the virtue of (10) and of Theorems 1 and 2, the equalities (12)

and (13) are equivalent to the equalities (12) and (11). �

5. The matrix space

By virtue of Theorem 4 the possibility to complete the reduction process is equivalent to the solv-

ability of a linear homogeneous system of
∑n−1

k=1
k = n(n − 1)/2 equations in 3n − 2 unknowns, i.e., the

2n − 2 off diagonal entries ofM(1), the n eigenvalues λi, i = 1, . . . ,n. We discuss a possible elimination

algorithm in the case where n = 5. The results that we obtain can be readily generalized. It turns out

that, for every n, the system has a four dimensional space of solutions. We discuss a possible general

parametrization of this space and the choice of a suitable basis.

For n = 5, Eq. (11) holds for all the four reduction steps, and gives rise to a homogeneous system of

10 linear equations in 13 unknowns. The matrix of the system is the following:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ρ ρ 0 0 −1/ρ 0 0 0 1 −1 0 0 0

0 −ρ ρ 0 1/ρ −1/ρ 0 0 1 −1 0 0 0

0 0 −ρ ρ 0 1/ρ −1/ρ 0 1 −1 0 0 0

0 0 0 −ρ 0 0 1/ρ −1/ρ 1 −1 0 0 0

0 −ρ ρ 0 −1/ρ 0 0 0 0 1 −1 0 0

0 0 −ρ ρ 1/ρ −1/ρ 0 0 0 1 −1 0 0

0 0 0 −ρ 0 1/ρ −1/ρ 0 0 1 −1 0 0

0 0 −ρ ρ −1/ρ 0 0 0 0 0 1 −1 0

0 0 0 −ρ 1/ρ −1/ρ 0 0 0 0 1 −1 0

0 0 0 −ρ −1/ρ 0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The unknowns, ordered by column, are the entries M(1)(i, i + 1), i = 1, . . . , 4 that we shorten with αi,

the entries M(1)(i + 1, i), i = 1, . . . , 4 that we shorten with βi, and the eigenvalues λi, i = 1, . . . , 5. We

immediately observe that the solutions of the system in the case where ρ /= 1 can be obtained by the
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solutions in the case where ρ = 1 just by multiplying the αi by 1/ρ and the βi by ρ. Hence, from now

on we assume ρ = 1.

It is possible to perform a two steps elimination strategy in order to reduce thematrix of the system

to block triangular form. In particular, in the first step we subtracted the ninth equation from the 10th,

the sixth and the seventh from the eighth and ninth respectively, the second to the fourth from the fifth

to the seventh respectively. In the second step we subtracted the eighth equation from the 10th, the

fifth an the sixth equation from the eighth and ninth respectively. By doing so these last two equations

become identical and one of the two can be eliminated. This is a key feature of the elimination strategy

and leads actually to the reduction of the number of equations from 10 to 9. The reduced matrix is as

follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 −1 0 0 0 1 −1 0 0 0

0 −1 1 0 1 −1 0 0 1 −1 0 0 0

0 0 −1 1 0 1 −1 0 1 −1 0 0 0

0 0 0 −1 0 0 1 −1 1 −1 0 0 0

0 0 0 0 −2 1 0 0 −1 2 −1 0 0

0 0 0 0 1 −2 1 0 −1 2 −1 0 0

0 0 0 0 0 1 −2 1 −1 2 −1 0 0

0 0 0 0 0 0 0 0 1 −3 3 −1 0

0 0 0 0 0 0 0 0 0 1 −3 3 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After the reduction, the dimension of the space of solutions is almost self evident.

Theorem 5. The space of solutions has dimension four.

Proof. After assigning free values to β1, λ1, λ2, λ3, one can solve the last two equations for λ4 and λ5,

Eqs. (5)–(7) for βi, i = 2, . . . , 4, and Eqs. (4), (3), (2), (1) for αi, i = 4, 3, 2, 1. �

We define Sylvester–Kac space the four dimensional matrix space determined by the solutions.

Analogous results hold for any n. The homogeneous system of n(n − 1)/2 equations can be reduced

to 3n − 6 equations. The unknowns β1, λ1, λ2, λ3 can be freely chosen and it is possible to verify that

the other unknowns are given by the following formulas:

λi = 1

2
(i − 2)(i − 3)λ1 − (i − 1)(i − 3)λ2 + 1

2
(i − 1)(i − 2)λ3, i = 4, . . . ,n,

βi = iβ1 + 1

2
i(i − 1)(λ1 − 2λ2 + λ3), i = 2, . . . ,n − 1,

αi = (n − i)(−β1 − 1

2
(n + i − 5)λ1 + (n + i − 4)λ2 − 1

2
(n + i − 3)λ3),

i = 1, . . . ,n − 1.

Let us denote with Sn(β1, λ1, λ2, λ3) the generic matrix of the Sylvester–Kac space. By means of the

previous formulas we can immediately write down a basis. In the case where n = 5 we obtain

S5(1, 0, 0, 0) =

⎛
⎜⎜⎜⎜⎝
4 −4 0 0 0

1 2 −3 0 0

0 2 0 −2 0

0 0 3 −2 −1

0 0 0 4 −4

⎞
⎟⎟⎟⎟⎠,

S5(0, 1, 0, 0) =

⎛
⎜⎜⎜⎜⎝
3 −2 0 0 0

0 4 −3 0 0

0 1 3 −3 0

0 0 3 0 −2

0 0 0 6 −5

⎞
⎟⎟⎟⎟⎠,
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S5(0, 0, 1, 0) =

⎛
⎜⎜⎜⎜⎝

−8 8 0 0 0

0 −9 9 0 0

0 −2 −6 8 0

0 0 −6 1 5

0 0 0 −12 12

⎞
⎟⎟⎟⎟⎠,

S5(0, 0, 0, 1) =

⎛
⎜⎜⎜⎜⎝
6 −6 0 0 0

0 6 −6 0 0

0 1 4 −5 0

0 0 3 0 −3

0 0 0 6 −6

⎞
⎟⎟⎟⎟⎠.

Obviously, S5 in (1) is a matrix of the space, in particular S5 = S5(1, 4, 2, 0), and more generally Sn =
Sn(1,n − 1,n − 3,n − 5).

It is clear that the Sylvester–Kac matrix space contains the scalar matrices as a linear subspace. It

is natural to ask if the space contains nontrivial symmetric matrices.

Theorem 6. The Sylvester–Kac matrix space contains a two dimensional subspace made up by symmetric

matrices.

Proof. We are looking for the solutions for which αi = βi for i = 1, . . . ,n − 1. Since the scalar matrices

are part of the subspace, there is no loss of generality in setting λ1 = 0. The resulting system has

3n − 6 equations and 2n − 2 unknowns. We assign a free value to λ2 and we solve the nonsingular

(n − 1) × (n − 1) linear system⎛
⎜⎜⎜⎜⎜⎝

−2 1

1 −2
. . .

. . .
. . . 1

1 −2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α1

.

.

.

.

.

.

αn−1

⎞
⎟⎟⎟⎟⎟⎠ = −λ2

⎛
⎜⎜⎜⎜⎜⎝

1
.
.
.

.

.

.

1

⎞
⎟⎟⎟⎟⎟⎠. (14)

The next n − 2 equations are satisfied by choosing λ3 = 3λ2. From the last n − 3 equations we obtain

the remaining λi for i = 4, . . . ,n. �

For n = 5 a basis containing a nontrivial symmetric matrix is formed by S5(1, 0, 0, 0), S5(0, 1, 1, 1) =
I5, S5 and

S5(2, 3, 2, 0) =

⎛
⎜⎜⎜⎜⎝
1 2 0 0 0

2 −2 3 0 0

0 3 −3 3 0

0 0 3 −2 2

0 0 0 2 1

⎞
⎟⎟⎟⎟⎠.

Observe that S5(1, 0, 0, 0) is anticentrosymmetric, S5 (the Sylvester–Kac matrix) is centrosymmetric,

S5(2, 3, 2, 0) is symmetric and centrosymmetric (this additional property is not accidental, since the

solution of system (14) is such that αi = αn−i for i = 1, . . . , �n/2�). For generic n the same properties are

enjoyed by the basis formed by Sn(1, 0, 0, 0), Sn(0, 1, 1, 1) = In, Sn and Sn

(
n−1
2

, 3, 2, 0
)
. It follows that the

Sylvester–Kac space can be expressed as direct sum of a three dimensional space of centrosymmetric

matrices and a one dimensional space of anticentrosymmetric matrices.
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