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ReviewAmyotrophic Lateral Sclerosis:
Unfolding the Toxicity
of the Misfolded

the SOD1 gene. Recently, a genetic linkage study has
identified another locus for a subtype of ALS with fronto-
temporal dementia (FTD) that maps to chromosome
9q21-q22 (Hosler et al., 2000). Three loci for juvenile-
onset ALS have also been mapped. Two recessively
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Montréal, Québec, H3G 1A4 inherited loci map to chromosomes 2q and 15q whereas

one dominant juvenile-onset locus maps to chromo-Canada
some 9q34 (Hentati et al., 1994, 1998; Chance et al.,
1998). However, the genes responsible for these familial
ALS-FTD and juvenile ALS cases have not yet been

Amyotrophic lateral sclerosis (ALS) is one of the most
identified.

common adult-onset neurogenerative diseases, having
In a small number of sporadic ALS patients (z1% of

a prevalence of z5 per 100,000 individuals. This human
cases), codon deletions or insertion in the KSP repeat

disease, first described by Charcot in 1869, is character-
motif of the neurofilament NF-H gene have been identi-

ized by the selective degeneration of motor neurons,
fied (for review see Cleveland, 1999). No such NF-H

the large nerve cells connecting the brain to the spinal
mutants have been detected in over 1000 control DNA

cord and from the spinal cord to muscles, that control
samples. The combined data suggest that NF-H variants

muscle movement. The loss of motor neurons leads
may represent risk factors for ALS disease.

to progressive atrophy of skeletal muscles. ALS is a
For the vast majority of ALS cases, the factors trig-

relentless disease that manifests as progressive decline
gering focal initiation and then spreading of motor neu-

in muscular function resulting in eventual paralysis,
ron degeneration in sporadic ALS remain to be eluci-

speech deficits and, ultimately, death due to respiratory
dated. Various hypotheses have been suggested as

failure in the majority of ALS patients within 2 to 5 years
potential contributors of disease such as oxidative dam-

of clinical onset. The weakness, which typically begins
age, excitotoxicity, mitochondrial defects, and autoim-

focally and propagates, is usually associated with the
munity but these could be secondary to the neurodegen-

degeneration of both lower motor neurons in the brain-
eration process. The “virus hypothesis” as primary

stem and spinal cord, and upper motor neurons in the
cause of ALS is now being revisited in light of a recent

cerebral cortex. Approximately 10% of ALS patients are
report of enterovirus (EV) nucleic acids detected by re-

familial cases. The majority of ALS cases are sporadic
verse transcriptase-PCR in the spinal cord of a high

(90%) with no known genetic component. While current
percentage of patients with sporadic ALS (Berger et al.,

evidence suggests that multiple genetic and environ-
2000). More studies are needed to confirm these results

mental factors may be implicated in ALS pathogenesis,
and to demonstrate that EV sequences can play a causal

both sporadic and familial ALS cases share common
role in ALS development.

pathological features such as the presence of abnormal
neurofilamentous accumulations in degenerating motor

Toxicity of SOD1 Mutants: Aberrantneurons.
Copper-Mediated Catalysis?The discovery of missense mutations in the gene cod-
SOD1 is an abundant and ubiquituously expressed pro-ing for the Cu/Zn superoxide dismutase 1 (SOD1) eight
tein. In view of its normal function in catalyzing the con-years ago in subsets of familial cases provided much
version of superoxide anions to hydrogen peroxide (Fig-hope for quick development of therapies, and it directed
ure 1), it was initially thought that the toxicity of differentmost ALS research on elucidating the mechanism of
SOD1 mutants could result from decreased free-radicalSOD1-mediated disease. Yet, understanding the toxicity
scavenging activity. However, this idea was not sup-of SOD1 mutants has been surprisingly challenging. Im-
ported by measurement of enzymatic activities and byportant efforts have also been devoted to clarifying the
transgenic mouse studies. Different SOD1 mutationsrole of neurofilaments in ALS pathogenesis. Again, stud-
show a remarkable degree of variation with respect toies with transgenic mice yielded complex results. Here,
enzymatic activity, polypeptide half-life, and resistanceI shall review the current hypotheses on mechanisms of
to proteolysis, and these variables did not correlateALS disease with emphasis on toxicity of SOD1 mutants
with age of onset or rapidity of human disease progres-and on cytoskeletal abnormalities.
sion. Several lines of transgenic mice expressing var-
ious SOD1 mutants have been generated, and they ex-

Genes and Risk Factors for ALS hibit many pathological changes that occur in human
As shown in Table 1, little is known about the genetic ALS. Transgenic mice expressing mutants SOD1G93A or
defects that cause or predispose to ALS. To date, the SOD1G37R developed motor neuron disease despite ele-
only proven causes of ALS are missense mutations in vation in SOD1 activity levels (Cleveland, 1999). In addi-
the SOD1 gene occurring in z20% of familial ALS cases tion, SOD1 knockout mice did not develop motor neuron
(Rosen et al., 1993; Cudkowicz et al., 1997). Over 70 disease (Reaume et al., 1996). Therefore, the conclusion
mutations have been discovered spanning all exons of from the combined results was that the mutations in

SOD1 provoke a gain of new toxic properties.
Many studies have focused on aberrant copper-medi-* E-mail: mdju@musica.mcgill.ca
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Table 1. Gene/Loci Associated with Human ALS

Gene/Loci Comments References

Adult onset
SOD1 Located on chromosome 21; Mostly missense Rosen et al., 1993

mutations responsible for z20% familial ALS
NF-H Located on chromosome 22; codon deletions in KSP Figlewicz et al., 1994;

repeats found in z1% cases of sporadic ALS Al-Chalabi et al., 1999
EAAT2 RNA processing errors Lin et al., 1998;

Mutation in one ALS case Aoki et al., 1998
Cytochrome c oxidase Mitochondrial DNA microdeletion in one ALS case Borthwick et al., 1999
Ch 9q21–q22 ALS with frontotemporal dementia Hosler et al., 2000

Juvenile onset
Ch 2q33–q35 Autosomal recessive juvenile ALS Hentati et al., 1994
Ch15q15–q24 Autosomal recessive juvenile ALS Hentati et al., 1998
Ch 9q34 Autosomal dominant juvenile ALS Chance et al., 1998

ated catalysis as potential sources of toxicity. One pro- ment can be applied for the peroxidase activity hypothe-
sis. Yet, neither the elimination of endogenous SOD1posal is that misfolding of SOD1 induced by mutations

would allow the access of abnormal substrates such as nor addition of wild-type SOD1 affected disease pro-
gression in SOD1G85R mice. Thus, these results are incon-peroxynitrite to the catalytic site leading to the nitration

of tyrosine residues (Beckman et al., 1993) (Figure 1). sistent with mechanisms of disease involving superox-
ide-mediated oxidative damage.This is consistent with the increased levels of free

3-nitrotyrosine detected in the spinal cord of human ALS SOD1 is a homodimeric protein and each subunit
binds one zinc and one copper atom. Improper metalpatients (Beal et al., 1997) and in mouse models of ALS

(Bruijn et al., 1997). Nonetheless, there is no evidence binding has been proposed as a mechanism by which
mutations could exert their toxic gain of function. Oneof increased levels of nitrotyrosine bound to proteins in

ALS patients or in mutant SOD1 mice as compared to subject of controversy is the possibility that mutant
SOD1 subunits could fail to bind the zinc atom allowingcontrols (Bruijn et al., 1997; Strong et al., 1998). Another

hypothesis suggests that SOD1 mutants have enhanced rapid reduction of mutant SOD1 to the Cu1 form (Estevez
et al., 1999). This reduced form of the enzyme couldability to use hydrogen peroxide as substrate to gener-

ate toxic hydroxyl radicals that can damage celullar tar- catalyze the backward reaction converting oxygen to
superoxide, which could combine with nitric oxide togets including DNA, protein, and lipid membranes (Wie-

dau-Pazos et al., 1996) (Figure 1). In agreement with this produce peroxynitrite. The toxicity of zinc depletion in
SOD1 was demonstrated by the introduction via lipo-proposal was evidence of elevated hydroxyl radical-like

activity in mice expressing mutant SOD1 (Bogdanov et some fusion of purified, zinc-depleted SOD1 into cul-
tured motor neurons. In this experimental paradigm, theal., 1998) and of oxidative damage in neuronal tissue of

sporadic and familial ALS (Ferrante et al., 1997). wild-type SOD1 and mutant SOD1 lacking zinc were
equally toxic to cultured neurons. However, the in vivoHowever, the peroxynitrite or peroxidase activity

hypotheses have been challenged by results of experi- relevance of this hypothesis has been questioned due
to results from transgenic mice (Williamson et al., 2000).ments manipulating the SOD1 activity in a mouse model

of ALS. Bruijn et al. (1998) generated SOD1G85R mice If this model were right, a decrease in nitric oxide (NO)
production would attenuate disease. Yet, the disruptioneither in a SOD1 knockout background or in a transgenic

background overexpressing wild-type SOD1. The ab- of neuronal nitric oxide synthase (nNOS) did not increase
survival of SOD1G93A mice (Facchinetti et al., 1999). None-sence of wild-type SOD1 in the SOD1G85R mutants would

be predicted to increase superoxide levels and its prod- theless, the possibility exists that inducible NOS (iNOS)
is being used as an alternative source for nitric oxideuct peroxynitrite while the elevation of normal SOD1

activity would do the opposite (Figure 1). A similar argu- since immunoreactivity for iNOS has been detected in

Figure 1. Proposed Copper-Mediated Oxi-
dative Mechanisms to Explain the Toxicity of
Mutant SOD1 (see text)



Review
583

glial cells of mutant SOD1 mice (Almer et al., 1999). Mitochondrial Defects
Studies in mice showed that the level of mutant SOD1Another observation against the zinc-deficient SOD1 hy-

pothesis is that overexpression of neurofilament pro- expression modulates the age of onset of symptoms
but has little effect on the rate of progression of diseaseteins, which are abundant proteins capable of compet-

ing with zinc-deficient SOD1 for binding zinc, did not after onset. Interestingly, the onset of disease in mutant
SOD1 mice correlates with a sudden increase in theexacerbate disease in mice models of ALS but rather

conferred protection (Couillard-Després et al., 1998, number of vacuoles representing dilated mitochondria
(Kong and Xu, 1998). This suggests that the toxicity of2000; Kong and Xu, 2000).

A more definitive test for the hypothesis regarding mutant SOD1 may be mediated by damage to mitochon-
dria in motor neurons. Further evidence for a role ofzinc-deficient SOD1 will come from future studies that

examine the requirement for copper in toxicity of mutant mitochondrial dysfunction was provided from the find-
ing that a partial deficiency of manganese superoxideSOD1. The delivery of copper to SOD1 is mediated by a

cytosolic protein called the copper chaperone for SOD1 dismutase 2, a mitochondrial enzyme, exacerbated dis-
ease in SOD1G93A mice (Andreassen et al., 2000).(CCS). Wong et al. (2000a) have recently generated CCS

knockout mice that exhibit considerable reduction in Mitochondrial pathology is also present in central ner-
vous system tissue from human ALS cases. There is acopper incorporation and SOD1 activity. The CCS null

mice are viable and sensitive to paraquat, a herbicide report of selective decrease in the activity of the mito-
chondrial DNA-encoded enzyme cytochrome c oxidasethat generates superoxide anion radicals in vivo. The

generation of CCS null mice expressing mutant SOD1, in human spinal cord motor neurons (Borthwick et al.,
1999). Oxidative damage to mitochondrial DNA leadingwhich is now in progress (P. Wong, personal communi-

cation), should prove whether or not copper-mediated to the accumulation of mitochondrial DNA mutations as
well as other mitochondrial damages could be importantoxidative reactions are central to pathogenesis ALS

linked to SOD1 mutations. mechanisms contributing to the selective loss of motor
neurons in ALS. Chronic mitochondrial inhibition with
malonate in cultured cells showed that motor neurons
are particularly vulnerable to mitochondrial inhibitionToxic Protein Aggregates?

The most promising hypothesis is that the toxicity of (Kaal et al., 2000).
Mitochondria dysfunction or damaged mitochondriamutant SOD1 results from the propensity of misfolded

protein mutants to aggregate into cytoplasmic inclusion can produce excess superoxide ion, release cytochrome
c into the cytoplasm which activates caspase-3, andbodies. Intracellular SOD1 aggregates are formed in cul-

tured motor neurons after microinjection of mutant but affect Ca21 homeostasis. In motor neurons of SOD1G93A

mice, there is evidence of impaired calcium homeostasisnot wild-type SOD1 cDNAs (Durham et al., 1997). Aggre-
gates immunoreactive to SOD1 were also detected in and this may explain in part the selective vulnerability of

neuronal subtypes to degeneration (Siklos et al., 1998).motor neurons and astrocytes of mice expressing mu-
tant SOD1 as well as in human ALS cases linked to Unlike oculomotor neurons that are spared in these mice

as well as in human ALS, spinal motor neurons haveSOD1 (Bruijn et al., 1998). A recent study using SOD1G93A

mice showed that the aggregation of SOD1 into high fewer calcium binding proteins, such as parvalbumin,
making them more prone to degeneration resulting frommolecular weight, insoluble protein complexes (IPCs) is

an early event in the pathogenic mechanism (Johnston changes in cytosolic Ca21 levels.
et al., 2000). The SOD IPCs are detectable several
months before appearance of inclusion bodies and pa- Apoptotic Death
thology. Transfection studies in cultured cells suggest The emerging evidence suggests that the mechanism
that SOD1 IPCs are sequestered into inclusion bodies of neuronal death in human ALS occurs through pro-
resembling aggresomes. Aggresomes can be formed grammed cell death, i.e., apoptosis. This is supported
from a variety of mutant cytosolic proteins through retro- by the demonstration of DNA fragmentation, as deter-
grade transport on microtubules. Because such aggre- mined by in situ end labeling of DNA strand breaks,
gates are likely substrates for dynein-mediated trans- and increased immunoreactivity for proapoptotic Bax
port, it is possible that an increasing burden of IPCs protein in selectively vulnerable CNS regions of sporadic
could disrupt microtubule-dependent axonal transport cases of ALS (Martin, 1999). In addition, prostate apo-
of other substrates needed for neuronal viability, such ptosis response 4 (Par-4), a protein induced in prostate
as growth factors. This mechanism is compatible with cancer cells and in neuronal aopotosis, was found to be
evidence of defects in slow axonal transport, and of increased in spinal cord motor neurons in ALS patients
altered levels of the kinesin motor protein and of a regu- (Pedersen et al., 2000). There is also compelling evi-
lator of fast transport of motor neurons in mice express- dence that motor neuron death involves apoptosis in
ing mutant SOD1 (Cleveland, 1999; Dupuis et al., 2000). disease caused by SOD1 mutations. Transfection stud-
Other mechanisms may also contribute to toxicity of ies with cultured neuronal cells demonstrated the pro-
SOD1 aggregates. Noxious effects could also result apoptotic effect of mutant SOD1 (Durham et al., 1997).
from the cosequestering of essential cellular compo- Moreover, hallmarks of apoptotic death, i.e., DNA frag-
nents. In addition, an abundance of intracellular aggre- mentation, caspase activation, and altered expression
gates could provoke neurodegeneration by overwhelm- of Bcl-2 members, were found in the spinal cord of
ing the capacity of the protein folding chaperones and/or lines of mice expressing mutant SOD1 (Spooren and
of ubiquitin proteosome pathway to degrade important Hengerer, 2000). The members of the Bcl-2 family that

have been widely implicated in the regulation of cellcellular regulatory factors.
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death have been examined in transgenic SOD1G93A mice. rons. The excitotoxicity hypothesis is supported by the
observation that the majority of sporadic ALS casesIn asymptomatic SOD1G93A mice, expression of the anti-

apoptotic Bcl-2 and Bcl-xL and proapoptotic Bad and (z65%) have a reduction in the astroglial glutamate
transporter EAAT2 in motor cortex and spinal cordBax was similar to normal mice (Vukosavic et al., 1999).

However, in symptomatic SOD1G93A mice, there was re- (Rothstein et al., 1995). The decreased EAAT2 levels in
ALS may be due at least in part to abundance of aberrantduced expression of Bcl-2 and Bcl-xL whereas expres-

sion of Bad and Bax was increased. Additional support EAAT2 mRNA species resulting from RNA processing
error. A report by Lin et al. (1998) described multiplefor a role of Bcl-2 in ALS is provided from the report

that overexpression of Bcl-2 transgenes delays onset abnormalities of EAAT2 mRNAs in a subset of sporadic
ALS patients including intron retention and exon skip-of disease and mortality in SOD1G93A mice by over one

month (Kostic et al., 1997). There is evidence that mutant ping. Proteins translated from these mRNAs could be
rapidly degraded and/or produce dominant negative ef-SOD1 can activate p53, a nuclear phosphoprotein pro-

tein that may play a causative role in apoptosis. How- fects, resulting in loss of EAAT2 protein and activity.
However, a caveat to this potential mechanism is pro-ever, the targeted disruption of p53 did not affect dis-

ease progression and mortality in these ALS SOD1G93A vided by a study that showed aberrant EAAT2 tran-
scripts to be equally present in ALS patients and con-mice (Kuntz et al., 2000).

Members of the caspase family, which are cysteine trols. (Meyer et al., 1999). The glutamate-induced
excitotoxicity resulting from the loss of astroglial EAAT2proteases with aspartate specificity, are also central

components in the apoptotic death pathway. Basically, is most likely a secondary effect of the disease process
in ALS. Germline mutations in the EAAT2 gene are verythe caspases are synthesized as pro-enzymes that are

cleaved at specific aspartate residues. Upon activation, rare and they do not explain the existence of variant
EAAT2 mRNAs in ALS. Only one sporadic ALS casethe caspases cleave other intracellular targets including

other caspases resulting in an amplified cell death cas- was identified with an EAAT2 gene variant that affects
N-linked glycosylation and glutamate clearance capac-cade. Although one group failed to detect sign of apo-

ptosis in SOD1G93A mice using in situ detection for nicked ity (Aoki et al., 1998; Trotti et al., 2000).
In disease caused by SOD1 mutations, oxidative dam-DNA and immunostaining for caspase-3 (Migheli et al.,

1999), other groups reported caspase-1 and caspase-3 age has been suggested to be another mechanism by
which the glutamate transporter EAAT2 can be inacti-activation in motor neurons and astrocytes using three

mouse models of ALS, the SOD1G93A, SOD1G37R, and vated. This is supported by the observation that oxida-
tive reactions triggered by hydrogen peroxide and cata-SOD1G85R mice (Pasinelli et al., 1998, 2000; Li et al., 2000).

In addition, expression of a dominant inhibitory cas- lyzed by the SOD1 A4V and I113T mutants but not
wild-type SOD1 inactivated the glutamate transporterpase-1 (Friedlander et al., 1997) or intraventricular ad-

ministration of a caspase inhibitor (Li et al., 2000) slowed EAAT2 (Trotti et al., 1999). Alternatively, toxic properties
of mutant SOD1 aggregates could provoke generaldown disease progression in SOD1G93A mice.

Interestingly, a recent study demonstrates a sequen- astrocytic dysfunction affecting levels of EAAT2. During
disease progression in SOD1G85R mice, there is an in-tial cascade of caspase activation during disease pro-

gression (Pasinelli et al., 2000). Surprisingly, unlike apo- crease of SOD1 inclusions in astrocytes correlating with
a decrease in the EAAT2 glutamate transporter (Cleve-ptosis observed in the context of development where

cell death occurs rapidly after initial caspase activation, land, 1999). Yet, the initial damage caused by mutant
SOD1 probably occurs in motor neurons. At initial stagecaspase-1 is activated in ALS mice months before cas-

pase-3 activation and prior to any evidence of motor of disease in SOD1G93A mice, expression of mutant SOD1
occurs at high levels in motor neurons but not inneuron death. Caspase-3 activation occurs at the time

of onset of motor axon loss and appearance of apoptotic astrocytes (Levine et al., 1999). Moreover, in SOD1G93A

mice, significant increases in astrogliosis were not ob-death. It is noteworthy that caspase activation is also
very prominent within astrocytes of mutant SOD1 mice served until after the onset of massive mitochondrial

vacuolization in motor neurons and the beginning of(Li et al., 2000; Pasinelli et al., 2000), raising the possibil-
ity that caspase-1 activation may contribute to an in- clinical symptoms (Levine et al., 1999).

To test the importance of glial expression of mutantflammatory pathway causing astrocytosis that perhaps
may contribute to motor neuron damage. SOD1 in pathogenesis, Gong et al. (2000) generated

transgenic mice bearing a mutant SOD1G86R gene under
the control of GFAP promoter. The restricted expressionExcitotoxicity
of mutant to glial cells was not sufficient to cause motorGlutamate-induced excitotoxicity is another potential
neuron disease. Therefore, while astrocytic dysfunctioncontributor to ALS pathogenesis. Depolarization of the
may contribute to degeneration processes, expressionneuronal membrane after activation of neuronal gluta-
of mutant SOD1 in other cell types, most likely neurons,mate receptors activates voltage-dependent Ca21 chan-
is essential to trigger motor neuron disease.nels, allowing Ca21 entry into the cell. Thus, excess acti-

vation of neuronal glutamate receptors can cause cell
death via alterations in cytosolic free Ca21 homeostasis. Neurofilament Inclusions: Detrimental

or Protective Functions?For spinal motor neurons, rapid recovery of synaptic
glutamate is accomplished by the glutamate transporter A pathological hallmark of both sporadic and familial

ALS, including cases linked to SOD1 mutations, is theEAAT2 present in astrocytes. Loss of EAAT2 transporter
could lead to increased extracellular concentrations of presence of abnormal intermediate filaments (IF) accu-

mulations in the perikaryon and axon of motor neuronsglutamate and excitotoxic degeneration of motor neu-
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(Hirano et al., 1984; Rouleau et al., 1996). In addition, NF-H subunits to achieve efficient translocation into the
axonal compartment.genetic mutations in the neurofilament NF-H gene have

been found in a small number of ALS cases (for review Proof that neurofilament abnormalities can provoke
the death of motor neurons came from the expressionsee Cleveland, 1999). Neurofilaments, which are the ma-

jor type of IFs in motor neurons, are made by the copoly- of an assembly-disrupting NF-L mutant with a Leu to
Pro substitution near the end of the conserved rod do-merization of neurofilament light (NF-L, 61 kDa), medium

(NF-M, 90 kDa), and heavy (NF-H, 115 kDa) subunits. main (Lee et al., 1994). To clarify the mechanism of cell
death induced by this mutant NF-L, these transgenicVarious factors may account for the formation of neuro-

filament inclusions in human ALS including deregulation mice were bred to mice overexpressing Bcl-2. Elevated
levels of Bcl-2 did not protect the large motor neuronsof gene expression or posttranslational modifications,

and neurofilament gene mutations. from mutant neurofilament-mediated death (House-
weart and Cleveland, 1999). While the mechanism ofIn situ hybridization studies revealed considerable re-

duction in levels of NF-L mRNA in degenerating spinal toxicity of mutant NF-L is not fully understood, it may
be related in part to the formation of abnormal neurofila-motor neurons of ALS cases (Wong et al., 2000b). More-

over, the decrease in mRNA levels is selective for NF-L. ment inclusions in axons that may cause a strangulation
of axonal transport. This is in contrast to the perikaryalNo significant changes were detected in NF-M and NF-H

mRNA levels of ALS patients (Wong et al., 2000b). Be- location of inclusions induced by overexpression of
wild-type neurofilament proteins. No such NF-L muta-cause of its requirement for proper neurofilament as-

sembly and transport, a lack of NF-L can provoke accu- tions were found in human ALS but a mutation in the
rod domain of the NF-L gene has recently been reportedmulations of NF-M and NF-H proteins in the cell bodies

of motor neurons (Williamson et al., 1998). There is also in a family with Charcot-Marie-Tooth disease type 2
further demonstrating that neurofilament abnormalitiesevidence that disorganized filaments and intracellular

transport defects could result from aberrant posttransla- could be a primary cause of neurodegeneration (Mersi-
yanova et al., 2000).tional protein modifications. Of particular relevance to

ALS is the recent finding that excitotoxicity can induce The presence of abnormal neurofilament inclusions
in familial ALS caused by SOD1 mutations and in miceneurofilament side-arm hyperphosphorylation in neu-

rons and a slowing of neurofilament transport in cultured expressing mutant SOD1 supported the possibility that
neurofilaments may act as toxic intermediates in theneurons (Ackerley et al., 2000). This phosphorylation

may occur via members of the MAPK family including disease. To test this idea, mice expressing mutant SOD1
in NF-L knockout background (Williamson et al., 1998)p42/p44MAPK and SAPKs. Other posttranslational pro-

tein modifications may also be involved in disorganiza- or in a transgenic NF-H-b-galactosidase background
(Eyer et al., 1998) were generated. NF-H-b-galactosi-tion of neurofilaments. The presence of advanced gly-

cation end products in neurofilament inclusions is dase is a fusion protein that leads to the trapping of
neurofilaments in neuronal perikarya. Because motorassociated with ALS. In addition, the NF-L protein is

very susceptible to peroxynitrite-mediated nitration. neuron disease still occurred in both of these mutant
SOD1 mice strains lacking axonal neurofilaments, oneHowever, although neurofilament inclusions in ALS are

stained with anti-nitrotyrosine antibodies, the extent of might conclude that axonal neurofilaments are not re-
quired for mutant SOD1-mediated disease (see Tablenitration of tyrosine residues in the NF-L protein from

the spinal cord of sporadic ALS cases did not differ from 2). However, the absence of NF-L did lead to z15%
extension of life span in SOD1G85R mice. Even more sur-age-matched controls (Strong et al., 1998).

For some time, the neurofilament accumulations in prising was the observation that the overexpression of
wild-type human NF-H or to a lower extent mouse NF-HALS were widely viewed as a marker of neuronal dys-

function, perhaps reflecting axonal transport defects. proteins, which raises perikaryal neurofilament content
and lowers axonal levels, extended the longevity of mu-However, recent transgenic mouse studies suggested

that neurofilament accumulations could play a patho- tant SOD1 mice by 65% and 15%, respectively (Couil-
lard-Després et al., 1998; Kong and Xu, 2000).genic role. The overexpression in mice of any of the

three wild-type neurofilament subunits alone can induce These experiments failed to resolve whether the slow-
ing of disease was a consequence of the depletion ofthe formation of perikaryal neurofilament accumula-

tions. It is noteworthy that such neurofilament inclusions neurofilaments in motor axons or of the accumulation
of neurofilament proteins in the cell bodies of motorin cell bodies are relatively well tolerated by motor neu-

rons and do not lead to massive death of motor neurons. neurons. To further address this issue and to assess
the potential role of axonal caliber as a vulnerabilityFor example, high-level expression of human NF-H pro-

teins caused large perikaryal neurofilament inclusions factor, SOD1G37R mice were generated in a context of
one disrupted allele for each neurofilament gene. Thisresulting in atrophy of motor axons and altered axonal

conductances (Kriz et al., 2000). The NF-H overexpres- allowed a reduction of neurofilament content and caliber
of motor axons without altering the normal subunit stoi-sion provoked severe motor dysfunction but did not

cause motor neuron death even in two-year-old mice chiometry and morphological distribution of neurofila-
ments (Nguyen et al., 2000). A 40% decrease in the(Beaulieu et al., 2000). Remarkably, the motor neuron

disease in NF-H transgenic mice was rescued by coex- content of intact neurofilaments did not extend the life
span of SOD1G37R mice, and motor axons with reducedpressing NF-L subunits in a dose-dependent fashion

(Meier et al., 1999), emphasizing the importance of sub- calibers remained equally vulnerable to degeneration.
Therefore, the slowing of disease in mutant SOD1 miceunit stoichiometry for proper neurofilament assembly

and transport. The results would be consistent with a lacking NF-L or overexpressing neurofilament proteins
seems to be the result of perikaryal increase in neurofila-requirement for heterodimerization of NF-L to NF-M or
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Table 2. Effects of Changes in Neurofilament Expression on SOD1 Mutant Mice

Neurofilament Proteins in Motor Neurons
Life Span of Mutant
SOD1 Mice Perikaryon Axon References

Knockout
NF-L2/2 Increased by 15% (40 days) Slight increase Scarcity Williamson et al., 1998

(SOD1G85R) of NF-H and NF-M
Triple1/2 No changes Normal 40% reduction Nguyen et al., 2000
NF-L;NF-M;NF-H (SOD1G37R)

Transgene overexpression
NF-H/b-galactosidase No change Huge accumulation Scarcity Eyer et al., 1998

(SOD1G37R) of neurofilaments
Human NF-H Increased by 65% (2–5 months) Large accumulation Substantial Couillard-Després et al., 1998

(SOD1G37R) of neurofilaments reduction
Human NF-L No change Slight increase in NF-L z50% increase Couillard-Després et al., 2000

(SOD1G37R)
Mouse NF-L Increased by 15% (40 days) Slight increase Increase Kong and Xu, 2000

(SOD1G93A) of neurofilaments
Mouse NF-H Increased by 15% (40 days) Large accumulation Substantial Kong and Xu, 2000

(SOD1G93A) of neurofilaments reduction

ment proteins rather than a depletion of axonal neurofila- ment inclusions, could impair axonal transport (Cleve-
land, 1999). Since peripherin gene expression can bement content. To date, overexpressing human NF-H has

been the most effective approach to increase the lon- enhanced several fold by injury or by inflammatory cyto-
kines, formation of peripherin inclusions may be part ofgevity of mutant SOD1 mice but more work is needed

to clarify the protective mechanism. Appealing possibili- a general response of motor neurons to noxious stress
and chronic inflammation. Mutant SOD1 mice also de-ties are that perikaryal neurofilament accumulations

may protect the cell by binding excess Ca21 or by acting velop axonal peripherin inclusions at early stage of dis-
ease (Beaulieu et al., 1999), and they should be usefulas a sink for oxidative damage and/or toxic posttransla-

tional modifications. It remains to be explained why ex- in future studies to assess the potential contribution of
peripherin to disease.pression of NF-H-b-galactosidase had no net benefits

on disease. While it cannot be excluded that this non- In summary, cytoskeletal abnormalities may be viewed
as important risk factors in ALS. However, the combinedphysiological fusion protein could alter normal neurofila-

ment properties, the exceedingly high levels of mutant studies of transgenic mouse models indicate that differ-
ent types of IF inclusions may have disparate effectsSOD1 in mouse lines used for these studies could per-

haps override the protective effects of perikaryal neuro- on neuronal function (Figure 2). The IF misorganization
caused by mutant NF-L proteins or by sustained overex-filaments.
pression of peripherin is cytoxic and this may be related
in part to the axonal localization of IF aggregates. Con-Peripherin Inclusions

Peripherin is another type of IF protein that is detected versely, large accumulations of neurofilaments in peri-
karya that were induced by overexpression of wild-typetogether with neurofilament proteins in the majority of

axonal inclusion bodies, called spheroids, in motor neu- NF-H proteins conferred remarkable protection against
toxicity of mutant SOD1.rons of ALS patients (Corbo and Hays, 1992). In the

adult, the expression of peripherin is normally restricted
to spinal motor neurons, peripheral sensory neurons Therapeutic Interventions in Mice

Various approaches to therapy have been tested in mu-and autonomic nerves. Transgenic mice overexpressing
peripherin 4- to 7-fold in motor neurons developed a tant SOD1 mice and have been found to slow disease

progression (Table 3). Riluzole, an inhibitor of synapticlate onset motor neuron disease (Beaulieu et al., 1999).
The peripherin-mediated disease, which is dramatically glutamate release, is so far the only approved drug for

treatment of human ALS. In SOD1G93A mice, riluzole pro-accelerated by a deficiency of NF-L (Beaulieu et al.,
1999, 2000), is characterized by the presence of abun- longed survival modestly by 10–15 days without affect-

ing disease onset (Gurney et al., 1996). This suggestsdant IF inclusion bodies in motor axons containing pe-
ripherin together with NF-M and NF-H proteins. Evidence an excitotoxicity involvement after disease onset that

can be partly alleviated by inhibitors of glutamate re-from transfection experiments suggests that a lack of
NF-L promotes interaction of peripherin with NF-M and lease. The best pharmacological treatments in mice to

date have been with intracerebroventricular administra-NF-H proteins to produce disorganized IF structures
(Beaulieu et al., 1999). Unlike other types of neuronal tion of N-Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-

ketone (zVAD-fmk), a broad caspase inhibitor (Li et al.,IF proteins, the sustained overexpression of wild-type
peripherin in mice caused the selective death of motor 2000), and with the addition of creatine, a compound

believed to improve mitochondrial function, to drinkingneurons during aging. The sequestration of organelles
such as mitochondria within the peripherin inclusions water (Klivenyi et al., 1999).

Other therapeutic targets have been revealed throughand the axonal localization of these IF inclusions may
contribute to neurotoxicity (Beaulieu et al., 2000). Such modulation of gene expression in mice. As mentioned

above, the highest documented effect on longevity ofperipherin inclusions, as described above for neurofila-
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Figure 2. Different Types of IF Inclusions with
Disparate Properties

(A) Normal motor protein. (B) The overexpres-
sion of wild-type NF-H proteins in mice in-
duces the formation of large neurofilament
accumulations in the cell body of motor neu-
rons. Such perikaryal swellings do not cause
cell death and they even confer protection
in disease caused by mutant SOD1. (C) The
sustained overexpression of peripherin trans-
genes caused motor neuron death in aging
or earlier in a context of NF-L deficiency. The
disease is characterized by the presence of
abundant IF inclusions in motor axons that
could impede axonal transport. Similar axo-
nal IF accumulations occurred in motor axons
of transgenic mice expressing mutant NF-L.
However, motor neuron loss occurs soon
after birth in mice expressing mutant NF-L,
unlike peripherin transgenic mice that de-
velop a late-onset motor neuron disease.

mutant SOD1 (z5 months) was obtained by overex- of hematopoietic origin could influence disease pro-
gression.pressing a human NF-H transgene (Couillard-Després et

al., 1998) (see Table 2). Bcl-2 transgene overexpression
extended the survival of SOD1G93A mice by 5–6 weeks Autoimmunity

A hypothesis of potential relevance to sporadic ALS(Kostic et al., 1997). However, the intraspinal injection
of recombinant adeno-associated virus (AAV) coding for pathogenesis suggests that an autoimmune response

is responsible for initiating motor neuron degeneration.bcl-2 in SOD1G93A resulted in increased survival of motor
neurons but was not sufficient to prolong the survival Support for this proposal first came from studies indicat-

ing the presence of antibodies to L-type voltage-gatedof SOD1G93A mice (Azzouz et al., 2000). Nonetheless,
these results support the feasibility of using AAVs as a Ca21 channels in some ALS patients. These immuno-

globulins from ALS patients are capable of inducinggene transfer approach aiming to enhance survival of
spinal cord motor neurons. transient increases in intracellular calcium and death of

cultured motor neurons (Colom et al., 1997).Remarkably, the intravenous injection of human um-
bilical cord blood mononuclear cells into SOD1G93A mice Anti-Fas antibodies were also detected in sera from

26% of patients with sporadic ALS (Yi et al., 2000), aafter irradiation was able to substantially increase the
life span (Ende et al., 2000). How this procedure provides finding compatible with involvement of an immune

mechanism. In mixed cultures of rat embryonic brainbenefit is not settled but the results suggest that cells

Table 3. Therapeutic and Genetic Interventions in Mutant SOD1 mice

Protective Effects Mutant Mouse Increase in Life Span References

Treatments
Riluzole SOD1G93A 10–15 days Gurney et al., 1996

(inhibits glutamate release)
Creatine SOD1G93A 30 days Klivenyi et al., 1999

(enhances energy reserves)
zVAD-fmk SOD1G93A 27 days Li et al., 2000

(inhibits caspases)
Irradiation plus SOD1G93A 10–50 days Ende et al., 2000

human umbilical
cord blood

Transgene overexpression
Bcl-2 SOD1G93A 30–35 days Kostic et al., 1997
Dominant inhibitor SOD1G93A 27 days Friedlander et al., 1997

of Caspase-1
Gene Knockout

nNOS2/2 SOD1G93A No change Facchinetti et al., 1999
p53 SOD1G93A No change Kuntz et al., 2000

Gene therapy
AAV/bcl-2 SOD1G93A No change, Azzouz et al., 2000

Increase survival
of motor neurons
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Figure 3. A Complex Pathway to Motor Neu-
ron Death

Evidence, based mostly on studies with mice
expressing mutant SOD1, suggests that mul-
tiple mechanisms contribute to ALS patho-
genesis.

and spinal cord cells, ALS sera induced the apoptosis of an opportunity to search for modifier genes associated
with different genetic backgrounds that can alter thea subpopulation of neurons identified as motor neurons.
onset or progression of the disease.Fas is a member of the tumor necrosis factor family

Currently, there is no drug available to cure motorand the clustering of Fas by Fas ligand can activate a
neuron disease in human ALS and in mouse models.signaling pathway for apoptosis. To what extent these
Nonetheless, in light of current knowledge of diseasepathways contribute to mechanisms of motor neuron
mechanism, antiapoptotic drugs such as caspase inhibi-death in ALS merits further investigation even though
tors and perhaps anti-inflammatory agents could offeran immune mechanism could represent a response sec-
potential treatment. Other strategies might include aondary to neurodegeneration rather than a primary
search for agents that can prevent the abnormal aggre-cause of disease.
gation of mutant SOD1 or the formation of peripherin/
neurofilament inclusion bodies. As more associated

Future Directions genes are discovered, new therapeutic approaches
Evidence to date suggests that the pathway to motor could potentially be derived. Gene therapy approaches
neuron death in ALS is complex and involves multiple involving the use of recombinant viruses offer a promis-
cascades of events including formation of protein aggre- ing strategy for the delivery of genes to enhance motor
gates, oxidative damage, mitochondrial defects, alter- neuron survival and repair. The next few years will also
ations in calcium homeostasis, caspase activation, and provide some perspective on whether neural stem cells
changes in levels of Bcl-2 (Figure 3). Intracytoplasmic with the potential to differentiate into appropriate cells
aggregates, formed by mutant SOD1 or IF proteins, can be used to replace motor neurons or to repair dam-
emerged as important factors of toxicity that may inter- aged neurons via delivery of growth factors. In view of
fere perhaps with intracellular transport and proteosome the complexity of the disease, a combination of different
ubiquitin functions. Protein aggregates and damage oc- therapies acting in synergy will probably be needed for
cur in both neurons and astrocytes, but the degree to effective ALS treatment.
which gliosis contributes to motor neuron disease is not New technologies will likely drive future progress. For
established. Excitotoxicity due to astrocyte dysfunction instance, the use of cDNA microarray technologies can
and inflammatory processes from microglia activation be applied to compare the gene expression profile from
are additional factors that may contribute to the spread- sporadic and familial ALS cases, including cases linked
ing of the neurodegenerative process. to SOD1 mutations. This will help to determine to what

The current knowledge of pathogenic mechanisms of extent the two forms of the disease share similar degen-
ALS is mostly based on studies with mutant SOD1, erative processes, a crucial issue for clinical interven-
which is responsible for only z2% of all ALS cases. For tion. Other questions related to SOD1-mediated disease
the vast majority of ALS patients, the primary causes of need to be explored. It is not fully resolved how mis-
disease are unknown. Thus, there is a need to identify folded SOD1 mutants can trigger by aggregation death
new genes associated with familial forms of ALS. An- pathways selectively in subsets of motor neurons. The
other promising approach will be to identify genes molecular mechanisms in various cell types that contrib-
whose mutation in mice produce ALS-like conditions. ute to the onset and rapid spreading of motor neuron
Mutagenesis in mice using the chemical mutagen ethyl- death are not completely understood. In this regard,
nitrosourea is now being used for large-scale screening profiling the differential gene expression in various tis-
of genes and pathways involved in various phenotypes. sues during disease progression in existing mouse mod-

els of ALS should provide a better understanding of theIn addition, the existing mouse models of ALS provide
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superoxidase dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 94,molecular events involved in pathogenesis. Hopefully,
7606–7611.further insights into the causes and molecular pathways
Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson,associated with pathogenesis will lead to the develop-
S.D., Ohama, E., Reaume, A.G., Scott, R.W., and Cleveland, D.W.ment of effective therapeutic approaches that will stop
(1998). Aggregation and motor neuron toxicity of an ALS-linked

the devastating course of this disease. SOD1 mutant independent from wild-type SOD1. Science 281, 1851–
1854.
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