JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 38, 320-327 (1972)

Expansion of the Weber Function D, for Small Order, with an Application*

MARTIN AVERY SNYDER

Bryn Mawr College, Bryn Mawr, Pennsylvania 19010

AND

BARRY BELKIN

Daniel H. Wagner, Associates, Paoli, Pennsylvania 19301 Submitted by K. J. Astrom

In this paper we investigate the Weber function D_{ν} for small index ν and obtain explicitly the first-order asymptotic behavior. We then apply this result to obtain an expression for the first moment of the first passage distribution for a stationary, Gauss-Markov (Ornstein-Uhlenbeck) process.

I. AN ASYMPTOTIC EXPANSION FOR THE WEBER FUNCTION

The Weber function $D_{\nu}(z)$ satisfies the (parabolic cylinder) differential equation

$$D_{\nu}''(z) + \left[\nu + \frac{1}{2} - \frac{z^2}{4}\right] D_{\nu}(z) = 0 \tag{1}$$

with the initial conditions

$$D_{\nu}(0) = \pi^{\frac{1}{2}} \frac{2^{\nu/2}}{\Gamma\left(\frac{1-\nu}{2}\right)}, \qquad D_{\nu}'(0) = -\pi^{\frac{1}{2}} \frac{2^{(\nu+1)/2}}{\Gamma\left(-\frac{\nu}{2}\right)},$$

where the prime denotes differentiation with respect to the argument z.

It is shown in [1] that $D_{\nu}(z)$ is an analytic function of both z and ν . In particular, there is an asymptotic expansion in ν of the form

$$D_{\nu}(z) = \sum_{n=0}^{\infty} y_n(z) \nu^n.$$
 (2)

* This research was supported in part by the Office of Naval Research under contract No. N00014-70-C-0232.

© 1972 by Academic Press, Inc.

We obtain the coefficients y_n by a perturbation approach to the differential equation (1).

We denote by L the differential operator

$$\mathbf{L} = \frac{d^2}{dz^2} + \frac{1}{2} - \frac{z^2}{4}$$

and expand the initial conditions as power series in ν :

$$D_{\nu}(0) = \sum_{n=0}^{\infty} a_n \nu^n, \qquad D_{\nu}'(0) = \sum_{n=0}^{\infty} b_n \nu^n.$$

Direct computation (by differentiation, for example) gives

$$a_0 = 1,$$
 $b_0 = 0,$
 $a_1 = -\frac{1}{2} (\gamma + \log 2),$ $b_1 = \sqrt{\frac{\pi}{2}},$ (3)
..., ...,

where γ is Euler's constant. By standard perturbation methods (see for example, [2]), we obtain the following differential recurrence relations for the y_n , $n \ge 0$:

$$Ly_n(z) = -y_{n-1}(z), \quad y_n(0) = a_n, \quad y_n'(0) = b_n$$
 (4)

with

$$y_{-1}(z)=0$$

The solution of this system of equations is conveniently expressed in terms of the homogeneous Green's function for the operator L given by

$$g(z, \zeta) = \begin{cases} 0, & z \leq \zeta, \\ i[D_{-1}(i\zeta) D_0(z) - D_0(\zeta) D_{-1}(iz)], & z > \zeta. \end{cases}$$
(5)

The solution to (4) then has the form

$$y_n(z) = \int_0^\infty g(z, \zeta) \, y_{n-1}(\zeta) \, d\zeta + Y_n(z), \tag{6}$$

where the function $Y_n(z)$ satisfies the homogeneous problem

$$LY_n(z) = 0, \quad Y_n(0) = a_n, \quad Y_n'(0) = b_n.$$

409/38/2-5

It is easily checked that

$$Y_n(z) = \left(a_n - \sqrt{\frac{\pi}{2}} ib_n\right) D_0(z) + ib_n D_{-1}(iz).$$
(7)

Combining (6) and (7) we obtain

$$y_0(z) = D_0(z) = e^{-z^2/4}.$$
 (8)

Similarly,

$$y_{1}(z) = iD_{0}(z) \int_{0}^{z} D_{0}(\zeta) D_{-1}(i\zeta) d\zeta - iD_{-1}(iz) \int_{0}^{z} D_{0}^{2}(\zeta) d\zeta - \frac{1}{2} (\gamma + \log 2 + i\pi) D_{0}(z) + i \sqrt{\frac{\pi}{2}} D_{-1}(iz).$$
(9)

This expression can be simplified considerably by using the relation

$$\int_{0}^{z} D_{0}^{2}(\zeta) d\zeta = \sqrt{\frac{\pi}{2}} - e^{-z^{2}/4} D_{-1}(z)$$

and observing that since

$$\frac{d}{dz} \left[D_{-1}(z) D_{-1}(iz) + \int_0^z D_0(\zeta) D_{-1}(i\zeta) d\zeta \right] = -i D_0(iz) D_{-1}(z),$$

we have

$$D_{-1}(z) D_{-1}(iz) + \int_0^z D_0(\zeta) D_{-1}(i\zeta) d\zeta = \frac{\pi}{2} - i \int_0^z D_0(i\zeta) D_{-1}(\zeta) d\zeta.$$

Equation (9) for y_1 may then be rewritten as

$$y_{1}(z) = e^{-z^{2}/4} \left\{ \frac{\gamma + \log 2}{2} - \int_{0}^{z} D_{0}(it) D_{-1}(t) dt \right\}.$$
(10)

In terms of Rosser's G function [3]

$$G(z, p) = \int_0^z e^{-p^2 y^2} \int_0^y e^{-x^2} dx \, dy,$$

 y_1 can alternatively be expressed as

$$y_1(z) = e^{-z^2/4} \left\{ \frac{\gamma + \log 2}{2} - i \sqrt{2} \operatorname{erf} \left(-\frac{iz}{\sqrt{2}} \right) + 2G(z, i) \right\}.$$
(11)

Efficient computational formulas for G are known. For $0 \le z \le 6$ see [3, (16-7)]. For $z \ge 6$ ten significant figures may be obtained from the approximation

$$G(z,i) \approx \frac{\sqrt{\pi}}{2} \int_0^z e^{t^2} dt = \frac{-\pi i}{4} \operatorname{erf}(iz).$$

Since G(z, i) cannot be expressed in terms of elementary functions, it does not seem possible to obtain y_2 in simple form.

Combining (2), (8), and (11) we have the first order asymptotic development

$$D_{\nu}(z) = e^{-z^{2}/4} + e^{-z^{2}/4} \left\{ \frac{\gamma + \log 2}{2} + i \sqrt{2} \operatorname{erf} \left(-\frac{iz}{\sqrt{2}} \right) + 2G(z, i) \right\} \nu + O(\nu^{2}).$$
(12)

II. Application to the Ornstein-Uhlenbeck Process

We now apply the results of the first section to find the first moment of the first passage distribution of the special diffusion process $\xi(t)$ which is stationary, Markovian and Gaussian with mean 0 and covariance

$$E[\xi(t_1) \ \xi(t_2)] = \frac{\sigma^2}{2\rho} \ e^{-\rho |t_2 - t_1|}.$$

This process describes the motion of a harmonically bound Brownian particle drawn to the origin by a force whose magnitude is proportional to its displacement with proportionality constant $\rho > 0$. We consider only the case $\sigma^2/2 = 1$ and $\rho = 1$ since the general case can be obtained by a simple scale change. The transition density p(t, x, y) of this process satisfies the backward type Kolmogorov equation

$$\frac{\partial p}{\partial t} = \frac{\sigma^2}{2} \frac{\partial^2 p}{\partial x^2} - \rho x \frac{\partial p}{\partial x}.$$
(12)

Let ℓ denote a constant threshold level and τ the first passage time across the level ℓ , i.e.,

$$\tau = \inf\{t \ge 0 : \xi(t) > \ell\}.$$

Then it is shown in [4] that the Laplace transform for the distribution of τ is given by

$$R(\alpha, x) = \int_{0}^{\infty} e^{-\alpha t} P^{x}[\tau > t] dt = \begin{cases} \frac{1}{\alpha} \left[1 - \frac{e^{x^{2}/4} D_{-\alpha}(-x)}{e^{\ell^{2}/4} D_{-\alpha}(-\ell)} \right], & x < \ell, \\ 0, & x \ge \ell, \end{cases}$$
(13)

where x is the starting point of the process. Let $\mu_n(x, \ell)$ be the *n*-th moment of the first passage time distribution, i.e.,

$$\mu_n(x, \ell) = \int_0^\infty t^n \, dP^x[\tau \leqslant t]$$

$$= n \int_0^\infty t^{n-1} P^x[\tau > t] \, dt, \qquad n \ge 1.$$
(14)

Then, in view of (13), we may write

$$\mu_n = (-1)^{n-1} n \lim_{\alpha \downarrow 0} \frac{\partial^{n-1} R}{\partial \alpha^{n-1}} \,.$$

In particular,

$$\mu_1(x, \ell) = \lim_{\alpha \downarrow 0} R(\alpha, x).$$

Applying the asymptotic expansion in (12) for $D_{-\alpha}$ we have

$$\mu_{1}(x, \ell) = \lim_{\alpha \downarrow 0} \frac{1}{\alpha} \left\{ \frac{e^{\ell^{2}/4} [y_{0}(-\ell) - \alpha y_{1}(-\ell) + O(\alpha^{2})]}{-\frac{e^{x^{2}/4} [y_{0}(-x) - \alpha y_{1}(-x) + O(\alpha^{2})]}{e^{\ell^{2}/4} [y_{0}(-\ell) + O(\alpha)]} \right\}$$

so that

$$\mu_1(x, \ell) = e^{x^2/4} y_1(-x) - e^{\ell^2/4} y_1(-\ell).$$
(15)

Explicitly, we have

$$\mu_1(x,\,\ell) = i\,\sqrt{2}\left[\operatorname{erf}\left(\frac{i\ell}{\sqrt{2}}\right) - \operatorname{erf}\left(\frac{ix}{\sqrt{2}}\right)\right] + 2[G(-x,\,i) - G(-\ell,\,i)]. \tag{16}$$

Successive differentiation shows that the expression in (16) can be written as the simple power series

$$\mu_1(x, \ell) = \sqrt{\pi} \sum_{n=1}^{\infty} \frac{\ell^n - x^n}{2^{n/2} n \Gamma\left(\frac{n+1}{2}\right)}.$$
 (17)

It is of separate interest to note that this last series can be obtained directly from (13) using the integral representation of $D_{-\alpha}$ for $\alpha > 0$:

$$D_{-\alpha}(z) = \frac{e^{-z^2/4}}{\Gamma(\alpha)} \int_0^\infty e^{-xs - \frac{1}{2}s^2} s^{\alpha-1} ds.$$

Expanding the exponential e^{-xs} and interchanging the integration and summation we have

$$D_{-\alpha}(z) = \frac{e^{-z^2/4}}{\Gamma(\alpha)} \sum_{n=0}^{\infty} \left[\int_0^{\infty} e^{-\frac{1}{2}s^2} s^{\alpha+n-1} \, ds \right] \frac{(-x)^n}{n!} \, .$$

The interchange of operations is justified by monotone convergence for x > 0and dominated convergence for $x \leq 0$. From these two representations it follows that

$$\int_{0}^{\infty} e^{-xs} e^{-\frac{1}{2}s^{2}} s^{\alpha-1} ds = \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+n) D_{-(\alpha+n)}(0)}{n!} (-x)^{n}$$
$$= \sqrt{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+n)}{2^{(\alpha+n)/2} \Gamma\left(\frac{\alpha+n+1}{2}\right) n!} (-x)^{n}.$$

Substitution in (13) then gives

$$R(\alpha, x) = \frac{\sum_{n=1}^{\infty} \frac{\Gamma(\alpha+n)}{2^{(\alpha+n)/2} \Gamma\left(\frac{\alpha+n+1}{2}\right) n!} (\ell^n - x^n)}{\alpha \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+n)}{2^{(\alpha+n)/2} \Gamma\left(\frac{\alpha+n+1}{2}\right) n!} \ell^n},$$

from which the expression in (17) easily follows.

One may also easily verify (17) by direct substitution in the general differential recurrence relation for the moments obtained in [4]:

$$\frac{\partial^2 \mu_n}{\partial x^2} - x \frac{\partial \mu_n}{\partial x} = -n\mu_{n-1} \quad \text{with} \quad \mu_0 = 1, \quad \mu_n(\ell, \ell) = 0.$$

We remark that as a consequence of the finiteness of this first moment we have that for $x < \ell$

$$P^{x}[\xi(s) \leqslant \ell, 0 \leqslant s \leqslant t] = o\left(\frac{1}{t}\right) \quad \text{as} \quad t \to \infty.$$

This is in contrast to the case of a Brownian motion X(t) with E[X(t)] = 0and $var[X(t)] = \sigma^2 t$, where for $x < \ell$

$$P^{x}[X(s) \leq \ell, 0 \leq s \leq t] \sim \frac{\ell - x}{\sigma} \sqrt{\frac{2}{\pi t}} \quad \text{as} \quad t \to \infty$$

(see [5, p. 171]). The comparison is interesting in view of the fact that

$$\operatorname{var}[\xi(t)] = \frac{\sigma^2}{2\rho}$$
 and $\operatorname{var}[X(t)] = \sigma^2 t$

and apparently reflects the propensity of Brownian motion to take extended excursions in both directions.

Figure 1 below indicates the behavior of μ_1 as a function of the threshold level ℓ for several parametric choices of the starting point x. It is interesting to note the marked departure of μ_1 from translational invariance, i.e., μ_1 is not a function only of the difference $\ell - x$. This behavior is of course the result of the central restoring force acting on the Brownian particle after which the stationary, Gauss-Markov process is modeled.

ACKNOWLEDGMENT

The authors wish to express gratitude to Janice Barnard for assistance with various of the computations.

FIG. 1. Expected time to first passage across a fixed threshold for a stationary Gauss-Markov process. Note: x and ℓ expressed in units of $\sqrt{1/2\rho\sigma}$, μ_1 is expressed in units of $1/\rho$.

REFERENCES

- 1. H. BUCHHOLZ, "The Confluent Hypergeometric Function," Springer-Verlag, New York/Berlin, 1969.
- 2. R. BELLMAN, "Perturbation Techniques in Mathematics, Physics, and Engineering," Holt, Rinehart, and Winston, New York, 1964.
- 3. J. B. ROSSER, "Theory and Applications of $\int_0^x e^{-x^2} dx$ and $\int_0^z e^{-p^2y^2} dy \int_0^y e^{-x^2} dx$," Mapleton House, Brooklyn, N. Y., 1948.
- 4. D. A. DARLING AND A. J. F. SIEGERT, The first passage problem for a continuous Markov process, Ann. Math. Statist. 24 (1953), 624-632.
- W. FELLER, "An Introduction to Probability Theory and Its Applications," Vol. II, John Wiley and Sons, New York, 1966.