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In this paper we investigate the Weber function D, for small index v and 
obtain explicitly the first-order asymptotic behavior. We then apply this 
result to obtain an expression for the first moment of the first passage distribu- 
tion for a stationary, Gauss-Markov (Ornstein-Uhlenbeck) process. 

I. AN ASYMPTOTIC EXPANSION FOR THE WEBER FUNCTION 

The Weber function D,(a) satisfies 
equation 

the (parabolic cylinder) differential 

D:‘(z) + [v + + - $1 Dy(z) = 0 
with the initial conditions 

D,(O) = 7f+ 
212 

where the prime denotes differentiation with respect to the argument z. 
It is shown in [l] that D,(z) is an analytic function of both z and V. In 

particular, there is an asymptotic expansion in Y of the form 

D,.(z) = f y&p. (2) 
,1=0 
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We obtain the coefficients yn by a perturbation approach to the differential 
equation (1). 

We denote by L the differential operator 

and expand the initial conditions as power series in v: 

D,(O) = i a,,v*, D,,‘(O) = f b,vn. 
Tl=O 72=0 

Direct computation (by differentiation, for example) gives 

a, = 1, b, = 0, 

- 

al = - + (Y + log 3, 6, = f, (3) 

. . . . . . , , 

where y is Euler’s constant. By standard perturbation methods (see for exam- 
ple, [2]), we obtain the following differential recurrence relations for the yn , 
n > 0: 

LYn(4 = - Yn&h m(O) = a, 3 m’(O) = bn (4) 

with 

y-,(z) = 0. 

The solution of this system of equations is conveniently expressed in terms of 
the homogeneous Green’s function for the operator L given by 

g(z’ ‘) = f[D-,(ii) D,(z) - Do({) D-,(iz)], 
z < 5, 
z > 5. (5) 

The solution to (4) then has the form 

where the function Y,(z) satisfies the homogeneous problem 

LY,(z) = 0, Yn(O> = a, > Y,‘(O) = b, . 
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It is easily checked that 

Do(x) + ib,D-,(iz). (7) 

Combining (6) and (7) we obtain 

Similarly, 

ye(z) = D,(z) = e-z914. (8) 

y,(z) = iD,(z) SE Do(C) D&5) 4 - iD-,(+ j’ Do”(C) 4 
0 0 

(9) 

- +- (y + log 2 + i7r) D,(z) + i Jf D-&z). 

This expression can be simplified considerably by using the relation 

- 

s 
’ D,“(c) dc = 
0 

5 - eczti4 D-,(z) 

and observing that since 

we have 

D-,(X) D&) + j’ Do(t) &(it) d5 = $ - i jz D&t) D-,(l) d5. 
0 0 

Equation (9) for y1 may then be rewritten as 

(Y+biz2 yl(z) =: e-zzi4 \ 2 - j’ Du(it) D-,(t) dt/ . (10) 
” 

In terms of Rosser’s G function [3] 

G(z, p) = j: e-Pzu2 11 e-5’ & dy, 

y1 can alternatively be expressed as 

y&j zzz e--r’/4 1 T’ +jog * - i d/z erf (- 5) + 2G(z, i)[ . (11) 
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Efficient computational formulas for G are known. For 0 < u” < 6 see [3, 
(16-7)]. For z > 6 ten significant figures may be obtained from the approxi- 
mation 

,- .Z 

G(z, i) - &f J 
0 

et2 dt = p erf(&). 

Since G(z, ;) cannot be expressed in terms of elementary functions, it does not 
seem possible to obtain ys in simple form. 

Combining (2), (8) and (11) we have the first order asymptotic develop- 
ment 

II. APPLICATION TO THE ORNSTEIN-UHLENBECK PROCES 

We now apply the results of the first section to find the first moment of the 
first passage distribution of the special diffusion process e(t) which is station- 
ary, Markovian and Gaussian with mean 0 and covariance 

E[&) [(t2)] = $ e--p’-l’. 

This process describes the motion of a harmonically bound Brownian particle 
drawn to the origin by a force whose magnitude is proportional to its displace- 
ment with proportionality constant p > 0. We consider only the case u2/2 = 1 
and p = I since the general case can be obtained by a simple scale change. The 
transition density p(t, x, y) of this process satisfies the backward type Kolmo- 
gorov equation 

Let k denote a constant threshold level and 7 the first passage time across 
the level t, i.e., 

T = inf{t > 0 : t(t) > c>. 

Then it is shown in [4] that the Laplace transform for the distribution of 7 is 
given by 

R(a, x) = Jy e+Px[~ > t] dt = 

i 

L[l - 
&;4D+( -x) 

’ 
3 < f”, 

O1 eea’4D-,( - &) I 

0, x 3 4 

(13) 
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where x is the starting point of the process. Let CL,(X, 1) be the n-th moment of 
the first passage time distribution, i.e., 

p&r, t) = J’: tn dP”[T < t] 

(14) 

I 

.r, 
:- n WP[T > t] dt, n > 1. 

0 

Then, in view of (13), we may write 

pn = (-l)“-1 n lii g. 

In particular, 

Applying the asymptotic expansion in (12) for D-, we have 

pr(~, f) = lim r 
(h”/‘yy,(--L) - ay,(--L) + O(d)] I 

*LO a 
I 

- ez*/4[yo(-x) - ayl(--x) + O(a2)] 
__ 

eL*/4[yo(-C) + O(41 1 

so that 

pl(x, k) = ez’14yl(-x) - 8*‘4yl(-l). (15) 

Explicitly, we have 

pl(x, t) = i 1’2 [erf (-$=) - erf ($=)I + 2[G(--s, i) - G(-f, i)]. (16) 

Successive differentiation shows that the expression in (16) can be written as 
the simple power series 

(17) 

It is of separate interest to note that this last series can be obtained directly 
from (13) using the integral representation of D-, for OL > 0: 
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Expanding the exponential e+ and interchanging the integration and sum- 
mation we have 

The interchange of operations is justified by monotone convergence for x > 0 
and dominated convergence for x < 0. From these two representations it 
follows that 

I 

co 
e-sse-~+-l ds = 2 m r(a + 4 D-(atdO) (+ 

0 ?l=O n! 

E-\/T? r(, + 4 

n=o p+?wr 
( 
a+n+1 

2 1 

(-x)n. 
?Z! 

Substitution in (13) then gives 

l+? rb + 4 
n-l p+n)/2p ( 

a+n+1 (P - 9) 

R(a, x) = 
2 ) n! 

ci 
r(a + n) 

, 

n--O p+n)/2r (” + ; + 1) n! en 

from which the expression in (17) easily follows. 
One may also easily verify (17) by d irect substitution in the general dif- 

ferential recurrence relation for the moments obtained in [4]: 

ah ah -- 
ax2 x z = - V-%-l with po=l, p,(e,e)=o. 

We remark that as a consequence of the finiteness of this first moment we 
have that for x < L’ 

P[[(s) < .t, 0 < s < t] = 0 (f) as t-+co. 

This is in contrast to the case of a Brownian motion X(t) with E[X(t)] = 0 
and var[X(t)] = 02t, where for x < 6’ 

as t-co 
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(see [5, p. 1711). The comparison is interesting in view of the fact that 

var[&t)] = $ and var[X(t)] = oat, 

and apparently reflects the propensity of Brownian motion to take extended 
excursions in both directions. 

Figure 1 below indicates the behavior of p1 as a function of the threshold 
level G for several parametric choices of the starting point x. It is interesting to 
note the marked departure of p1 from translational invariance, i.e., p, is not a 
function only of the difference G - r. This behavior is of course the result of 
the central restoring force acting on the Brownian particle after which the 
stationary, Gauss-Markov process is modeled. 
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FIG. 1. Expected time to first passage across a fixed threshold for a stationary 
Gauss-Markov process. Note: x and e expressed in units of 2/1/2p(r. pL1 is expressed 
in units of l/p. 
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