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INTRODUCTION 

Let R be an integrally closed complete local commutative noetherian 
Cohen-Macaulay domain with maximal ideal m and R/m= k an 
algebraically closed field. We abbreviate Cohen-Macaulay to CM and 
denote by CM(R) the category of finitely generated CM modules. In this 
paper we deal with the question of when R is of finite CM type, that is, 
has only a linite number of indecomposable CM modules. If dim R = 2, 
and R is a C-algebra with R/m= @, the complex numbers, then the R 
of finite CM type are exactly the fixed rings @[[X, Y]]‘, where X, Y are 
indeterminates and G c GL(2, C) is a finite group acting on @[[X, Y]] 
[ 17, 3, 151. For hypersurfaces in characteristic zero the R of finite CM type 
are exactly the simple hypersurface singularities in the sense of Arnold 
[18, 133, so in this case there is a nice connection with algebraic geometry. 

When dim R > 3 and R is not a hypersurface, we know only two 
examples of finite CM type, and they both have dimension 3. These are 
R,=kCCXo,X,,X,, Y,, Y~IlIWo~,-~, xoY,-x,Y,, x,Y,-x,Yc,) 
and R2 = k[ [X, Y, Z]lz*, where the generator of Z, acts by sending each 
variable to its negative, and the characteristic of k is different from 2. Each 
of these rings belongs naturally to a larger class. R, is a scroll of type (2, 1). 
We define more generally a scroll of type (m,, . . . . m,) (see [ 141) and show 
that when dim R 2 3, then all other scrolls (except type (1, l), which 
is a hypersurface) are of infinite CM type. R, is among the rings 
kCCJ’,, . . . . XJIG, where the order of G c GL(n, k) is invertible in k and 
n 2 3, and is the only one of finite CM type. These are the main results of 
this paper. 

To prove that the scroll of type (2, 1) is of finite CM type we use the 
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2 AUSLANDER AND REITEN 

theory of almost split sequences, first developed for artin algebras [7, 81 
and extended to this setting [2,4]. We will assume that the reader is 
familiar with the basic theory of almost split sequences (see [19]). In par- 
ticular, we generalize from artin algebras a criterion for having only a finite 
number of indecomposable modules, and this is a direct consequence of the 
theory of preprojective partitions from [ 123. The same method can be used 
to show that our fixed ring is of finite CM type, but here we give in 
addition a different proof. Our study of the fixed rings is based on an 
investigation of the connection between the reflexive modules over R and 
the skew group ring k[ [Xi, . . . . X,]] G. 

We consider only faithful actions of G on S=K[ [X,, . . . . X,]], and we 
also assume that the actions are linear. 

The scrolls are investigated in Part I and the fixed rings in Part II. For 
the work on scrolls we are grateful to David Eisenbud and Finn Knudsen 
for several suggestions and helpful conversations. 

Some of the results in this paper were anounced at Bielefeld (1984 and 
1985), at the Seminaire Malliavin [20], and at the Durham Symposium on 
representations of algebras [ 53. 

PART I: SCROLLS OF FINITE COHEN-MACAULAY TYPE 

In this part we introduce scrolls (see [14]) and describe conditions 
under which they are of finite CM type. 

1. A CRITERION FOR FINITE REPRESENTATION TYPE 

Let T be a complete regular local noetherian ring and let n be a T-order, 
that is, n is a finitely generated free T-module and HornTp(np, T,) is A;“- 
projective for all nonmaximal prime ideals p in T [2]. Denote by fi(/i) the 
n-lattices, that is, the finitely generated n-modules M such that M is a free 
T-module and Mp is A,-projective for all nonmaximal prime ideals p in T. 
The category f!(A) is known to have almost split sequences, that is, for 
each nonprojective indecomposable C in f?(n) (or each noninjective 
indecomposable A in 2(/i)), there is an almost split sequence 
0 + A + B + C + 0 in S?(n). And if C is indecomposable projective, there is 
a minimal right almost split map B + C, and for A indecomposable injec- 
tive there is a minimal left almost split map A + B [2, 12, 143. 

For indecomposable finite dimensional algebras we know that if %? is a 
finite set of indecomposable modules closed under irreducible maps, then %? 
consists of all indecomposables [2]. There is a similar criterion for classical 
orders [21], and here we give a related criterion for T-orders /i. We say 
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that a set of indecomposable lattices % is closed under almost split sequen- 
ces if for each indecomposable nonprojective object C in %’ (and each 
indecomposable noninjective object A in U) all indecomposable summands 
of the terms in the almost split sequence 0 --f A -+ B + C + 0 are in %?. We 
denote A by tC and C by r- ‘A. 

THEOREM 1.1. Let A be T-order and % a finite set of indecomposable 
lattices containing all indecomposable projectives. 

(a) Zf Gf? is closed under irreducible maps, then %? consists of all 
indecomposable A-lattices. 

(b) Assume that there are no projective injective A-lattices. Zf %? is 
closed under almost split sequences, then % consists of all indecomposable 
A-lattices. 

Proof Let C be an indecomposable nonprojective preprojective lattice 
in the sense of Auslander and Smals [12]. Then there is a chain of 
irreducible maps between indecomposables P -+ C, -+ . . . + C = C,, where 
P is projective and the Ci are not projective. We want to show that C is in 
9. This is clear for (a). In case (b) we know that P is not injective, so we 
have an almost split sequence 0 + P+ C1 II X-+z-‘P+O, which shows 
that C, is in %?. If C, is not injective, the same argument shows that C2 is in 
g. If C, is injective, it is not projective, so we have an almost split sequence 
0 -+ rC1 + rCz II Y + C, + 0. Since CZ is not projective, tCz is in V. It 
then follows that C2 is also in 59. Continuing this way, we get C E %?. This 
shows that all indecomposable preprojectives are in V, and hence there is 
only a finite number of them. By [ 121 we then know that all n-lattices are 
preprojective, and this finishes the proof. 

Theorem 1.1 can be applied to the case of the CM modules CM(R) over 
a complete local integrally closed noetherian CM domain R. In this case R 
is the only indecomposable projective module and the dualizing module w  
is the only indecomposable injective. Part (b) applies if R & w, that is, if R 
is not Gorenstein. If R is Gorenstein, we can apply part (a). It is then not 
enough to show that a given set V is closed under almost split sequences, 
but we also need to find the minimal right almost split map B -+ R (and the 
minimal left almost split map R + C, which can be obtained by duality). In 
practice B -+ R can be constructed using a construction of CM modules of 
Buchweitz, and the application of his construction to this problem 
appeared through discussions with him. The pertinent result is the 
following, where Q’X denotes the dth syzygy module for X. 

PROPOSITION 1.2. Let R be a complete local noetherian Gorenstein 
integrally closed domain of dimension d + 12 2 and with maximal ideal m. Zf 



4 AUSLANDER AND REITEN 

B + R is minimal right almost split, then the nonprojective part of B is 
isomorphic to Q-d(Qdm). 

ProoJ Consider the minimal projective resolution P,- 1 + . . . + P, -+ 
P, --) m -0. Since dim R=d+ 1, Qdrn =Qd+‘(R/m) is CM. Write 
X* = Hom,(X, R) and let Qd --f . . . + Qi -+ Q-, + (sZdm)* + 0 be a 
minimal projective resolution. Since (Gdm)* is CM, Extk((adm)*, R) = 0 
for i > 0, so that we have an exact sequence 0 + sZdm -+ Q$ + Q: + . . . + 
Q$- i + !Xd(GdM) = E + 0. Since Ext’(m, R) = 0 for 1~ i < d, we have the 
exact commutative diagram 

P,* - P: - ...__f Pd*-Ik (ndm)* 

I I I I/ Qd-I- Qd-z-..*-- Qo - (sZdm)* - 0, 

which gives rise to the commutative diagram 

o-~dm-Pd&l-.“- PI --+ PO -m---+0 

/I I I I I 
O- Qdrn- QZ --.a- Q:-z---+ Q;vl- E-O. 

Let h: A’-+ m, where X is CM. Since Ext’(X, R) = 0, for 1 6 i < d, we have 
natural isomorphisms modulo projectives m(X, m) % IJ&SZdX, Gdm) 
r-(X, E) (see ES]). This shows that E is the nonprojective part of a 
minimal right almost split map to R. 

2. SCROLLS OF FINITE COHEN-MACAULAY TYPE 

Consider the matrix 

zp...z;,‘_, Z(J). . . Z$)- 1 

Zjl)...Z(l) 
ml I I 

.** zy,..& ’ 
m > 

where the z;j) are indeterminates, and let k be an infinite field. We say that 
the ring R =k[[Zhl), . . . . ZG,), . . . . Zg), . . . . Z!$]]/Z, where Z is the ideal 
generated by the determinants of the 2 x 2 minors of the above matrix, is a 
scroll of type (m,, . . . . m,). For basic properties of such rings and their 
geometric interpretation we refer to [14] and the references given there. A 
scroll R is known to be an integrally closed CM noetherian domain which 
is an isolated singularity, and dim R = r + 1. It is not hard to see that if 
r= 1, then R is of the form k[[X, Y]]“, and hence of finite CM type. The 
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scroll of type (1, 1) is a hypersurface and is known to be of finite CM type 
by [18, 22,231. The aim of this section is to show the following. 

THEOREM 2.1. The ring R = R[[X,, X,, X,, Y,, Y,]]/(X,X, - q, 
X,Y, -X1 Yo, X, YI -X2 Y,) is offinite CA4 type. 

ProofI We denote the images of Xi and Yj in R by xi and yi. It is easy 
to see that the ideals A = (x0, xi), B= (x0, x1, y,,), C= (x0, x1, x2) ‘v A2 
are CM. For consider the exact sequence O+ A -+ R + R/A -+ 0. R/A= 
k[ [X2, Y,, Y,] ]/( X2 Y,) is a complete intersection of dimension 2. Hence 
depth R/A = 2, so that depth A = 3 since depth R = 3. Similarly 
R/B ‘v k[ [X,, Y,]] gives depth B= 3 and R/C = k[ [ Y,,, Y,]] gives depth 
C= 3. It is known that R, A, B, C are the only indecomposable CM 
R-modules of rank one, but we do not need to use this fact here. It is also 
known, or can be computed directly, that A is the dualizing module. 

Denote by D the duality from CM(R) to CM(R) defined by D(X)= 
Hom,JX, A). We recall that the transpose Tr, is defined by Tr,X= sZ’X* 
for X in CM(R), using that dim R = 3 [a]. We know that D preserves 
indecomposable CM modules and Tr, preserves indecomposable nonpro- 
jective CM modules, and we have O’(X) N X, and Tri Y 3: Y when Y is not 
projective. It is known, or can be computed directly, that DB 2 C, and 
clearly DR N A. We next compute Tr, for our indecomposable CM 
modules of rank 1. This computation is needed in the construction of 
almost split sequences, since they are of the form 0 -+ D Tr, X + E + X -+ 0 
cn 

We have B iv_ B’= (1, x,/x,, yO/xO), and AB’ = m, so that A* 2: B. It 
follows from this, or can be seen directly, that we have an exact sequence 
O+B+RLIR+A+O. Then Tr,B=Q’B*=QA=B and Tr,A= 
@A* = G?‘B = K, which must be an indecomposable CM module of rank 2. 
C* is easily computed to be isomorphic to (x0, yt). Since it has a minimal 
set of two generators, Tr,C= !?C* = C. 

We now want to construct candidates for almost split sequences. Con- 
sidering the exact sequence 0 *K+RLIRLIR+B+O, wesee that Kis 
the submodule of R3 generated by (- y,, 0, x,), (-y,, 0, x,), (0, -y,, xi), 
(0, -Y13 x*)9 (-x1, x09 0), (--x2,x,, 0). It is easy to see that we have 
maps f: A-K given by f(xo)=(-yo,09xo), f(xl)=(-yl,O,x,), g: 
A --i K given by g(xo) = (0, -y,, x,), g(xr) = (0, -y,, x2), and h: B-+ K 
given by hb,)=(-x,, x0,0), h(xl)=(-x2,xI,0), h(yo)=(-yl, Y,, 0). 
These maps induce an epimorphism u = (f, g, h): A I.I A LI B -+ K. 
Considering the associated divisors in the class group of R, and using that 
Ker u has rank 1, we see that Ker u = R. (This can also be computed 
directly.) Hence we have the exact sequence 

O+R+ALIAIIB+K+O, (*) 
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and by dualizing, an exact sequence 

O-+DK-+RLIRLIC-+A+O. (**I 

Since D Tr,A = DK, (* *) is a nonsplit exact sequence of CM modules 
with the correct end terms for being almost split, it follows as in [S] that it 
is enough to show m(A) = k to show that (**) is almost split. That 
m(A) = k is a consequence of the following. 

LEMMA 2.2. Let R be a noetherian domain and X an ideal in R. Let 
Y be a fractional ideal such that XY c R. Then a map f: X-r X which is 
multiplication by an element in XY factors through a projective module. 

Proof: Let m be an element in XY, that is, m = a, b, + . . . + a,b,, where 
a,, . . . . a, is a set of generators for X, and b, is in Y, Define g: X + R’ by 
s(a) = (ah, . . . . ab,), and let h: R’ + X be the natural map sending the ith 
generator 

(0, . ..) 1, . ..) 0) 

in R’ to ai. Then hg is multiplication by m, and we are done. 

In our case End A N R since R is integrally closed and A is a nonzero 
ideal. Since AB’= m, it follows from Lemma 2.2 that m(A) = k. Hence 
(* *) is almost split, and by duality (*) is also almost split. 

It is now easy to compute the almost split sequences with B and C on 
the right, by using basic properties of almost split sequences. We have 
D Tr, C = B, so the middle term of the almost split sequence with C on the 
right has rank 2. By (*), K is a summand of the middle term, and by (* *), 
DK is. Hence DK 2: K, and we have an almost split sequence 

O+B+K+C-rO. 

Further we have D Tr,B = C, and by (*) and (* *), A and R are both 
summands of the middle term for an almost split sequence with B on the 
right. A rank argument again gives an almost split sequence 

O+C+RLIA+B+O. 

We have now proved that the set {R, A, B, C, K} of indecomposable 
CM modules contains R and is closed under almost split sequences. Since 
R is not injective, it follows from Theorem 1.1 that these are all indecom- 
posable CM R-modules. This finishes the proof of Theorem 2.1. 
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3. SCROLLS OF INFINITE COHEN-MACAULAY TYPE 

In this section we show that if R is a scroll with dim R 2 3 and not of 
type (1, 1) or (2, l), then R is of infinite CM type. We do this by first 
studying the corresponding graded scrolls R’=k[Z&I), . . . . Zf,f,‘, . . . . ZI;), . . . . 
Z$]/Z, where Z is defined as before. We have chosen to deal with graded 
modules rather than with sheaves. 

To a monomial p in k[Z,!‘)] we define the number d(p) to be the sum of 
the lower indices for the factors, and t(p) = (cl, . . . . c,), where ci is the num- 
ber of factors of the form Z/!‘) for a fixed i. From the relations for a graded 
scroll it follows directly that two monomials p and q are equal in R’ if and 
only if d(p) = d(q) and t(p) = t(q). If for the monomials of degree i we 
choose one monomial for each given d(p) and t(p), we get a k-basis for 
mW+ ‘, where m = (Zh’), . . . . Z(l), . . . . Zzj). 

We shall prove the following? 

THEOREM 3.1. Let R’ be a graded scroll of type (m, = n, m2 = t, . . . . m,), 
n>ta ... ~m,.Zfr~2andR’isnotoftype(l,l)or(2,1),thenR’hasan 
infinite number of indecomposable graded CM modules, up to shifts. 

Proof Write m=m,+ ... +m,, A=(xO,xl), and B=(bI ,..., b,), 
where b,, . . . . b, are the entries in the first row of the matrix. Then it is 
known that B is CM and A’is CM for O<i<m- 1. 

We shall first assume m-n > 2, and construct exact sequences in 
Ext’(A”+‘, B) when 1 <i<m-n- 1. We have A”+i= (xbx,,=a,, 
xbxl = a2, . . . . ’ x0x, = a, + , , . . . . I 

xlx,=ai+.+l ). For 1 E k we define 
M1cRLIR to be generated by uj=(xAbi,O), l<j<m, umfj=(O,aj); 
O< j<i+n, um+n+i+l= (xdxn + Ixby,, xi,xn). Write s = m + n + i + 1, and 
B’ = x; B. 

We claim that the sequence 0 + B’ +p M1 +OL A”+ i + 0 is exact, where fi 
is the natural monomorphism and c1 is the natural epimorphism. Clearly afl 
is zero. Let x= J$= m +, rjuj be an element in M, such that N(X) = 0. If 
rS = 0, then clearly x E Im /I, so we can assume rs # 0. Since a(~, + j) = aj, 
we have cjL;+’ rjaj = 0. Since the aj are linearly independent in 
mi+1/mi+2, all rj must have zero constant term. A monomial p in rS 
cannot have only factors of the form z$), since d(pa,) would be too large. 
Hence we must have p=p’zJk), j<mk, and z~~)(x~x, + Axby,, 0) = 
z~~~(x~x,- 1 + 1x5 y,- 1, 0) E /?(B’). This shows that the sequence is exact, 
and consequently M, is CM. 

We now assume that there is an isomorphism of degree zero f: 
MA< --) M,. Anfi and B’ both have all their generators, in a minimal set of 
generators, in degree i+ 1. A”+j has n + i+ 1 generators, and B has 
m B n + i + 1 generators. Since a nonzero map B + A” + i must be a 
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monomorphism, it follows that Homgr R(B, A” + i)O, the graded maps of 
degree zero, is 0. This gives a commutative diagram 

0- B’-----+ MA-A”+‘-0. 

Since End(B’)= R’ and End(A”+‘) = R’, we see that End(B’),=k = 
End(A”+l)O. H ence we can assume that g is the identity and h is the mul- 
tiplication by some c # 0. Write f(z+) = aiju, + . . . + asju, for j < s, f(u:) = 
a1su1+ ... +ussus, where ui, . . . . u,- ,, u: are the generators for M,, and 
Ul 9 .-*, u, the generators for M,. Since i 2 1, we have x 0 s l=xn~s-n-l~ u _ 
and this shows a, s- i =O. Consider the equality xou~=xl~,~,+xl~,+ 
Aytul. Applying f and comparing the coefficients of xru, we get 
a, =a,,,-, + 1 = 1. Applying f and comparing the coefficients of 
(i$+ iy,, 0) gives Aass = A’, so that 1= 1’. This shows that different 1 give 
nonisomorphic M,. Since k is an infinite field, we are done in this first case. 
(We point out that if we let A= (A,, . . . . A,) E P’- l(k), and in Mn redefine u, 
to be (c;= i SzI;I)xk, xix,), we get similarly an infinite family of non- 
isomorphic MA indexed by P’- l(k).) 

Assume now that the graded scroll R’ is of type (n, l), with n > 3. Let 
B’ = (xi, x0x,, . ..) x0x,-i, x0 yo) and A” = (xi, x0x1, . . . . x0x,,). For ,4 E k, 
define M2cRLIR to be generated by u~=(x~x~-~,O), l<j<n, u,+~= 
(x0 Yo, Oh uj=(“,xOxj-,-2); n+2<j<24 U~n+l=(XOYl9XOX~-1), 

U*n+2=(X1Yl+~xoY,,xox,). 
We want to show that we have an exact sequence 

O+B’-&Wi +’ A” + 0, where B is the natural inclusion and M the 
natural epimorphism. We clearly have LYP is zero. Assume that tl(x) = 0, 
where x = cj”= i rjuj, s = 2n + 2. As before, the rj must have constant term 
zero, and if rs and rs- , are both zero, we are done. It is impossible that a 
monomial p in rs has all factors of the form x, and y, . If p has one factor of 
the form x,- 1 or y, and the rest of the form x, and y,, then a,- 1 must 
have a monomial q with x,q = xi p. Then q(x, y,, 0) = p(xl y,, 0) and 
p(x, y,, 0) = q(x, y,, 0) E j?(B). If p does not satisfy any of the above con- 
ditions, the p(x, y, + Ax, y, , 0) E j?(B). If rs = 0, we argue similarly for rs- 1, 
and get that the sequence is exact, and M1 is CM. 

Assume that f: M,. + M, is an isomorphism. We get as before a com- 
mutative diagram where the induced map g: B’ -+ B’ can be assumed to be 
the identity. We have xou, = x,(0, xi) +y,(x,x,, 0) + n’y,(xi, 0). Applying 
f and comparing the coefficients of (x, y, , 0) gives ass = 1. We note that we 
get no contribution from x,f(O, xi) since n > 1 + 1 = 2. Comparing the 
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coefficients of (x0 y,, 0) gives Auss = 1’, and hence Iz = 1’. This finishes the 
proof. 

We have the following main result of this part. 

THEOREM 3.2. Let R be a scroll of type (m,, ,.., m,) over an infinite field 
k. Then R is of finite CM type if and only if R is of type (m), ( 1, 1 ), or 
(2, 1). 

Proof We have seen that a scroll of type (m), (1, 1 ), or (2, 1) is of finite 
CM type. If R is of a different type, we consider R’ --f R, where R’ is the 
corresponding graded scroll. Let M= M,, LI M, LI ... be a graded R’- 
module, generated by M,. R is the completion of R’ with respect to the 
graded maximal ideal m. Mi = mi+ ‘Moe The associated graded module of 
RQQR. M is then ,44. If N= N, LI N, Ll . . . is another graded R’-module, 
generated by N,,, then an isomorphism g: ROR, M-r RORG N will induce 
an isomorphism of degree zero between M and N. Since by Theorem 3.1 we 
have an infinite number of nonisomorphic indecomposable CM modules 
M= MO LI M, + ... generated by their degree zero component, R is of 
infinite CM type. 

PART II: FIXED RINGS 

Throughout this part let S be an integrally closed domain, and G a finite 
nontrivial group act.ing faithfully on S, such that IG( is invertible in S. 
Denote by R = SC the fixed ring, and our main objective is to compare the 
modules over S and R. It will also be useful to study the modules over the 
skew group ring SG. When discussing the question of finite CM type, we 
shall in addition assume that S is complete local CM, with S/m = k 
algebraically closed, where m is the maximal ideal of S. 

The main result of this part is that when S is the power series ring 
4 LX,, . . . . X,]] for n > 3, then R = SC is of finite Cohen-Macaulay type if 
and only if n = 3 and G N Z,, where the generator of Z, acts by sending 
each variable to its negative. 

We start out in Section 1 by studying the relationship between the 
reflexive modules over SG and R. If the minimal primes in R are 
unramified in S, we show that the fixed point functor gives an equivalence 
of categories Ref SG + Ref R of reflexive modules. In the complete case, we 
use this to show that if R is of finite CM type, then S is. We also reduce the 
problem of showing that R is of infinite CM type to a similar problem for 
finite dimensional algebras, which we investigate in Section 2. As a con- 
sequence we get most of our results on R = k[ [X,, . . . . X,]]” (n >, 3) being 
of infinite CM type. The rest is given in Section 3 using different techniques. 
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Finally we show in Section 4 that R =k[ [Xi, X,, X3]]“* is of finite CM 
type with the desired action. We give two different proofs, one in the spirit 
of the work in this part, and one using the same techniques as in Part 1. 

In Section 5 we derive some interesting consequences of R = SC being of 
finite CM type and illustrate how our results may be used to show that a 
given R = SG is of infinite CM type. 

1. PRELIMINARY RESULTS 

Under our standard assumptions, the fixed ring R= SG is integrally 
closed. We want to study the relationship between Ref R and Ref SG. We 
shall need the following facts on reflexive modules. 

LEMMA 1.1. (a) A module over R or S is reflexive zf and only tf it is a 
second syzygy module. 

(b) S is a finitely generated reflexive R-module. 

(c) If f: B + C is a map between reflexive modules in mod R or 
mod S, then Ker f is reflexive. 

(d) An SG-module M is SG-reflexive if and only if it is R-reflexive if 
and only tf it is S-reflexive. 

(e) An SG-module M is reflexive if and only if it is a second syzygy 
module. 

We have the following direct consequence. 

LEMMA 1.2. The fixed point functor F: mod SG + mod R takes reflexive 
modules to reflexive modules. 

Proof If M is a reflexive SG-module, we have an exact sequence 
0 + M + n(SG) + m(SG), where n(SG) denotes the direct sum of n copies 
of SG. The sequence 0 + MC + n(SG)‘+m(SG)” is then an exact 
sequence of R-modules. There is an isomorphism of R-modules S + (SG)G 
obtained by sending s to xgeG a(s) 0, and since S is a reflexive R-module, 
we conclude that MC is a reflexive R-module. 

We want to show that if height one primes in R are unramified in S, then 
F: Ref SG + Ref R in an equivalence. We recall that this assumption is 
equivalent to the natural ring map tl: SG + End,(S) = l-’ given by 
cr(sa)(x) = N(X) being an isomorphism [l]. Since R is integrally closed 
and S is a reflexive R-module, we know from [ 11, Chap. l] that 
Hom.(S*, ): mod R + mod r and Hom,(S, ): mod r-* mod R induce 
inverse equivalences of categories between Ref R and Ref r, where S* = 
Hom,(S, R). 



COHEN-MACAULAY RINGS 11 

Hence we get the following consequence. 

PROPOSITION 1.3. Assume that height one primes in R= SG are 
unramified in S. Then the fixed point functor F: mod SG + mod R induces 
an equivalence of categories between Ref SG and Ref R. 

ProoJ Because of the ring isomorphism SG + End&?= I-, the 
equivalence Hom,(S, ): Ref r -+ Ref R shows that we have an equivalence 
Horn&S, ): Ref SG -+ Ref R, and Hom,,(S, ) is the fixed point functor. 

From the standard assumptions on S and R = SG it follows that R is an 
R-summand of S, by considering the maps R +i S -+I R, where t(s) = 
l/lGl Lea- a(s). From this it follows that S is a projective r-module. We 
say that a r-module is CM if it is CM over the center of r. Since 
Hom,(S, ): mod r-+ mod R is an exact functor, it preserves CM modules. 
Hence we have the following relationship between the CM types. 

PROPOSITION 1.4. Assume that S is complete local and S/m is 
algebraically closed. 

(a) Zf R is offinite CM type, then r= End,(S) is. 

(b) If height one primes in R are unramified in S, and R is of finite 
CM type, then S is. 

Proof Part (a) follows directly from the above comments. (b) Assume 
R is of finite CM type. Then by our assumption and (a), SG is of finite CM 
type. If M is an indecomposable CM S-module, then since IGl is a unit in 
S, M is an S-summand of SG OS M. Since SG is right projective S-module, 
SG OS M is a CM SG-module, and hence a CM S-module. This shows that 
S is of finite CM type. 

We note that if we drop the assumption that height one primes in R are 
unramilied in S, then R may be of finite CM type while S is of infinite CM 
type. For example, let f(x, y, z) be such that the hypersurface S = 
u cx, y, -?, u]]/(f+ u2) is of infinite CM type (see [ 181) and let G = 2, act 
on S by sending u to -u and leaving the other variables fixed. Then 
R = SG 2: k[ [x, y, z]], which is of finite CM type. 

Even if some height one primes in R are ramified in S, there is some 
relationship between Ref SG and Ref R. We first formulate our result more 
generally for the situation of a ring map n -+ r. 

PROPOSITION 1.5. (a) Let /i + r= End,(S) be a ring map, such that r 
is a rejlexive A-module, S is a projective A-module, and Hom,(S, r) = 
Hom,(S, r). Then the restriction induces a fully faithful functor Ref r+ 
Ref A. 
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(b) The natural ring map SG + End,(S) = r induces by restriction a 
fully faithful functor Ref r + Ref SG, and hence we get by composition a 
fully faithful functor Ref R + Ref SG. 

Proof: (a) Since S is projective both as r-module and /i-module, 
we get, by using Hom,(S, r) = HornAS, r), natural isomorphisms 
Hom,(S, X) + Hom,(S, X) for all X in mod E r= End,(S) is clearly a 
finitely generated reflexive R-module and R is integrally closed. Then it is 
known that a r-module M is r-reflexive if and only if it is R-reflexive. If Y 
is in Ref r, then Hom,(T, Y) is also in Ref r, since it is a reflexive 
R-module. We have Hom,(S, Hom,(T, Y)) N Hom,(S, Y) = Hom,(S, Y), 
and since HornAS, ): Ref r+ Ref R is an equivalence, we have 
Y N Hom,(r, Y). We then have Hom,(X, Y) N Hom,(X, Hom,(r, Y)) 2: 
HomAX, Y) for X in mod L Since if X is a reflexive r-module it is a 
reflexive /l-module, a fully faithful functor Ref T-r Ref ,4 is induced. 

(b) r is a reflexive R-module, and hence a reflexive SG-module, and 
S is a projective SG-module since it is a projective S-module. To finish the 
proof we need only show Hom,(S, r) = Hom,,(S, r). 

We have Horn&S, r) = P, where the action of G on r is given by 
W)(4 = d(s) for f E End,(S), s E S. Then clearly p = Hom,(S, S)’ = 
Hom,(S, R) c r. Consider the map u: End,(S) + S given by a(f) = f( 1). 
Then Kera={f: S+S; f(l)=O)= {f: S-S; f(R)=O}. HomAS,r)= 
{f: S+S; (Kera)f=O}. If ImfcR, then clearly (Kera)f=O. And if 
Im f d R, choose x E R, x 4 Im f: Since R is an R-summand of S and S 
is R-reflexive, there is an R-map h E Ker a with h(x) #O. Hence 
Hom,(S, r) = Hom,(S, R) c r, SO that HOmsG(s, r) = Hom,(S, z-1. 

We mention without proof that also the following subcategory of Ref SG 
is equivalent to Ref R via the fixed point functor. The objects are the C 
such that there is an exact sequence of S[G]-modules 0 -+ C + nS + mS 
such that the induced sequence by taking fixed points and dualizing 
(mR)* + (nR)* + (Cc)* + 0 is exact. 

In the complete case, we want to establish a connection between CM(R) 
and modules over some finite dimensional algebra, which we shall apply to 
give necessary conditions for CM(R) to be of finite representation type. 
Here f.1. S[G] denotes the SG-modules of finite length. Assume S is 
complete, S/m is algebraically closed, and height one primes in R are 
unramilied in S, and let dim S = d 2 3. 

F'ROFQSITION 1.6. Let a be the subcategory of f.1. SG consisting of the A 
with AC =O. Zf A is in a, then a(A) = (@A)’ is CM. 

Further, A is indecomposable if and only if a( A) is indecomposable, and if 
A and B are in a, then A 2: B if and only if u(A) N a(B). 
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Proof: Let A be in 3, and let O+S~*A-PP,-,P,+A+O be the 
beginning of a minimal projective resolution for A over SC, where i> 1. 
Then 0 -+ (Q2A)” + Py --* P,G -P 0 is an exact sequence of R-modules since 
ICI is invertible in S. The projective SC-modules Pi are CM since SC is 
CM. Hence Pi is a CM R-module, and so Pj” is, since Pi” is an R-summand 
of P,, as is seen by considering PI? -+’ Pj +‘P,q, where t(p) = 
WI CaoG o(p). It follows that (Q2A)G is a CM R-module. 

Since S is CM and A has finite length, Exti(A, S) = 0 for i = 0, 1. Since 
SC is a free S-module, Ext’,(A, SC) = 0, and hence Exti(A, SC)‘= 0 for 
i=O, 1. Since the fixed point functor is exact, Exti,(A, SC) 2: 
Ext$(A, SC)‘, so that Exti,(A, SC) = 0 for i= 0, 1. We then get the exact 
sequence 0 + A* + P,* -+ P: + (Q*A)* + 0, where X* = Hom,,(X, SC). 
Dualizing again gives 0 -+ Q*A + PI + P,, -+ A + 0, so that P,* + P: -+ 
(Q*A)* 40 is a minimal projective presentation, and also 
Extb,((Q*A)*, SC) = A. If Q*A is indecomposable, A must be, since a 
module of finite length cannot have projective dimension less then 3. 
Assume then that A is indecomposable and that Q*A N XLI Y, where X 
and Y are not zero. Then we have (sZ*A)* N X* II Y* with X* and Y* not 
zero. Considering a minimal projective presentation for X* and Y*, and 
dualizing, we get a contradiction to the fact that the presentation P, + 
P,, + A + 0 is minimal. By the above we have Exti,((SZ*A)*, SC) 1: A. The 
rest of our claim now follows by using that the fixed point functor gives an 
equivalence Ref SC + Ref R. 

Let I,Gl = n and let e be the idempotent l/n CoeG c. If A is an 
SC-module, then eA c A’, since &=e for all LEG. And if XE A’, then 
ex = l/n C QX = x, so that AG c eA. Hence the SC-modules A with AC = 0 
are the SC/(e)-modules, so that the above category 3 is the category 
f.1. SC/(e). We further have that SG/m*SG = (S/m*)G, so that (S/m*)G is a 
factor ring of SC, and hence (S/m*) G/( ) e is a factor ring of SC/(e). Hence 
we have the following consequence of the above. 

THEOREM 1.7. Let S be a complete local ring with S/m algebraically 
closed, and assume that height one primes in R are unramified in S. If R is of 
finite CM type, then the artin algebra (S/m”) G/(e) is offinite representation 
we. 

This result motivates investigating when, for an artin algebra A with 
r* = 0, A/r = k algebraically closed, and G a finite group acting, AC/(e) is of 
finite representation type. Here AC denotes the skew group ring and e the 
usual idempotent for G. We will deal with this question in the next section. 
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2. THE REPRESENTATION TYPE OF AG/(e) 

Let /i be an artin algebra with radical r, such that .4/r = k is 
algebraically closed and r* = 0. Let G be a finite group acting on /i such 
that IGI is invertible in /i. G induces an action on r = V, which is then a 
kG-module. We recall from [3, lo] that the Gabriel quiver for ,4G is the 
opposite of the McKay quiver for V, where the McKay quiver is defined as 
follows. The vertices are ine one-one correspondence with the simple 
kG-modules V, = k, . . . . I’,. There are nii arrows from Vi to Vi if nV is the 
multiplicity of Vj in a direct sum decomposition of V@ Vi. It is easy to see 
that leaving out the vertex of V, = k we get (the opposite of) the Gabriel 
quiver for AG/(e). It is a well-known theorem of Gabriel that nG/(e) is of 
finite (representation) type if and only if the underlying graph of the 
separated Gabriel quiver is a finite disjoint union of the Dynkin diagrams 
A,, D,, E6, E,, and Es [ 163. The separated quiver is obtained by replacing 
each vertex v with two vertices v’ and v” and each arrow v + w  with an 
arrow v’ -+ w”. We will use this to give a characterization of when nG/(e) is 
of finite type. 

The following lemma reduces our considerations to abelian groups. 

LEMMA 2.1. Let A be us above. IfAG/ is of finite type, then AH/(e) is 
of finite type for all subgroups H of G. 

Proof Let M be an indecomposable AH-module with MH = 0. We have 
Hom,,(nG, M)’ ‘v Hom,,,(.& Hom,,(/iG, M)) 2 Hom,,(n, M) = 
MH = 0. Since AH is a two-sided AH-summand of /1G, M is a summand of 
the AH-module HOm,,,(AG, M). This shows that if .4G/(e) is of finite type, 
then AH/(e) is. 

We now state the main result in this section. 

THEOREM 2.2. Let A be as before, and assume that dim, V> 3. Then 
AG/(e) is of finite type if and only if G N 2, and the multiplicity of the 
nontrivial simple kc-module k- in V is at most one. 

Proof Assume dim, V2 3, and assume that G has an abelian subgroup 
H of order at least 3. If some simple summand V, of V (as kH-module) 
occurs with multiplicity > 2, we have V, . =: . k in the McKay quiver. Let 
V2 be a simple kH-module not isomorphic to k or V, . Then Vi Ok V, & k 
for i = 1 or for i = 2, and we have Vi@, V, . Z . Vi in the MacKay quiver, 
after removing k. Hence we also have a double arrow in the separated 
McKay quiver, showing that AC/(e) is of infinite type. If every summand of 
V occurs with multiplicity one, there are arrows from at least three vertices 
to k. Tensoring we see that for any vertex there are arrows from at least 
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three vertices. Hence when we remove k there are arrows from at least two 
vertices to any given vertex. And similarly there are at least two arrows 
leaving a given vertex. Hence in the separated quiver of the McKay quiver 
minus k there are either two arrows leaving a given vertex, or two arrows 
entering. The underlying graph can then not be a Dynkin diagram, so that 
we have infinite type. 

It follows that if /iG/(e) is of finite type, then every abelian subgroup of 
G must have order 2. This shows that G N Z,, which we now assume. Let 
m be the multiplicity of k in V. Then there are m arrows from k to k, hence 
also from k- to k_ . The separated McKay quiver minus k is then 

Hence AZ,/(e) is of finite type if and only if m = 1. This finishes the proof. 

Combining with the results in Section 1 we get the following. 

THEOREM 2.3. Let S and G satisfy the satisfy the standard assumptions 
of the previous section, and assume also that S is complete local, S/m is 
algebraically closed, height one primes in R are unramified in S, and 
dim S>, 3. 

Zf R is of finite CM type, then G N Z2, and the multiplicity of the trivial 
kG-module k in m/m2 is at most one. 

3. DIMENSION THREE 

In this section we assume in addition that S is complete local, S/m is 
algebraically closed, height one primes in R are unramified in S, and 
dim R> 3. The aim is to improve Theorem 2.3 by proving the following. 

THEOREM 3.1. Zf R is of finite CM type, then dim R = 3. 

Proof. Assume R is of finite CM type. By Theorem 2.3 we can assume 
that G = Z2 and k occurs with multiplicity at most one in the kG-module 
V= m/m’. We shall need the following. 

LEMMA 3.2. The trivial SG-module k occurs with multiplicity at least 2 in 
LImL, where L = 0&k. 

Proof The exact sequence 0 --) L + Smk V+ m + 0 gives a projective 
cover both as SG-modules and S-modules. Tensoring with m over S we 

f437/73/1-2 
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get Torf(k, m) N L/mL. Hence 0 -+m --) S-r k-r0 gives rise to the 
exact sequence 0 + L/mL + m OS m --) m + m/m* + 0, which again gives 
L/mL -9 m/m2 Ok m/m’ + m2/m3 + 0. 

Considering the commutative diagram 

o- ;- VQk v - S*(V) -0 

I I I 
0 - H - m/m’ Ok m/m2 - m2/m3 - 0, 

where S,(V) is the second symmetric product, it is sufficient to show that k 
occurs in the kG-module J with multiplicity at least 2. 

Assume first that V= nk- , where n > dim R > 3. Since dim, VOk V= n* 
and dim S,(V) = 1 + ... +n=n(n+ 1)/2, we have dim,J=n(n-1)/223. 
Hence k occurs with multiplicity at least 2 in J. 

If V= k LI (n - 1) k-, the multiplicity of k in V@I~ V is 1 -t (n - l)*, and 
in S,(V) it is (l+ ... +n-l)+l=n(n-1)/2+1. Hence k occurs 
(n* - 3n + 2)/2 2 2 times in J. This finishes the proof of the lemma. 

Denote by L- the SC-module L Qk k- . We know by Proposition 1.6 
that L _ = Q*k- is an indecomposable SG-module, and hence End,JL- ) 
is local. The SG-modules mL_ and rL- are both End&L- )-submodules 
of L-, where r denotes the radical of End&L-), and there is the 
following relationship between them. 

LEMMA 3.3. With the above notation, rL_ t mL_ . 

Proof: Ext$,(k-, SG) N Ext$(k-, SG)G = 0 for i= 1,2, so that 
msG( L _ ) N End,(k _ ) = k [ 61, and hence r = P( L _, L _ ), the SG-maps 
from L- to L- , which factor through a projective SG-module. Let 
fc P(L- , L- ), and let g: P -+ L- be a projective cover in mod SG. Choose 
h: L- 4 P such that gh =f: We must have Im h c mP, and hence 
ImfcmL-, and this shows rL_ cmL_. 

We want to consider modules Mi with mL- t Mi c L- and 
L-/M, N k- . By Lemma 3.2 there is an infinite number of choices for Mi, 
and we show that if dim R 2 4 different Mi give rise to nonisomorphic CM 
modules. 

LEMMA 3.4. Let M, be as above, and assume dim R 2 4. Then 12(Mi) 
is an indecomposable reflexive SG-module, and hence SL(III~)~ is an 
indecomposable CM R-module. 
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Proof. The exact sequence 0 + Mi + L- -+ k- + 0 shows that Mi is 
not projective. Since Ext’,,(k-, SG) = 0 for i= 0, 1,2, we have that 
Ext&(L-,SG)zExt’,,(M,,SG) for i=O,l, M,F*=LE*%L-, so that 
Mi is indecomposable. Since dim R > 4, we have Exti,(L _, SG) N 
Ex&(k- , SG) = 0, so that Ext&,(Mi, SG) = 0. Since Mi is indecomposable 
nonprojective, QM, is indecomposable since m(M,) N E&l(QM,) [6]. 
Since L ~ = Q2k _, where kC = 0, LG is a Cohen-Macaulay R-module. The 
exact sequence 0 + Mi + L _ + k _ + 0 shows that My N LG , so that iV7 is 
CM, and hence clearly (S2Mi)’ is CM. 

Since height one primes in R are unramilied in S, QM, 1: QMj if and 
only if (SZMi)G N (QMi)‘. We have an epimorphism of SG-modules f: 
L- + 2k _, For each one-dimensional subspace Uj of 2k-, let Mj = 
f-‘( Vi). We then get a family of subspaces in one-one correspondence with 
P’(k). To finish our proof, we want to show that different Mi give rise to 
nonisomorphic CM modules ( S2MJG. 

LEMMA 3.5. In the above notation, if M, # M,, then QM, 4~ QM,. 

Proof: Assume that QM, NOM,. Since Ext&(Mi, SG) =0 for i= 1,2, 
we know that we have some isomorphism f: M, -+ MI. This gives a 
commutative diagram 

M, Lf2 

n n 

Sin;?e End,,(L_)/r = k, we have g=z + h with ZE k and h tzr. 
Mz = g(M,) c nM, + h(M,) c MI + KM, c M,, and similarly M, c M,. 
This shows that M, = M,, and the lemma is proved. 

4. A THREE-DIMENSIONAL RING OF FINITE CM TYPE 

Let the assumption on S and G be as in the previous section. In this 
section we give two different proofs of the following. 

THEOREM 4.1. Let G=Z2 act on S=k[[X,,X,,X,]] such that the 
generator sends xi to -xi. Then R = SG has up to isomorphism only the three 
indecomposables R, SG, 522,,(k-), where S- = SQk k- . 
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For the first proof the following lemma is useful, where R= SG is 
assumed to be as in the previous section. 

LEMMA 4.2. Assume that dim R = 3 and R is an isolated singularity, that 
is, R, is regular local for all nonmaximal prime ideals p in R. If A is in 
Ref SG, then AG is a CM R-module if and only if ExtiG(A*, SG)G = 0. 

ProojI Let A be in Ref SG. Then the exact sequence 0 + QA* = K+ 
Q + A* + 0, where Q is a projective SG-module, gives rise to the exact 
sequence 0 + A + Q* --) K* + ExtL,(A*, SG) --* 0. Since R is an isolated 
singularity and height one primes in R are unramilied in S, S is also an 
isolated singularity Cl]. If p is a nonmaximal prime ideal in R, we then 
have gl dim S,G = gl dim S, < 2, so that AT is a projective S,G-module, 
since A* is a reflexive SG-module. Hence Exti,(A*, SG), and consequently 
ExtiG(A*, SC)‘, has finite length. The exact sequence of R-modules 
0 + AG 4 Q*” --) K*G --) Extk,(A*, SG)G + 0 then shows that AG is CM if 
and only if ExtiJA*, SG)G=O, and we are done. 

Proof of Theorem 4.1. We first note that R = SG is known to be an 
isolated singularity, and the height one primes in R are unramilied in S 
since the action of Z, on V= m/m2 is free. Now let A be an indecom- 
posable nonprojective reflexive SG-module. Since gl dim SG = 3 and A* is 
a reflexive SG-module, we have pd,,A* = 1. This shows that 
Ext&(A*, SG) # 0. From Section 2 we know that SG/(e)/m’SG/(e) = k, so 
that SG/(e) = k. This means that k- is the only indecomposable SG- 
module with kc = 0, so that Exti,(A*, SG) = nk- for some n > 0. Since A 
is indecomposable and pd,,k- = 3, nk- must be indecomposable. It 
follows that A N Q2kp, so that AC N (Q*k_ )“. Since S and S are the 
only indecomposable projective SG-modules, we get our desired result from 
Lemma 4.2. 

We now give a proof of Theorem 4.1 using the method discussed in 
Part I. 

Let V = m/m*, and consider the Koszul complex 0 + SOk A3V+ 
S@)kA2V+S@lkV+S+k+0. This is also an exact sequence of 
SG-modules, with the natural action of G on S and V. From this we get the 
exact sequence 0 + S + S? + S3 + S_ + k- + 0, and hence the exact 
sequence of R-modules 0 + R + (SG )3 + (SG)’ + S‘? + 0. Writing SG_ = w, 
we get the two short exact sequences 0 + R +w3 + LG +O and 
0 + LG + R3 + w  + 0. Dualizing the first one we get an exact sequence 
0 --+ DLG + R3 + o + 0, which must be isomorphic to 0 + LG -+ R3 + w. 
Since the class group C(R) is isomorphic to G = Z2 (see [9]), w* N o. We 
then compute TrLo = no* = 520 = LG. Hence we have Tr, LG = o, so that 
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D Tr,o = DLG N LG and D Tr,LG N R. From the exact sequence S3 + 
S- -+ k + 0 we see that any nonisomorphism g: S- + S_ factors through 
s3+sp. Hence it follows from the equivalence Ref SG + Ref R that any 
nonisomorphism h: w  + w  factors through R3 -+ co. Since D Tr,o N LG, we 
get that 0 -+ LG + R3 + o + 0 is almost split [S]. Then the dual sequence 
0 -+ LG + R3 + o -+ 0 is also almost split. It is now a direct consequence of 
Theorem 1.1 in Part I that R, o, LG are the only indecomposables in 
CM R. 

5. A CONSEQUENCE OF FINITE CM TYPE 

Let the assumption on S and G be as in the previous section, and assume 
in addition that R is an isolated singularity and dim R = 3. We shall derive 
a consequence of R being of finite CM type by considering the torsionless 
SG-modules. They have the following relationship with CM R-modules. 

LEMMA 5.1. Let 5 be the category of torsionless SG-modules T such 
that Ext&( T, SG) = 0. 

(a) Q: z + Ref SG is an equivalence of categories. 

(b) If T is in .F-, then Q( T)G is CM if and only if ( T**/T)G = 0. 

Proof: Part (a) follows from [6]. Since Q(T) is reflexive, we know that 
Q(T)G is CM if and only if Ext&.((OT)*, SG)G = 0. We know that 
T**/T N Exti,(Tr T, SG) (see [6]). Since Ext&( T, SG) = 0, the exact 
sequence 0 + 9(T) + P --t T + 0 with P projective gives an exact sequence 
0 + T* --* P* + f2( T)* + 0, so that Q(T)* = Q(Tr T). Hence T**/T N 
Ext&((QT)*, SG), so that (b) follows. 

Since the fixed point functor Ref SC + Ref R is an equivalence, it follows 
that there is an infinite number of indecomposable CM R-modules if there 
is an infinite number of indecomposable torsionless T such that 
Ex&( T, SG) = 0 and (T**/T)G = 0. The following construction of new 
modules having this property, starting with a reflexive module, will be 
useful. 

LEMMA 5.2. Let B be an indecomposable rejlexive SG-module with 
ExtkJB, SG) =O. If T is a submoduie of B with (B/T)G= 0, then T is 
torsionless, Exti,( T, SG) = 0, and (T * */T)G = 0. 

Proof: Since (B/T)G = 0 and S is an isolated singularity, B/T has finite 
length. The exact sequence 0 + T+ B -+ B/T + 0 gives rise to the exact 
sequence Exti,(B, SG) + Ext&( T, SG) --) Ext&(B/T, SG). We have that 
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Ext&(B/T, SC) = 0 since BIT has finite length and dim S= 3, and by 
assumption Ext&,(B, SC) = 0. Hence we get Exti,( T, SC) = 0. That B/T 
has finite length also implies T** = B, so that ( T**/T)G = 0. 

To find the reflexive modules B with the desired property we shall need 
the following. 

LEMMA 5.3. Let A be a reflexive SC-module. Then ExtiG(A, SC) = 0 if 
and only if A* is a CM SC-module. 

Proof: Choose x #O in R. The exact sequence of SC-modules 0 + 
SC + Lx SC + (S/xS) G + 0 gives the exact sequence 0 + Hom,,(A, SC) 
+‘X HOmsG(A, SC) + Hom,,(A, (S/xS) G) + Exti,(A, SC) + ... . Since 
(S/xS)G has an R-sequence of length 2, Hom,(A, (S/xS) G) also does. 
Hence A* = Hom,,(A, SC) is CM if ExtiG(A, SC) = 0. Since Exti,(A, SC) 
has finite length because S is an isolated singularity, A* is not Cohen- 
Macaulay if Extk,(A, SC) # 0. 

We are now ready to prove the following consequence of finite CM type. 

THEOREM 5.4. In addition to the previous assumptions, assume that 
G = Z, and R is of finite CM type. Let A be an indecomposable reflexive 
SC-module where G = Z, such that A* is Cohen-Macaulay. Then 
dim, A/(rA + mA) < 2, and if dim, A/(rA + mA) = 2, then A/(rA + mA) N 
k LI k- . Here m = rad S and r = rad End,A. 

Proof: Assume first that k- occurs with multiplicity m > 1 in 
A/(rA + mA). Then we have an infinite family { Ai} of SC-submodules of A 
containing rA + mA. We want to show that if Ai # Aj, then Ai ?= Aj. For 
assume f: Ai + Aj is an isomorphism. Consider as in Lemma 3.5 the 
diagram 

End,,A is local and End,(A)/r = k. We write g=z + h with z E k and 
her. Then we get Aj=g(Aj)czAi+h(Ai)cAi, so that Ai=Aj. Hence an 
infinite number of different A, gives rise to an infinite number of non- 
isomorphic reflexives BAi, since Ext:,(A,, SC) = 0. Since we know that the 
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(QAi)’ are nonisomorphic indecomposable Cohen-Macaulay R-modules, 
this shows that m < 1. 

By considering A _ = A Ok k ~, we see that also k occurs with 
multiplicity at most one in A/(mA + rA). This finishes the proof. 

As an application of Theorem 5.4 we give the following. 

PROPOSITION 5.5. Let S be the scroll of type (2, l), and let G = Z, act on 
m/m’ by sending each element to its negative. Then R = SC is of infinite CM 
type. 

Proof: We recall that S=k[[X,,, X,, Xz, Y,,, Y,]]/Z, where Z= 
(X,X,-x, X,, Y, -X1 Y,, X, Y, -X2 Y,). Since the action on S is induced 
by a free action of G on U = k [ [X,, , X, , X2, Y,, , Y, ] 1, nonmaximal primes 
in UC are unramilied in U, and hence height one primes in R = SC are 
unramilied in S. Consider the S-module B = (x,, x, , yO), which is also an 
SC-module, and it is reflexive. Hom,,(B, SC) N Hom,(B, S) = A = (x,, x1) 
is a CM SC-module. We also know that m(B) = k, so that rBc mB. 
Hence dim,B/(rB + mB) = 3, which shows that R is of infinite CM type. 

Theorem 5.4 can also be used to show that R = a=[ [X, Y, Z, T]]/ 
(X2”’ + Y2 + Z2 + T’)’ is of finite CM type, when the action of G is induced 
by sending each variable to its negative. If m is odd, we can choose the CM 
ideal B = (P + iT, Y + iZ), which is then clearly an SC-module. If m is 
odd, one can use [ 181 to find a module B of rank 2 which can be used. We 
point out, however, that it is already known from [ 171 that R is of infinite 
CM type, since it is easy to see that R is a Gorenstein ring which is not an 
hypersurface. 

We end this section with another sufficient condition for infinite CM 
type, based on using almost split sequences, similar to an argument of 
Bongartz for finite dimensional algebras. 

PROPOSITION 5.6. Let R be a complete integrally closed local CM 
domain, with Rlrad R = k algebraically closed, which is an isolated 
singularity. Assume that there is some almost split sequence 0 + A --, B LI 
B LI X + C -+ 0, where B is indecomposable in CM R. 

(a) Zf rkB < rkC and B is not injective, then R is of infinite CM type. 

(b) IfrkA > rkB and B is not projective, then R is of infinite CM type. 

Proof: (a) If B is not injective, we have an almost split sequence 
O-+B-rCLICLI Y-s-‘B-+0, and if rkB<rkC, then rkC<rk(z-‘B). 
Since rkC > rkB 2 1, C is not isomorphic to the dualizing module o. Hence 
we have an almost split sequence 0 + C + z-‘B LI r-‘B Ll Z + z-‘C+ 0. 
Continuing this way, we get indecomposable CM modules of arbitrarily 
large rank, and we are done. The proof of (b) is analogous. 
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We note that in both examples of rings R of finite CM type given in this 
paper, we have almost split sequences with a repeated term in the middle. 
For the scroll of type (2, 1) we have, in the notation of Part I, almost split 
sequences O-+R+AIIALIB+K+O and O+K-+RLlRLIC+A+O. 
But in the first case A is injective and rkR = rkA, and in the second case R 
is projective and rkR = rkA. 

For the fixed ring in Section 4 we have the almost split sequences 
O+LG-+R3+m-+0 and O+R+co3+LG+0. In the first case R is 
projective, in the second case o is injective, and rkR = rkw. 

We illustrate Proposition 5.6 by sketching a different proof for the fact 
mentioned above that R = @[[X, Y, 2, T]]/(X* + Y* + 2* + T2)Z2 is of 
infinite CM type. R can be shown to be isomorphic to the subring C[ [x*s*, 
xys*, y*s*, x*st, xyst, y*st, xv, xyt*, y*t*]] of C[[x, y, s, t]]. Here there 
is an almost split sequence 0 +E-+KLIKLIX+TrE+O, where E= 
(xs, xt, ys, yt), K= (xs*, xst, xt*, ys*, yst, yt’), and rk Tr E= 3. Since K is 
not injective, Proposition 5.6 applies. 
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