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INTRODUCTION

Let R be an integrally closed complete local commutative noetherian
Cohen-Macaulay domain with maximal ideal m and R/m=k an
algebraically closed field. We abbreviate Cohen—Macaulay to CM and
denote by CM(R) the category of finitely generated CM modules. In this
paper we deal with the question of when R is of finite CM type, that is,
has only a finite number of indecomposable CM modules. If dim R=2,
and R is a C-algebra with R/m=C, the complex numbers, then the R
of finite CM type are exactly the fixed rings C[[X, Y]]€, where X, Y are
indeterminates and G< GL(2, C) is a finite group acting on C[[X, Y]]
[17, 3, 15]. For hypersurfaces in characteristic zero the R of finite CM type
are exactly the simple hypersurface singularities in the sense of Arnold
[18, 13], so in this case there is a nice connection with algebraic geometry.

When dim R>3 and R is not a hypersurface, we know only two
examples of finite CM type, and they both have dimension 3. These are
Ry =k[[X,, X\, X3, Yo, Y{11/(Xo X, — X7, XoY - XYy, X,Y,~X,¥,)
and R,=k[[X, Y, Z]1]%, where the generator of Z, acts by sending each
variable to its negative, and the characteristic of & is different from 2. Each
of these rings belongs naturally to a larger class. R, is a scroll of type (2, 1).
We define more generally a scroll of type (m, ..., m,) (see [14]) and show
that when dim R > 3, then all other scrolls (except type (1, 1), which
is a hypersurface) are of infinite CM type. R, is among the rings
k[[X,, .., X,11° where the order of G< GL(n, k) is invertible in k and
n>3, and is the only one of finite CM type. These are the main results of
this paper.

To prove that the scroll of type (2, 1) is of finite CM type we use the
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2 AUSLANDER AND REITEN

theory of almost split sequences, first developed for artin algebras [7, 8]
and extended to this setting [2,4]. We will assume that the reader is
familiar with the basic theory of almost split sequences (see [19]). In par-
ticular, we generalize from artin algebras a criterion for having only a finite
number of indecomposable modules, and this is a direct consequence of the
theory of preprojective partitions from [12]. The same method can be used
to show that our fixed ring is of finite CM type, but here we give in
addition a different proof. Our study of the fixed rings is based on an
investigation of the connection between the reflexive modules over R and
the skew group ring k[[ X, .., X,]] G.

We consider only faithful actions of G on S=k[[X,, .., X,]], and we
also assume that the actions are linear.

The scrolls are investigated in PartI and the fixed rings in Part II. For
the work on scrolls we are grateful to David Eisenbud and Finn Knudsen
for several suggestions and helpful conversations.

Some of the results in this paper were anounced at Bielefeld (1984 and
1985), at the Seminaire Malliavin [20], and at the Durham Symposium on
representations of algebras [5].

PART I: SCROLLS OF FINITE COHEN-MACAULAY TYPE

In this part we introduce scrolls (see [14]) and describe conditions
under which they are of finite CM type.

1. A CRITERION FOR FINITE REPRESENTATION TYPE

Let T be a complete regular local noetherian ring and let 4 be a T-order,
that is, 4 is a finitely generated free T-module and Homr(4,, T,) is 4;P-
projective for all nonmaximal prime ideals p in T [2]. Denote by £(A) the
A-lattices, that is, the finitely generated A-modules M such that M is a free
T-module and M, is A,-projective for all nonmaximal prime ideals p in T.
The category £(A4) is known to have almost split sequences, that is, for
each nonprojective indecomposable C in £(A) (or each noninjective
indecomposable 4 in 2(A4)), there is an almost split sequence
0—-A—B—-C—-0in 2(A). And if C is indecomposable projective, there is
a minimal right almost split map B — C, and for 4 indecomposable injec-
tive there is a minimal left almost split map 4 —» B {2, 12, 14].

For indecomposable finite dimensional algebras we know that if € is a
finite set of indecomposable modules closed under irreducible maps, then €
consists of all indecomposables [2]. There is a similar criterion for classical
orders [217], and here we give a related criterion for 7T-orders 4. We say
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that a set of indecomposable lattices € is closed under almost split sequen-
ces if for each indecomposable nonprojective object C in € (and each
indecomposable noninjective object 4 in €) all indecomposable summands
of the terms in the almost split sequence 0 > 4 > B— C -0 are in 4. We
denote 4 by 1C and C by 7 'A4.

THEOREM 1.1. Let A be T-order and € a finite set of indecomposable
lattices containing all indecomposable projectives.

(@) If € is closed under irreducible maps, then € consists of all
indecomposable A-lattices.

(b) Assume that there are no projective injective A-lattices. If € is
closed under almost split sequences, then € consists of all indecomposable
A-lattices.

Proof. Let C be an indecomposable nonprojective preprojective lattice
in the sense of Auslander and Smalg [12]. Then there is a chain of
irreducible maps between indecomposables P - C, — --- - C=C,, where
P is projective and the C; are not projective. We want to show that C is in
%. This is clear for (a). In case (b) we know that P is not injective, so we
have an almost split sequence 0 » P —» C, I X -t~ !P -0, which shows
that C, is in 4. If C, is not injective, the same argument shows that C, is in
%. If C, is injective, it is not projective, so we have an almost split sequence
0-»1C,-»1C, 11 Y- C,~0. Since C, is not projective, tC, is in €. It
then follows that C, is also in 4. Continuing this way, we get Ce%. This
shows that all indecomposable preprojectives are in €, and hence there is
only a finite number of them. By [12] we then know that all A-lattices are
preprojective, and this finishes the proof.

Theorem 1.1 can be applied to the case of the CM modules CM(R) over
a complete local integrally closed noetherian CM domain R. In this case R
is the only indecomposable projective module and the dualizing module w
is the only indecomposable injective. Part (b) applies if R & w, that is, if R
is not Gorenstein. If R is Gorenstein, we can apply part (a). It is then not
enough to show that a given set € is closed under almost split sequences,
but we also need to find the minimal right almost split map B - R (and the
minimal left almost split map R — C, which can be obtained by duality). In
practice B — R can be constructed using a construction of CM modules of
Buchweitz, and the application of his construction to this problem
appeared through discussions with him. The pertinent result is the
following, where Q29X denotes the dth syzygy module for X.

PROPOSITION 1.2. Let R be a complete local noetherian Gorenstein
integrally closed domain of dimension d + 1 =2 and with maximal ideal m. If
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B— R is minimal right almost split, then the nonprojective part of B is
isomorphic to Q ~4(Q%m).

Proof. Consider the minimal projective resolution P,_, - --- > P, —
Py,->m—0. Since dimR=d+1, Q‘m=0Q*(R/m) is CM. Write
X*=Homg(X,R) and let Q,— - 5 Q, = 0o~ (2M)* >0 be a
minimal projective resolution. Since (29m)* is CM, Ext%((Q2%m)*, R)=0
for i>0, so that we have an exact sequence 0 » Q‘m - Q¥ » Q¥ > .- —
0* | - Q YQM)=E - 0. Since Exti(m, R) =0 for 1 <i<d, we have the
exact commutative diagram

P§ —— P} —— s PY s (Q%m)*
Qi - Q4 3 > —— ——"(Qd‘m)*'—"O,

which gives rise to the commutative diagram

0o—2m— P, ,—>--—— P, —— P —m——0

| ]

0—— Q4m—s 0f — - ——QF ,—— QF ,— E——0.

Let h: X - m, where X is CM. Since Ext'(X, R)=0, for 1 <i<d, we have
natural isomorphisms modulo projectives Hom(X, m)= Hom(Q“X, 2m)
~ Hom(X, E) (see [6]). This shows that E is the nonprojective part of a
minimal right almost split map to R.

2. ScroLLs oF FINITE COHEN-MACAULAY TYPE

Consider the matrix

1 1

<Z§,’---Z$,,l’,1\.“‘Z&’)--'Zf;,’-l>
H...ZO n...zn )
zzg) |z 2y

where the Z{/ are indeterminates, and let k be an infinite field. We say that
the ring R=k[[Z", .., ZV), .., Z(, .., Z{)]1)/I, where I is the ideal
generated by the determinants of the 2 x 2 minors of the above matrix, is a
scroll of type (m,,..,m,). For basic properties of such rings and their
geometric interpretation we refer to [14] and the references given there. A
scroll R is known to be an integrally closed CM noetherian domain which
is an isolated singularity, and dim R=r+ 1. It is not hard to see that if
r=1, then R is of the form k[[X, Y]] and hence of finite CM type. The
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scroll of type (1, 1) is a hypersurface and is known to be of finite CM type
by [18, 22, 237. The aim of this section is to show the following.

XOYI_XI Yo, Xl YI_XZ Yo) is ofﬁnite CM type

Proof. We denote the images of X; and Y, in R by x; and y,. It is easy
to see that the ideals 4= (x,, x,), B=(xq, X1, Vo), C=(xq, X,, X,) = A>
are CM. For consider the exact sequence 0 >4 > R— R/4—-0. R/A=
k[[X,, Yy, Y, 1J/(X, Y,) is a complete intersection of dimension 2. Hence
depth R/A=2, so that depth A=3 since depth R=3. Similarly
R/B~k[[X,, Y,]1] gives depth B=3 and R/C~k[[Y,, Y,]] gives depth
C=3. It is known that R A, B, C are the only indecomposable CM
R-modules of rank one, but we do not need to use this fact here. It is also
known, or can be computed directly, that A4 is the dualizing module.

Denote by D the duality from CM(R) to CM(R) defined by D(X) =
Hom (X, A). We recall that the transpose Tr, is defined by Tr, X = Q'X*
for X in CM(R), using that dim R=3 [2]. We know that D preserves
indecomposable CM modules and Tr; preserves indecomposable nonpro-
jective CM modules, and we have D*(X) ~ X, and Tr2 Y ~ Y when Y is not
projective. It is known, or can be computed directly, that DB~ C, and
clearly DR~ A. We next compute Tr, for our indecomposable CM
modules of rank 1. This computation is needed in the construction of
almost split sequences, since they are of the form0-»DTr, X > E—-> X -0
[2].

We have B~ B’ = (1, x,/xq, yo/Xo), and AB'=m, so that A*~B. It
follows from this, or can be seen directly, that we have an exact sequence
0-B->RUIUR—>A4—-0. Then Tr,B=Q'B*=QA=B and Tr A=
Q'4* = Q'B = K, which must be an indecomposable CM module of rank 2.
C* is easily computed to be isomorphic to (x,, y3). Since it has a minimal
set of two generators, Tr, C=Q'C*=C.

We now want to construct candidates for almost split sequences. Con-
sidering the exact sequence 0 - K—+ RII RII R — B— 0, we see that K is
the submodule of R? generated by (— y,, 0, xo), (=1, 0, x,), (0, —yo, X,),
0, —y1, x2), (—x1, X9, 0), (—x,,x,,0). It is easy to see that we have
maps f: A— K given by f(xo)= (=¥0,0,x0), f(x1)=(-»1,0,x,), &
A-K given by g(x0)= (O, —Jo> xl)s g(xl) = (0, —Jis xZ)) and h: B> K
given by h(xe)=(—x, X0, 0), A(x1)=(—X3, x,0), h(¥o)=(—y1, ¥o, 0).
These maps induce an epimorphism u=(f, g h). ALLALUB-K
Considering the associated divisors in the class group of R, and using that
Ker u has rank 1, we see that Keru=R. (This can also be computed
directly.) Hence we have the exact sequence

0-oR->AUUAUB-K—0, (*)
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and by dualizing, an exact sequence

0-DK->RUIRUC—-A4-0. (%)

Since D Tr; A= DK, (**) is a nonsplit exact sequence of CM modules
with the correct end terms for being almost split, it follows as in [8] that it
is enough to show End(A4)=k to show that (=) is almost split. That
End(A4)=k is a consequence of the following.

LemMMA 2.2, Let R be a noetherian domain and X an ideal in R. Let
Y be a fractional ideal such that XY < R. Then a map i X - X which is
multiplication by an element in XY factors through a projective module.

Proof. Let m be an element in XY, thatis, m=a, b, + --- +a,b,, where
a,, .., a, is a set of generators for X, and b, is in Y. Define g: X - R" by
gla)= (ab,, ..., ab,), and let h: R" - X be the natural map sending the ith
generator

in R" to a,. Then hg is multiplication by m, and we are done.

In our case End A ~ R since R is integrally closed and A is a nonzero
ideal. Since 4B’ =m, it follows from Lemma 2.2 that End(4)=k. Hence
(**) is almost split, and by duality () is also almost split.

It is now easy to compute the almost split sequences with B and C on
the right, by using basic properties of almost split sequences. We have
D Tr, C = B, so the middle term of the almost split sequence with C on the
right has rank 2. By (*), K is a summand of the middle term, and by (**),
DK is. Hence DK ~ K, and we have an almost split sequence

0-»B—=K-C-0.

Further we have D Tr, B=C, and by (x) and (**), 4 and R are both
summands of the middle term for an almost split sequence with B on the
right. A rank argument again gives an almost split sequence

0-C—->RIHA-B-O.

We have now proved that the set {R, 4, B, C, K} of indecomposable
CM modules contains R and is closed under almost split sequences. Since
R is not injective, it follows from Theorem 1.1 that these are all indecom-
posable CM R-modules. This finishes the proof of Theorem 2.1.
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3. ScroLLS OF INFINITE COHEN-MACAULAY TYPE

In this section we show that if R is a scroll with dim R>3 and not of
type (1, 1) or (2,1), then R is of infinite CM type. We do this by first
studying the corresponding graded scrolls R'=k[Z{", .., Z\)), .., Z{), ..,
Z{)/I where 1 is defined as before. We have chosen to deal with graded
modules rather than with sheaves.

To a monomial p in k[Z{"] we define the number d(p) to be the sum of
the lower indices for the factors, and #(p) = (¢,, .., ¢,), where ¢; is the num-
ber of factors of the form Z{ for a fixed i. From the relations for a graded
scroll it follows directly that two monomials p and ¢ are equal in R’ if and
only if d(p)=d(q) and t(p)=1t(g). If for the monomials of degreei we
choose one monomial for each given d(p) and ¢(p), we get a k-basis for
m'/m'* ! where m=(Z{", .., Z{1), .., Z{")).

We shall prove the following.

THEOREM 3.1. Let R’ be a graded scroll of type (m,=n, my=t, .., m,),
nztz---z2m,. Ifr=2and R is not of type (1,1) or (2, 1), then R’ has an
infinite number of indecomposable graded CM modules, up to shifts.

Proof. Write m=m;+ --- +m,, A=(xq,x,), and B=(b,.., b,,),
where b,, ..., b, are the entries in the first row of the matrix. Then it is
known that B is CM and 4’ is CM for 0<i<m—1.

We shall first assume m—n>2, and construct exact sequences in
Ext'(4"*, B) when 1<i<m-n—1We have A" ~(xix,=a,,
XX =@y, ey X0X,=Qy, s XiX,=a;,,,1) For lek we define
M,cRIR to be generated by u;=(x¢b;,0), 1<j<m, u,,,;=(0,q);
0<j<id+n upypyivr=(xx,+Axhy,, xix,). Write s=m+n+i+1, and
B’ =xiB.

We claim that the sequence 0 » B' —»# M, »* 4"*' > 0 is exact, where
is the natural monomorphism and « is the natural epimorphism. Clearly af
is zero. Let x=37_, , ru; be an element in M, such that a(x)=0. If
ry=0, then clearly xeIm f, so we can assume r #0. Since a(u,,, ;)=a,
we have Y!fi+!'ra;=0. Since the a, are linearly independent in
m'*Y/m’*2 all r; must have zero constant term. A monomial p in r,
cannot have only factors of the form z{, since d(pa,) would be too large.
Hence we must have p=pz¥), j<m,, and z®(x{x,+Ax}y, 0)=
28 (xhx,_+Axhy,_,,0)e B(B’). This shows that the sequence is exact,
and consequently M is CM.

We now assume that there is an isomorphism of degree zero f:
M,; —» M, A"*"and B’ both have all their generators, in a minimal set of
generators, in degree i+ 1. A”*' has n+i+1 generators, and B has
m>=n+i+1 generators. Since a nonzero map B— A"*' must be a
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monomorphism, it follows that Hom,, g(B, A”*"),, the graded maps of
degree zero, is 0. This gives a commutative diagram

0 > B’ - M, » A" » 0
Pl
0O B —— M, — > A" —, 0,

Since End(B')=R’ and End(4"*')=R’, we see that End(B'),=k=
End(4"*!),. Hence we can assume that g is the identity and 4 is the mul-
tiplication by some ¢ # 0. Write f(u;) = au, + --- +agu, for j<s, flu;) =
ajuy+ --- +a,u,, where u, .., u,_,,u, are the generators for M, and
uy, ..., 4, the generators for M. Since i> 1, we have xqu, _,=x,u, , 1,
and this shows a, ,_, =0. Consider the equality x,u,=x,u,_,+xu,+
Ay.uy. Applying f and comparing the coefficients of x,u, we get
a,,=a,,_+1=1. Applying f and comparing the coefficients of
(xit1y,, 0) gives da, =4, so that A=4". This shows that different 1 give
nonisomorphic M ;. Since % is an infinite field, we are done in this first case.
(We point out that if we let A=(4,, .., 4,)e P"~'(k), and in M redefine u,
to be (X7_,4;z)x;, x| x,), we get similarly an infinite family of non-
isomorphic M, indexed by P"~!(k).)

Assume now that the graded scroll R’ is of type (n, 1), with n>3. Let
B =(x3, XX, s XoX,_ 15 Xo Vo) @and A" =(x3, xoXy, .., XoX,). For A€k,
define M, = RII R to be generated by u;=(xox;_,,0), 1<j<n, u,,,=
(%050, 0),  #;=(0,x0x;_,_2); n+2<j<2n, Uy, =(X0 15 XoXn_1),
Upni2=(Xy Y1+ AX0 Y15 XoX,).

We want to show that we have an exact sequence
0->B —»#M; >*A4"—0, where B is the natural inclusion and « the
natural epimorphism. We clearly have af is zero. Assume that a(x)=0,
where x=37_, r,u;, s=2n+2. As before, the r; must have constant term
zero, and if , and r,_, are both zero, we are done. It is impossible that a
monomial p in r, has all factors of the form x,, and y,. If p has one factor of
the form x,_, or y, and the rest of the form x, and y,, then a,_, must
have a monomial ¢ with x,g=x, p. Then q(x,y:,0)= p(x,y,,0) and
P(xo 1, 0)=¢g(x4 yy, 0) € B(B). If p does not satisfy any of the above con-
ditions, the p(x, y, + Axqy y,, 0) € B(B). If r, =0, we argue similarly for r,_,,
and get that the sequence is exact, and M, is CM.

Assume that f* M, —» M, is an isomorphism. We get as before a com-
mutative diagram where the induced map g: B’ — B’ can be assumed to be
the identity. We have xou, = x,(0, x2) + y;(xox;, 0) + A’y (x3, 0). Applying
f and comparing the coefficients of (x, y,, 0) gives a,,=1. We note that we
get no contribution from x, f(0, x3) since n>1+1=2. Comparing the
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coefficients of (x, y,,0) gives ia,,=4’, and hence 1= 21". This finishes the
proof.

We have the following main result of this part.

THEOREM 3.2. Let R be a scroll of type (m,, .., m,) over an infinite field
k. Then R is of finite CM type if and only if R is of type (m), (1, 1), or
(2, 1).

Proof. We have seen that a scroll of type (m), (1, 1), or (2, 1) is of finite
CM type. If R is of a different type, we consider R’ — R, where R’ is the
corresponding graded scroll. Let M=M, LI M, 1I..- be a graded R-
module, generated by M. R is the completion of R’ with respect to the
graded maximal ideal m. M,=m'*'M,. The associated graded module of
R®p M is then M. If N=N,UI N, LI--- is another graded R’-module,
generated by N, then an isomorphism g: R® z M - R® - N will induce
an isomorphism of degree zero between M and N. Since by Theorem 3.1 we
have an infinite number of nonisomorphic indecomposable CM modules
M=M,lI M + --- generated by their degree zero component, R is of
infinite CM type.

PART II: FIXED RINGS

Throughout this part let S be an integrally closed domain, and G a finite
nontrivial group acting faithfully on S, such that |G| is invertible in S.
Denote by R =S¢ the fixed ring, and our main objective is to compare the
modules over S and R. It will also be useful to study the modules over the
skew group ring SG. When discussing the question of finite CM type, we
shall in addition assume that S is complete local CM, with S/m=k
algebraically closed, where m is the maximal ideal of S.

The main result of this part is that when S is the power series ring
k[[X,, .. X,]] for n>3, then R=S¢ is of finite Cohen-Macaulay type if
and only if n=3 and G ~ Z,, where the generator of Z, acts by sending
each variable to its negative.

We start out in Section 1 by studying the relationship between the
reflexive modules over SG and R. If the minimal primes in R are
unramified in S, we show that the fixed point functor gives an equivalence
of categories Ref SG — Ref R of reflexive modules. In the complete case, we
use this to show that if R is of finite CM type, then S is. We also reduce the
problem of showing that R is of infinite CM type to a similar problem for
finite dimensional algebras, which we investigate in Section 2. As a con-
sequence we get most of our results on R=k[[X,, .., X,,]1]¢ (n>3) being
of infinite CM type. The rest is given in Section 3 using different techniques.
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Finally we show in Section 4 that R=k[[X,, X,, X;]]* is of finite CM
type with the desired action. We give two different proofs, one in the spirit
of the work in this part, and one using the same techniques as in Part 1.

In Section 5 we derive some interesting consequences of R =S¢ being of
finite CM type and illustrate how our results may be used to show that a
given R= S is of infinite CM type.

1. PRELIMINARY RESULTS

Under our standard assumptions, the fixed ring R=S¢ is integrally
closed. We want to study the relationship between Ref R and Ref SG. We
shall need the following facts on reflexive modules.

LemMa 1.1, (a) A module over R or S is reflexive if and only if it is a
second syzygy module.

(b) S is a finitely generated reflexive R-module.

() If f: B> C is a map between reflexive modules in mod R or
mod S, then Ker f is reflexive.

(d) An SG-module M is SG-reflexive if and only if it is R-reflexive if
and only if it is S-reflexive.

(e) An SG-module M is reflexive if and only if it is a second syzygy
module.

We have the following direct consequence.

LEMMA 1.2. The fixed point functor F: mod SG — mod R takes reflexive
modules to reflexive modules.

Proof. Uf M is a reflexive SG-module, we have an exact sequence
0 — M — n(SG) -» m(SG), where n(SG) denotes the direct sum of n copies
of SG. The sequence 0— M€ - n(SG)° - m(SG)® is then an exact
sequence of R-modules. There is an isomorphism of R-modules S — (SG)¢
obtained by sending s to 3", . ; 6(s) g, and since S is a reflexive R-module,
we conclude that M€ is a reflexive R-module.

We want to show that if height one primes in R are unramified in S, then
F: Ref SG — Ref R in an equivalence. We recall that this assumption is
equivalent to the natural ring map a: SG — Endg(S)=1I given by
a(so)(x)=so(x) being an isomorphism [1]. Since R is integrally closed
and S is a reflexive R-module, we know from [11, Chap.1] that
Hom g(S*, }: mod R-mod I” and Hom (S, ) mod I'-+mod R induce
inverse equivalences of categories between Ref R and Ref I, where S*=
Hom (S, R).
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Hence we get the following consequence.

PROPOSITION 1.3. Assume that height one primes in R=S5% are
unramified in S. Then the fixed point functor F: mod SG —» mod R induces
an equivalence of categories between Ref SG and Ref R.

Proof. Because of the ring isomorphism SG - EndgS=1, the
equivalence Hom (S, ): Ref I' — Ref R shows that we have an equivalence
Hom (S, ): Ref SG — Ref R, and Hom (S, ) is the fixed point functor.

From the standard assumptions on S and R = S¢ it follows that R is an
R-summand of S, by considering the maps R —»'S —'R, where #(s)=
1/|G| ¥, < 0(s). From this it follows that S is a projective /-module. We
say that a I-module is CM if it is CM over the center of I. Since
Hom S, }: mod I" > mod R is an exact functor, it preserves CM modules.
Hence we have the following relationship between the CM types.

PROPOSITION 1.4. Assume that S is complete local and S/m is
algebraically closed.

(a) If R is of finite CM type, then I'=End g(S) is.

(b) If height one primes in R are unramified in S, and R is of finite
CM type, then S is.

Proof. Part (a) follows directly from the above comments. (b) Assume
R is of finite CM type. Then by our assumption and (a), SG is of finite CM
type. If M is an indecomposable CM S-module, then since |G| is a unit in
S, M is an S-summand of SG ® ¢ M. Since SG is right projective S-module,
SG®¢ M is a CM SG-module, and hence a CM S-module. This shows that
S is of finite CM type.

We note that if we drop the assumption that height one primes in R are
unramified in S, then R may be of finite CM type while S is of infinite CM
type. For example, let f(x, y,z) be such that the hypersurface S=
k[[x, y,z, u]11/(f + u?) is of infinite CM type (see [18]) and let G = Z, act
on § by sending u to —u and leaving the other variables fixed. Then
R=S%~k[[x, y,z]], which is of finite CM type.

Even if some height one primes in R are ramified in S, there is some
relationship between Ref SG and Ref R. We first formulate our result more
generally for the situation of a ring map A — I

ProrosITION 1.5. (a) Let A > I'=Endg(S) be a ring map, such that I
is a reflexive A-module, S is a projective A-module, and Hom 4(S, I') =
Hom (S, I'). Then the restriction induces a fully faithful functor Ref I' —»
Ref 4.



12 AUSLANDER AND REITEN

(b) The natural ring map SG — End x(S) = I induces by restriction a
fully faithful functor Ref I' - Ref SG, and hence we get by composition a
Sfully faithful functor Ref R —» Ref SG.

Proof. (a) Since S is projective both as I-module and A-module,
we get, by using Hom (S, I')=Homg S, I'), natural isomorphisms
Hom ,(S, X) = Hom (S, X) for all X in mod I". I"=End(S) is clearly a
finitely generated reflexive R-module and R is integrally closed. Then it is
known that a I-module M is I'-reflexive if and only if it is R-reflexive. If ¥
is in Ref I, then Hom (I, Y) is also in Refrl, since it is a reflexive
R-module. We have Hom (S, Hom ,(7’, Y)) ~ Hom ,(S, Y) = Hom (S, Y),
and since Hom|(S,): RefI">RefR is an equivalence, we have
Y ~Hom (7, Y). We then have Hom ,(X, ¥) ~ Hom (X, Hom ,(I, Y)) ~
Hom X, Y) for X in mod I'. Since if X is a reflexive /-module it is a
reflexive A-module, a fully faithful functor Ref I" — Ref A is induced.

(b) I'is a reflexive R-module, and hence a reflexive SG-module, and
S is a projective SG-module since it is a projective S-module. To finish the
proof we need only show Hom (S, I') = Hom (S, I').

We have Homgg(S, I')=I'%, where the action of G on I is given by
(gf)(s)=gf(s) for feEndg(S), seS. Then clearly I'°=Homg(S, S)°=
Homg(S, R)c I'. Consider the map a: Endg(S)— S given by a(f)= f(1).
Then Kera={f: §-S; f(1)=0}={f: S— S; f(R)=0}. Hom (S, ') =
{f: §—>58; (Kera)f=0}. If Im f <R, then clearly (Kera) f=0. And if
Im f ¢ R, choose xe R, x¢Im f Since R is an R-summand of S and S
is R-reflexive, there is an R-map heKera with h(x)#0. Hence
Hom (S, I') = Homg(S, R)c I, so that Hom (S, I')=Hom S, I).

We mention without proof that also the following subcategory of Ref SG
is equivalent to Ref R via the fixed point functor. The objects are the C
such that there is an exact sequence of S[G]-modules 0 » C - nS - mS
such that the induced sequence by taking fixed points and dualizing
(mR)* — (nR)* - (C%)* - 0 is exact.

In the complete case, we want to establish a connection between CM(R)
and modules over some finite dimensional algebra, which we shall apply to
give necessary conditions for CM(R) to be of finite representation type.
Here fl. S[G] denotes the SG-modules of finite length. Assume S is
complete, S/m is algebraically closed, and height one primes in R are
unramified in S, and let dim S=d = 3.

PROPOSITION 1.6. Let D be the subcategory of 1. SG consisting of the A
with AS=0. If A is in D, then a(A) = (2°4)° is CM.

Further, A is indecomposable if and only if a(A) is indecomposable, and if
A and B are in D, then A~ B if and only if a(A) ~ a(B).
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Proof. Let A be in D, and let 0»Q?’4—-P, > P, A—-0 be the
beginning of a minimal projective resolution for 4 over SG, where i> 1.
Then 0 - (2°4)¢ - PS - P§ =0 is an exact sequence of R-modules since
|G| is invertible in S. The projective SG-modules P; are CM since SG is
CM. Hence P; is a CM R-module, and so P].G is, since PjG is an R-summand
of P, as is seen by considering P¢ —'P,—»'P¢ where (p)=
1/1GI X, .c o(p). It follows that (2%24)° is a CM R-module.

Since S is CM and A has finite length, Exti(4, S)=0 for i=0, 1. Since
SG is a free S-module, Exti(4, SG)=0, and hence Exti(4, SG)°=0 for
i=0,1. Since the fixed point functor is exact, Ext{;(4, SG)~
Exti(4, SG)°, so that Exti (4, SG)=0 for i=0, 1. We then get the exact
sequence 0— 4* > P — P¥ - (2°4)* -0, where X*=Hom(X, SG).
Dualizing again gives 0 — Q2?4 - P, » P, > A—0, so that P¥— P¥ -
(2?4)*>0 is a minimal projective presentation, and also
Extl.((Q%4)*, SG)=A. If Q%4 is indecomposable, 4 must be, since a
module of finite length cannot have projective dimension less then 3.
Assume then that A4 is indecomposable and that Q°4 ~ X LI Y, where X
and Y are not zero. Then we have (£224)* ~ X* II Y* with X* and Y* not
zero. Considering a minimal projective presentation for X* and Y*, and
dualizing, we get a contradiction to the fact that the presentation P, —
Py, — A — 0 is minimal. By the above we have Ext} ((2224)*, SG) ~ 4. The
rest of our claim now follows by using that the fixed point functor gives an
equivalence Ref SG — Ref R.

Let |G|=n and let e be the idempotent 1/n3,.g0. If 4 is an
SG-module, then ed c A, since oe=e for all e G. And if xe A%, then
ex=1/nY ox=1x, so that A c eA. Hence the SG-modules 4 with 4°=0
are the SG/(e)-modules, so that the above category D is the category
fl. SG/(e). We further have that SG/m>SG = (S/m?)G, so that (S/m?)G is a
factor ring of SG, and hence (S/m?) G/(e) is a factor ring of SG/(e). Hence
we have the following consequence of the above.

THEOREM 1.7. Let S be a complete local ring with S/m algebraically
closed, and assume that height one primes in R are unramified in S. If R is of
finite CM type, then the artin algebra (S/m?*) G/(e) is of finite representation
type.

This result motivates investigating when, for an artin algebra 4 with
=0, A/r =k algebraically closed, and G a finite group acting, AG/(e) is of
finite representation type. Here AG denotes the skew group ring and e the
usual idempotent for G. We will deal with this question in the next section.
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2. THE REPRESENTATION TYPE OF AG/(e)

Let 4 be an artin algebra with radical r, such that A/r=k is
algebraically closed and r>=0. Let G be a finite group acting on A such
that |G| is invertible in 4. G induces an action on r= V, which is then a
kG-module. We recall from [3, 10] that the Gabriel quiver for AG is the
opposite of the McKay quiver for V, where the McKay quiver is defined as
follows. The vertices are ine one-one correspondence with the simple
kG-modules V| =k, ..., V,. There are n; arrows from V; to V, if n, is the
multiplicity of ¥V, in a direct sum decomposition of V'® V.. It is easy to see
that leaving out the vertex of ¥V, =k we get (the opposite of) the Gabriel
quiver for AG/(e). It is a well-known theorem of Gabriel that AG/(e) is of
finite (representation) type if and only if the underlying graph of the
separated Gabriel quiver is a finite disjoint union of the Dynkin diagrams
A,,D,, E¢, E;, and Eg [16]. The separated quiver is obtained by replacing
each vertex v with two vertices v’ and v” and each arrow v —w with an
arrow v’ — w”. We will use this to give a characterization of when AG/(e) is
of finite type.

The following lemma reduces our considerations to abelian groups.

LemMA 2.1. Let A be as above. If AG/(e) is of finite type, then AH/{e) is
of finite type for all subgroups H of G.

Proof. Let M be an indecomposable AH-module with M =0. We have
Hom ,,(AG, M)® =~ Hom ,5(A4, Hom 4,(AG, M)) =~ Hom (A4, M) =
M =0. Since AH is a two-sided 4H-summand of AG, M is a summand of
the AH-module Hom ,,(AG, M). This shows that if AG/(e) is of finite type,
then AH/(e) is.

We now state the main result in this section.

THEOREM 2.2. Let A be as before, and assume that dim,V>3. Then
AG/(e) is of finite type if and only if G~ Z, and the multiplicity of the

nontrivial simple kG-module k_ in V is at most one.

Proof. Assume dim, V > 3, and assume that G has an abelian subgroup
H of order at least 3. If some simple summand V¥, of V (as kH-module)
occurs with multiplicity >2, we have V-3 -k in the McKay quiver. Let
V, be a simple kH-module not isomorphic to k or V. Then V,®, V, * k
for i=1 or for i=2, and we have V,®, V,-3 -V, in the MacKay quiver,
after removing k. Hence we also have a double arrow in the separated
McKay quiver, showing that AG/(e) is of infinite type. If every summand of
V occurs with multiplicity one, there are arrows from at least three vertices
to k. Tensoring we see that for any vertex there are arrows from at least
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three vertices. Hence when we remove k there are arrows from at least two
vertices to any given vertex. And similarly there are at least two arrows
leaving a given vertex. Hence in the separated quiver of the McKay quiver
minus k there are either two arrows leaving a given vertex, or two arrows
entering. The underlying graph can then not be a Dynkin diagram, so that
we have infinite type.

It follows that if AG/(e) is of finite type, then every abelian subgroup of
G must have order 2. This shows that G ~ Z,, which we now assume. Let
m be the multiplicity of k£ in V. Then there are m arrows from k to k, hence
also from k_ to k_. The separated McKay quiver minus % is then

—_——
(m arrows)

Hence AZ,/(e) is of finite type if and only if m = 1. This finishes the proof.

Combining with the results in Section ! we get the following.

THEOREM 2.3. Let S and G satisfy the satisfy the standard assumptions
of the previous section, and assume also that S is complete local, S/m is
algebraically closed, height one primes in R are unramified in S, and
dim S = 3.

If R is of finite CM type, then G ~ Z,, and the multiplicity of the trivial
kG-module k in m/m? is at most one.

3. DIMENSION THREE

In this section we assume in addition that S is complete local, S/m is
algebraically closed, height one primes in R are unramified in S, and
dim R > 3. The aim is to improve Theorem 2.3 by proving the following.

THeOREM 3.1. If R is of finite CM type, then dim R=3.

Proof. Assume R is of finite CM type. By Theorem 2.3 we can assume
that G=Z, and k occurs with multiplicity at most one in the kG-module
V' =m/m> We shall need the following.

LeEMMA 3.2. The trivial SG-module k occurs with multiplicity at least 2 in
L/mL, where L= Q3% k.

Proof. The exact sequence 0 » L - S®, V- m — 0 gives a projective
cover both as SG-modules and S-modules. Tensoring with m over S we

607/73/1-2
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get Torj(k,m)~L/mL. Hence 0 »>m—>S—>k—0 gives rise to the
exact sequence 0 - L/mL »m®gm—m—m/m?—-0, which again gives
L/mL - m/m>®, m/m? - m?*/m> - 0.

Considering the commutative diagram

0

J

0O—m J—— VR,V —— S(V)—0

l J |

0—— H—— m/m?®, m/m? —— m?’/m*> —— 0,

where S,(V) is the second symmetric product, it is sufficient to show that k
occurs in the kG-module J with multiplicity at least 2.

Assume first that ¥ =nk_, where n>dim R > 3. Since dim, V®, V =n?
and dim S,(V)=1+ --- +n=n(n+1)/2, we have dim,J=n(n—1)/2>23.
Hence k occurs with multiplicity at least 2 in J.

If V=k 1 (n—1)k_, the multiplicity of k in ¥®, Vis 1+ (n—1)? and
in SyV) it is (1+---+n—1)+1=n(n—1)/2+1. Hence k occurs
(n?—3n+2)/2>2 times in J. This finishes the proof of the lemma.

Denote by L_ the SG-module L®, k_. We know by Proposition 1.6
that L _=Q% _ is an indecomposable SG-module, and hence Endg5(L _)
is local. The SG-modules mL _ and rL _ are both Endg;(L _ )-submodules
of L_, where v denotes the radical of Endgs(L_), and there is the
following relationship between them.

LEMMA 3.3. With the above notation, tL _ —mL _.

Proof. Exti (k_,SG)~Exti(k_,SG)°=0 for i=1,2, so that
Endgs(L_)~Endg;(k_)=k [6], and hence r = P(L_, L_), the SG-maps
from L_ to L_, which factor through a projective SG-module. Let
feP(L_,L_), and let g: P— L_ be a projective cover in mod SG. Choose
h: L_— P such that gh=f We must have ImhcmP, and hence
Im fcmL_, and this shows tL_ cmL_.

We want to consider modules M; with mL_cM,cL_ and
L /M;~k_. By Lemma 3.2 there is an infinite number of choices for M,
and we show that if dim R > 4 different M, give rise to nonisomorphic CM
modules.

LEMMA 34. Let M; be as above, and assume dim R>4. Then 2(M))
is an indecomposable reflexive SG-module, and hence Q(M)° is an
indecomposable CM R-module.
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Proof. The exact sequence 0 > M, > L_ —k_ —0 shows that M, is
not projective. Since Exti.(k_,SG)=0 for i=0,1,2, we have that
Extio(L_, SG) ~ Exti;(M;, SG) for i=0,1, M}*~L**~[ , so that
M, is indecomposable. Since dim R>4, we have Extl (L_,SG)=~
Exti;(k _, SG)=0, so that Ext},(M;, SG)=0. Since M, is indecomposable
nonprojective, QM is indecomposable since End(M;) ~ End(QM,) [6].
Since L _ = Q% _, where k¢ =0, LS is a Cohen-Macaulay R-module. The
exact sequence 0 > M, —» L_ — k_ — 0 shows that M ~ L% so that MY is
CM, and hence clearly (2M,)¢ is CM.

Since height one primes in R are unramified in §, QM,~QM; if and
only if (2M,;)°~(2M,)°. We have an epimorphism of SG-modules f*
L_ -2k _. For each one-dimensional subspace U; of 2k_, let M;=
/Y(U,). We then get a family of subspaces in one-one correspondence with
P!(k). To finish our proof, we want to show that different M, give rise to
nonisomorphic CM modules (QM,)°.

LEMMA 3.5. In the above notation, if M, # M,, then QM , + QM,.

Proof. Assume that QM ~ QM,. Since Extl (M, SG)=0fori=1,2,
we know that we have some isomorphism f: M, — M,. This gives a
commutative diagram

f
M | — M 5
N )

*w
My* L2 pa*

(.

L —&-> L_
Since Endg(L_)r=k, we have g=z+h with zek and her.
M,=gM,)czM,+h(M)c M, +tM,<M,, and similarly M,=M,.
This shows that M, = M,, and the lemma is proved.

4. A THREE-DIMENSIONAL RING OF FINITE CM TYPE

Let the assumption on S and G be as in the previous section. In this
section we give two different proofs of the following.

THEOREM 4.1. Let G=2Z, act on S=k[[X,, X;, X;3]] such that the
generator sends x, to —x,;. Then R= S has up to isomorphism only the three
indecomposables R, S¢, Q%.(k_), where S_=S®; k_.
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For the first proof the following lemma is useful, where R=S¢ is
assumed to be as in the previous section.

LemMMA 4.2.  Assume that dim R =3 and R is an isolated singularity, that
is, R, is regular local for all nonmaximal prime ideals p in R. If A is in
Ref SG, then A® is a CM R-module if and only if Extl,(A4*, SG)¢ =0.

Proof. Let A be in Ref SG. Then the exact sequence 0 —» QA4* =K —
Q — A* -0, where Q is a projective SG-module, gives rise to the exact
sequence 0 > 4 > 0* > K* — Ext}.(4* SG)— 0. Since R is an isolated
singularity and height one primes in R are unramified in S, S is also an
isolated singularity [1]. If p is a nonmaximal prime ideal in R, we then
have gldim §,G=gldim S,<2, so that 47 is a projective S,G-module,
since A* is a reflexive SG-module. Hence Ext} (4*, SG), and consequently
Exti (4* SG)° has finite length. The exact sequence of R-modules
0> A% > Q*% > K*C - Extl.(4* SG)¢ - 0 then shows that 49 is CM if
and only if ExtL.(4* SG)¢ =0, and we are done.

Proof of Theorem 4.1. We first note that R=S® is known to be an
isolated singularity, and the height one primes in R are unramified in S
since the action of Z, on ¥V'=m/m” is free. Now let 4 be an indecom-
posable nonprojective reflexive SG-module. Since gl dim SG=3 and 4* is
a reflexive SG-module, we have pdggzA*=1. This shows that
Extl;(4*, SG) #0. From Section 2 we know that SG/(e)/m*SG/(e) =k, so
that SG/(e)=k. This means that k_ is the only indecomposable SG-
module with k¢ =0, so that Ext};(4* SG)=nk _ for some n>0. Since 4
is indecomposable and pdg;k_ =3, nk_ must be indecomposable. It
follows that 4 ~ Q% _, so that AS~ (2% _)° Since S and §_ are the
only indecomposable projective SG-modules, we get our desired result from
Lemma 4.2.

We now give a proof of Theorem 4.1 using the method discussed in
Part I.

Let ¥V=m/m? and consider the Koszul complex 0— S®; A’V >
S®, AV ->S®,V—->S—-k—0. This is also an exact sequence of
SG-modules, with the natural action of G on S and V. From this we get the
exact sequence 0 —»S—S*> »$*—>S_—k_—0, and hence the exact
sequence of R-modules 0 —» R — (5% )> - (§9)* - S¢ — 0. Writing S¢ = o,
we get the two short exact sequences 0> R—-w’—>L%—0 and
0- L% > R®*—> w— 0. Dualizing the first one we get an exact sequence
0- DLS® —» R> - w — 0, which must be isomorphic to 0 > L° - R’ > w.
Since the class group C(R) is isomorphic to G=Z, (see [9]), w* =~ w. We
then compute Tr, w = Qw* = Qw = L°. Hence we have Tr, L® = o, so that
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DTr,w=DL®~L® and D Tr,L°~R. From the exact sequence S°>—
S_ =k — 0 we see that any nonisomorphism g: §_ — S _ factors through
S*— S_. Hence it follows from the equivalence Ref SG — Ref R that any
nonisomorphism h: w — o factors through R* — «. Since D Tr,w ~ L®, we
get that 0 —» L% - R’ > w — 0 is almost split [8]. Then the dual sequence
0- L% R*—> »—0is also almost split. It is now a direct consequence of
Theorem 1.1 in Part] that R, w, L® are the only indecomposables in
CM R.

5. A CONSEQUENCE OF FINITE CM TYPE

Let the assumption on S and G be as in the previous section, and assume
in addition that R is an isolated singularity and dim R = 3. We shall derive
a consequence of R being of finite CM type by considering the torsionless
SG-modules. They have the following relationship with CM R-modules.

LEMMA 5.1. Let I be the category of torsionless SG-modules T such
that Exty,(T, SG)=0.

(a) $: 7 — RefSG is an equivalence of categories.
(by If Tisin T, then Q(T)° is CM if and only if (T**/T)°=0.

Proof. Part (a) follows from [6]. Since Q(T) is reflexive, we know that
Q(T)¢ is CM if and only if Extl,((27T)* SG)°=0. We know that
T**/T ~Ext,(Tr T, SG) (see [6]). Since Extl.(T,SG)=0, the exact
sequence 0 — (T) - P - T — 0 with P projective gives an exact sequence
0 T*> P*5Q(T)* >0, so that T)*=Q(Tr T). Hence T**/T~
Ext{;((R27T)*, SG), so that (b) follows.

Since the fixed point functor Ref SG — Ref R is an equivalence, it follows
that there is an infinite number of indecomposable CM R-modules if there
is an infinite number of indecomposable torsionless 7 such that
Ex}e(T, SG)=0 and (T**/T)°=0. The following construction of new
modules having this property, starting with a reflexive module, will be
useful,

LEMMA 5.2. Let B be an indecomposable reflexive SG-module with
Extl,(B, SG)=0. If T is a submodule of B with (B/T)°=0, then T is
torsionless, ExtL (T, SG)=0, and (T**/T)¢ =0.

Proof. Since (B/T)°=0 and S is an isolated singularity, B/T has finite
length. The exact sequence 0 - T — B— B/T — 0 gives rise to the exact
sequence Exty.(B, SG) — Extl.(T, SG) — Ext.(B/T, SG). We have that
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Ext2;(B/T, SG)=0 since B/T has finite length and dim S=3, and by
assumption Extl(B, SG)=0. Hence we get Ext..(T, SG)=0. That B/T
has finite length also implies T** = B, so that (T**/T)¢=0.

To find the reflexive modules B with the desired property we shall need
the following.

Lemma 5.3. Let A be a reflexive SG-module. Then Ext} (A4, SG)=0 if
and only if A* is a CM SG-module.

Proof. Choose x#0 in R. The exact sequence of SG-modules 0—
SG >~ 8G - (S/xS) G -0 gives the exact sequence 0 —» Homg,(A4, SG)
—*Homgs(A4, SG) - Homgg(A, (S/xS) G) - Extl,(A4, SG) > --- - Since
(S/xS)G has an R-sequence of length 2, Hom (4, (S/xS) G) also does.
Hence 4* = Homgg(4, SG) is CM if Extl.(4, SG)=0. Since Extl (4, SG)
has finite length because S is an isolated singularity, 4* is not Cohen-
Macaulay if Extl;(4, SG)#0.

We are now ready to prove the following consequence of finite CM type.

THEOREM S4. In addition to the previous assumptions, assume that
G=2Z, and R is of finite CM type. Let A be an indecomposable reflexive
SG-module where G=2Z, such that A* is Cohen-Macaulay. Then
dim, A/(rA+mA)<2, and if dim; A/(rA+mA)=2, then A/(tA+mA)~
kL k_. Here m=rad S and r=rad End ;4.

Proof. Assume first that k_ occurs with multiplicity m>1 in
A/(tA + mA). Then we have an infinite family {4,} of SG-submodules of 4
containing t4 + mA4. We want to show that if 4,# 4,, then 4, & 4,. For
assume f: A,—> A; is an isomorphism. Consider as in Lemma 3.5 the
diagram

S/
A, —> 4

Endg. A is local and Endg g (4)xr=k We write g=z+h with zek and
her. Then we get A= g(A;)<zA,+h(A;)< A,, so that 4,= 4;. Hence an
infinite number of different A4, gives rise to an infinite number of non-
isomorphic reflexives 24, since Ext};(4,, SG)}=0. Since we know that the
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(24,)¢ are nonisomorphic indecomposable Cohen-Macaulay R-modules,
this shows that m< 1.

By considering A_=A®,k , we see that also k occurs with
multiplicity at most one in A/(mA + rA). This finishes the proof.

As an application of Theorem 5.4 we give the following.

PROPOSITION 5.5. Let S be the scroll of type (2, 1), and let G=Z, act on
m/m? by sending each element to its negative. Then R = S is of infinite CM

type.

Proof. We recall that S=k[[X,, X, X,,Y,, Y,]1/I, where I=
(XoX,— X3, XY, — X, Y,, X, Y, — X, Y,). Since the action on § is induced
by a free action of G on U=k[[X,, X,, X, ¥, Y,]], nonmaximal primes
in U® are unramified in U, and hence height one primes in R=S¢ are
unramified in S. Consider the S-module B=(xq, x,, ¥y), Which is also an
SG-module, and it is reflexive. Hom (B, SG) ~ Hom(B, S) = A4 = (x4, X,)
is a CM SG-module. We also know that End(B)=k, so that tBcmB.
Hence dim, B/(rB + mB) =3, which shows that R is of infinite CM type.

Theorem 54 can also be used to show that R=C[[X,Y,Z T]}/
(X* + Y?+ Z*+ T*)C is of finite CM type, when the action of G is induced
by sending each variable to its negative. If m is odd, we can choose the CM
ideal B=(X™+iT, Y +iZ), which is then clearly an SG-module. If m is
odd, one can use [18] to find a module B of rank 2 which can be used. We
point out, however, that it is already known from [17] that R is of infinite
CM type, since it is easy to see that R is a Gorenstein ring which is not an
hypersurface.

We end this section with another sufficient condition for infinite CM
type, based on using almost split sequences, similar to an argument of
Bongartz for finite dimensional algebras.

PROPOSITION 5.6. Let R be a complete integrally closed local CM
domain, with R/rad R=k algebraically closed, which is an isolated
singularity. Assume that there is some almost split sequence 0 > A - B11
BU X - C -0, where B is indecomposable in CM R.

(a) If rkB<rkC and B is not injective, then R is of infinite CM type.
(b) If rkA >rkB and B is not projective, then R is of infinite CM type.

Proof. (a) If B is not injective, we have an almost split sequence
0-B->CUCUY->1t"'B-0, and if rkB<rkC, then rkC <rk(z~'B).
Since rkC > rkB = 1, C is not isomorphic to the dualizing module w. Hence
we have an almost split sequence 0> C -1 'BLt 'BUZ -1 !C—-0.
Continuing this way, we get indecomposable CM modules of arbitrarily
large rank, and we are done. The proof of (b) is analogous.
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We note that in both examples of rings R of finite CM type given in this
paper, we have almost split sequences with a repeated term in the middle.
For the scroll of type (2, 1) we have, in the notation of Part I, almost split
sequences 0 > R- AN AUB—-K—-0and 0-K—->RIRIUC->A-0.
But in the first case A is injective and rkR =rkA, and in the second case R
is projective and rkR = rkA.

For the fixed ring in Section4 we have the almost split sequences
0-L°>R*>w—-0 and 0> R—-w>—>L%—0. In the first case R is
projective, in the second case w is injective, and rkR = rkw.

We illustrate Proposition 5.6 by sketching a different proof for the fact
mentioned above that R=C[[X, Y, Z, T])/(X*>+ Y*+ Z*+ T?)* is of
infinite CM type. R can be shown to be isomorphic to the subring C[ [ x5,
xys?, ys?, x2st, xyst, y2st, x*, xyt?, y#21] of C[[x, v, s, t1]. Here there
is an almost split sequence 0 > E—» KIT K1 X > Tr E—0, where E=
(xs, xt, ys, yt), K= (xs%, xst, xt?, ys?, yst, yt*), and rk Tr E=3. Since K is
not injective, Proposition 5.6 applies.
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