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a b s t r a c t

The classical group analysis approach used to study the symmetries of integro-differential
equations in a semiclassical approximation is considered for a class of nearly linear integro-
differential equations. In a semiclassical approximation, an original integro-differential
equation leads to a finite consistent system of differential equations whose symmetries
can be calculated by performing standard group analysis.

The approach is illustrated by the calculation of the Lie symmetries in explicit form for
a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov
population equation.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Themathematical models used for studying nonlocal interactions in physical, chemical, and biological systems are based
on nonlinear integro-differential equations (IDEs).

The important IDEs widely used in applications are kinetic equations. A detailed review of kinetic phenomena and their
modeling in plasma physics, in rarefied gas dynamics, and the other physical systems can be found elsewhere [1,2].

The theory of Bose–Einstein condensates substantially employs theGross–Pitaevskii equation (GPE) [3]. The nonlocal GPE
describes the evolution of coherent quantumensembles of dipolar quantumgaseswith long-range dipole–dipole interaction
which gives rise to novel properties of quantum matter (see, e.g., [4], and references therein).

The Fokker–Planck equation with a nonlocal nonlinearity was used in a stochastic theory involving feedback and a
nonlinear family of Markov diffusion processes [5].

The classical Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) population equation [6,7] has been used in mathematical
biology to explain the space–time evolution of microbiological population densities (bacteria or cells) due to the diffusion
mechanism. To take into consideration long-range interactions of individuals typical of the colonial organization ofmicrobial
populations [8], nonlocal generalizations of the FKPP equation are used [9]. Nonlocal models are aimed, in particular, at
describing the pattern formation in bacterial colonies [9]. This contributes to the study of micro-morphogenesis, which is
of particular interest in the fundamental problems of modern microbiology [8].

The symmetry groups of IDEs are calculated by direct or indirect methods [10]. Algorithms of indirect calculation are
based on replacing the input nonlocal IDEwith a system of partial differential equations (PDEs). The system is then analyzed
by the standard methods of the classical Lie group analysis of PDEs [11–14]. Nonlocal equations can be reduced to PDEs by
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using the method of moments or a covering method, amongst others (see, e.g., [10]). The first method was used to calculate
the Lie point symmetry group for the Vlasov–Maxwell equations in plasma theory [15] and for the Benney, Vlasov-type,
and Boltzmann-type kinetic equations [16]. The covering method was developed [17] and applied to a coagulation kinetic
equation.

Direct methods were developed and also applied to the Boltzmann equation, equations of motion of viscoelastic media,
the Benney, and the Vlasov–Maxwell equations (see [1,10,18,19] and references therein).

Advances in group analysis were achieved in the theory of one-parameter and multi-parameter approximate
transformation groups initiated by Baikov et al. [20]. Similar ideas were suggested by Fushchych et al. [21]. Approximate
symmetries involve a small parameter and are calculated for PDEs with or without a small parameter. The approximate
symmetries were found, for example, for the Boussinesq equation [22], for nonlinear wave equations [23], and for other
types of equation [20].

The area of nonlocal methods has attracted research because of new prospects for the development of symmetry
analysis. Back in the 1990s, Fushchych and Shtelen [24] considered nonlocal transformations generated by linear differential
operators. Fushchych et al. [25] used nonlocal ansätze to reduce nonlinear PDEs to equations with a lower number
of independent variables. The nonlocal ansätze were shown to relate to conditional (nonclassical) symmetries of PDEs
[26–29]. Akhatov et al. studied contact and quasilocal symmetries for nonlinear diffusion equations [30].

These ideas have been developed by Bluman et al. [31], Bluman and Cheviakov [32], Popovych et al. [33], Kunzinger and
Popovych [34], Boyko [35], Zhdanov [36], and others.

Note that, in all the above references, the approximate symmetries and solutions of the equations under consideration
were regularly dependent on a small parameter.

However, the same operator is known to possess different properties in different classes of functions (e.g., a
differentiation operator is bounded on C2 and unbounded on L2). As a consequence, the symmetries themselves and the
way of their calculation depend on the class of functions for which the equation operator is defined. This leads to the idea of
defining the equation operator in a class of functions singularly depending on a small asymptotic parameter and of finding
the relevant approximate solutions, symmetries, conservation laws, and symmetry operators.

Such classes of functions are used to construct solutions of PDEs in a semiclassical approximation in the context of the
Maslov canonical operator method [37], of the complex germ method [38,39], or of the generalized adiabatic method [40].

Themain idea of this paper is to consider a techniquewhich admits classical group analysismethods to be applied to study
the symmetries of IDEs with the use of a semiclassical approximation. We consider here a special class of equations: nearly
linear IDEs. In a semiclassical approximation, an original IDE leads to a finite consistent system of differential equations
whose symmetries can be investigated by standard group analysis [11–14].

In the next section, the construction of a consistent finite system is considered in the framework of a semiclassical
approximation for a nearly linear one-dimensional IDE of general form.

The scheme for calculating the symmetries of the consistent system is given in Section 2, where the integral constraints
that arise in this approach are also discussed.

In Sections 3 and 4, the general ideas are illustrated by a simple but nontrivial example of a one-dimensional nonlocal
FKPP equation of particular type. The Lie symmetries and the corresponding similarity solution are found in explicit form.

2. The consistent system and a semiclassical approximation

Consider an rth-order evolution IDE with a small asymptotic parameter ε as a factor of the partial derivatives, i.e.,

L̂[u](t, x, ε) = 0, (2.1)

L̂[u](t, x, ε) = −εut(t, x) + F̂ [u, I](t, x, ε), (2.2)

F̂ [u, I](t, x, ε) = F(t, x, u(t, x), εux(t, x), . . . , εruxx···x(t, x); Î[u](t, x), ε), (2.3)

where the smooth real scalar function u(t, x) depends on time t and belongs to the Schwarz space S in the space variable x.
Here Î[u](t, x) = (Î1[u](t, x), . . . , Îl[u](t, x)),

Îk[u](t, x) =


∞

−∞

bk(t, x, y)u(t, y)dy, k = 1, l; (2.4)

bk(t, x, y) is a smooth function of t, x, y growing with x, y no faster than a polynomial; ux = ∂u(t, x)/∂x; and uxx =

∂2u(t, x)/∂x2, . . .
Denote by t, x, u, u1, u2, . . . , ur; I1, . . . , Il a set of real independent variables. A collection of variables zr = (x, u, u1,

u2, . . . , ur) can be assigned to as a point of the jet space J (r) (see, e.g., [13]). The right-hand side of (2.3) is determined by a
function

F(t, x, u, u1, u2, . . . , ur; I1, . . . , Il) = F(t, zr , I, ε), (2.5)
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smooth in its arguments, I = (I1, . . . , Il). Function (2.5) is a symbol of the operator F̂ . Note that u1 = D̂xu, . . . , uk = D̂xuk−1,
where

D̂x =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1
+ · · · (2.6)

is the operator of total differentiation with respect to x acting on the functions depending on the jet space variables
x, u1, u2, . . .

In the method of moments (e.g., [10]), a dynamic system of ODEs governing the evolution of the moments

⟨x(k)
⟩(t) =


∞

−∞

xku(t, x)dx, k = 0, ∞, (2.7)

is deduced from the input IDE and is examined by standard group analysis methods [11–14]. Practical use of the method of
moments faces significant problems. The complete set of moments is infinite, so the existence of solutions, the integrability,
and the calculation of symmetries involve fundamental problems. Another traditional problem with the method is how
to recover a solution from its moments [41]. To get around these problems, we construct approximate solutions for Eqs.
(2.1)–(2.3).

It can be thought that the small parameter ε implies small gradients in Eqs. (2.2) and (2.3). But this is true only if solutions
of Eq. (2.1) are sought in a class of functions regular in the parameter ε. When solutions of Eq. (2.1) are constructed in a class
of functions singular in ε, the partial derivatives are not supposed to be small. For a class of functions singular in ε, we take
the class of trajectory concentrated functions

P ε
t (X(t, ε), S(t, ε)) =


u

u(t, x, ε) = ϕ


∆x
√

ε
, t, ε


exp


1
ε
S(t, ε)


. (2.8)

Here, the real function ϕ(η, t, ε) belongs to the Schwartz space S in the variable η ∈ R and smoothly depends on
√

ε as
ε → 0; ∆x = x − X(t, ε); and the real functions S(t, ε) and X(t, ε) characterizing the class P ε

t (X(t, ε), S(t, ε)) regularly
depend on

√
ε in a neighborhood of ε = 0, and are to be determined. Where this does not lead to confusion, we use the

shorthand notation P ε
t for (2.8), and write X(t), S(t) instead of X(t, ε), S(t, ε).

For the functions u of the class P ε
t , the following asymptotic estimates are valid [42]:

∥∆̂k,l(t, ε)u∥
∥u∥

= O(ε(k+l)/2),
∥T0u∥
∥u∥

= O(ε), (2.9)

whereT0u = [ε∂t + εẊ(t)∂x − Ṡ(t)]u, (2.10)

∥ · · · ∥ is the norm in L2, and ∆̂k,l(t, ε) is a linear operator: ∆k,l(ε∂x, t, x, ε) = (ε∂x)
k(x − X(t))l, k, l ∈ N.

With these estimates, Eq. (2.1) can be written as a formal power series,
L̂0[u] +

√
εL̂1[u] + εL̂2[u] + · · ·


(t, x) = 0, (2.11)

u(t, x) = u(0)(t, x) +
√

εu(1)(t, x) + εu(2)(t, x) + · · · , (2.12)

where u(k)(t, x) ∈ P ε
t and

∥L̂k[u(k)
]∥

∥u(k)∥
= O(ε). (2.13)

Note that the estimates (2.12) do not prevent the parameter ε from entering both in the operators L̂k and in the functions
u(k)(t, x). For the operator L̂ of the form (2.3), the principal term u(0)(t, x) in the asymptotic expansion (2.12) is estimated
as [43]

L̂u(0)(t, x) = O(ε3/2). (2.14)

Problem (2.11)–(2.13) is solved in the context of perturbation theory:

L̂0[u(0)
](t, x) = 0, (2.15)

L̂′

0[u
(0)

](t, x)u(1)
+ L̂1[u(0)

](t, x) = 0, (2.16)
· · · ,

where the linear operator L̂′
[u] is the Frechet derivative of the nonlinear operator L̂ calculated for u ∈ P ε

t .
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It is seen from (2.15)–(2.16) that the principal term u(0) is found from the nonlinear problem (2.15) that should be
solved exactly. The higher-order terms, u(1), u(2), . . ., of the expansion (2.12) are found from the linear equations (2.16).
Consequently, the nonlinear problem for the principal term u(0) is the key point in constructing an asymptotic solution, and
below we focus on this problem. The solution of the linear problems is beyond of the scope of this work.

Let us obtain an analog to Eq. (2.15) in a semiclassical approximation. In constructing the semiclassical asymptotics (2.12),
the momentsmu(t), xu(t), and the centered moments α

(k)
u (t) are used instead of (2.7). These moments are defined as

mu(t) =


∞

−∞

u(t, x)dx, (2.17)

xu(t) =
1

mu(t)


∞

−∞

xu(t, x)dx, (2.18)

α(k)
u (t) =

1
mu(t)

⟨∆xk⟩(t) =
1

mu(t)


∞

−∞

(x − X(t, ε))ku(t, x)dx, k > 2. (2.19)

For u(t, x) ∈ P ε
t , the integrals (2.17)–(2.19) do exist; then we can estimatemu(t), xu(t) for ε → 0 as

mu(t) = O(1), xu(t) = O(1). (2.20)

If X(t, ε) = xu(t), we have, from (2.9),

α(k)
u (t) = O(εk/2), k > 2. (2.21)

Expanding bk(t, x, y) in (2.4) into a formal power series in the variables ∆x = x − xu(t) and ∆y = y − xu(t),

Ik[u](t, x) = mu(t)
∞

l=j=0

1
l!j!

∂ l+jbk(t, x, y)
∂xl∂yj


x=y=xu(t)

∆xlα(j)
u (t),

we rewrite the operator F̂ (defined by (2.3)) in Eq. (2.1) as

F̂ [u, I](t, x, ε) =
ˆ̃F [u, Θ](t, x, ε)

= F̃(t, x, u(t, x), εux(t, x), ε2uxx(t, x), . . . , εruxx···x(t, x); Θu(t); ε), (2.22)

where

Θu(t; ε) =

mu(t; ε), xu(t; ε), α(2)

u (t; ε), . . .


(2.23)

are the moments (2.17)–(2.19). In this notation, Eq. (2.1) reads

− εut(t, x) +
ˆ̃F [u, Θ](t, x, ε) = 0. (2.24)

To find the principal term u(0) of (2.12), we expand the coefficients of Eq. (2.24) in a power series of ∆x = x − xu(t),
truncating the series after the term of the order of O(ε) according to estimates (2.9). In view of estimates (2.20), (2.21),

we also keep only the moments mu(t), xu(t), α(2)(t) in Eq. (2.24). As a result, the operator ˆ̃F is reduced to ˆ̃F 0 quadratic in
coordinates and derivatives. Then Eq. (2.24) will be written as

− ut(t, x) + Ĥ0[u](t, x) = 0, (2.25)

where Ĥ0[u](t, x) = ε−1 ˆ̃F 0[u, Θ](t, x, ε). From Eq. (2.25), the dynamical system

− Θ̇u(t; ε) + Γ (Θu(t; ε), t; ε) = 0 (2.26)

governing the evolution of the moments Θu(t) = (mu(t), xu(t), α(2)(t)) is deduced. The right-hand side of (2.26),

Γ (Θu(t; ε), t; ε) = (f (Θu(t; ε), t; ε), g(Θu(t; ε), t; ε), h(Θu(t; ε), t; ε)), (2.27)

consists of the functions f , g , and h, corresponding to the moments mu(t; ε), xu(t; ε), and α
(2)
u (t; ε), respectively. We call

Eqs. (2.26) the Einstein–Ehrenfest (EE) dynamical system.
By introducing the aggregate variable

w(t, x) = (u(t, x), Θu(t)), (2.28)

we rewrite system (2.25) and (2.26) as a consistent system combining the partial differential equations (2.25) and the
dynamical EE system (2.26):

L̂[w](t, x) = 0. (2.29)
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Here,

L̂[w] = (−ut + Ĥ(0)
[u], −Θ̇u + Γ (Θu, t)). (2.30)

Therefore, in the semiclassical approximation, the original IDE (2.1) and (2.2) results in the consistent system (2.29) that
determines the principal term in the semiclassical expansion (2.12).

Since the consistent system contains a finite number of equations, its symmetry can be investigated by a standardmethod
of classical group analysis and can be found exactly [11–14].

Such schemes for constructing semiclassical asymptotic solutions have been developed for linear quantum mechanical
equations (see, e.g., [44]). For the linear case L̂′

[u] = L̂, the asymptotic solutions can be found explicitly if the unperturbed
problem (2.15) can be solved exactly. Thus, to obtain an exact solution of the unperturbed problem (2.25) and (2.29) is the
key point of the construction of an asymptotic solution to the input Eq. (2.1).

The nonlocal Gross–Pitaevskii equation (known as the Hartree-type equation in the mathematical literature) [42], the
nonlocal Fokker–Planck equation [45], and the nonlocal FKPP equation [43] are examples of nonlinear equations for which
semiclassical asymptotics have been constructed.

These equations belong to a special class of nearly linear IDEs. Eq. (2.1) is a nearly linear equation if the operator Ĥ (2.3)
is linear in u(t, x), ux(t, x), . . . , uxx···x(t, x) with the coefficients depending on t, x, I[u](t, x).

Note that by a nearly linear equation is meant a nonlinear equation admitting a class of solutions which tend to the
solutions of the corresponding linear equation with ~ → 0 [46].

Symmetry analysis [11–14] employed together with a semiclassical approximation formalism [38,39] provides an
approach to find semiclassical asymptotics for a wide class of nonlinear IDEs. An investigation of this type was carried out
for linear equations of nonrelativistic quantum mechanics [47].

The construction of semiclassical asymptotics [38,39] requires only a finite approximation of the consistent system (2.24)
and (2.26).

Let us turn to calculating the symmetries of the consistent system.

3. Symmetries of the consistent system

The symmetry of Eq. (2.29) is a nonlinear operator χ̂ such that

L̂[w] = 0 ⇒ L̂[w + sχ̂ [w]] = o(s). (3.1)

Here, s is a real parameter of a local one-parametric Lie group of symmetry operators of Eq. (2.29) with the generator
χ̂ acting on an arbitrary solution w from (2.28) of the consistent system (2.29), (2.30). The operator χ̂ is defined as
χ̂ [w] = (σ̂ [u](t, x), ϑ̂[Θu](t)), where the operators σ̂ and ϑ̂ act on u(t, x) and Θu(t), respectively.

The determining equation for χ̂ is

L̂[w] = 0 ⇒ L̂′
[w]χ̂ [w] = 0, (3.2)

where L̂′ is the Frechet derivative.
According to [11–14], the symbol χ of the operator χ̂ can be taken, without loss of generality for the q-order symmetry

χ̂ of the consistent system (2.29), as

χ(t, zq, Θu; ε) =

σ(t, zq, Θu; ε), ϑ(t; ε)


, (3.3)

where

σ(t, zq; ε) = σ(t, x, u, u1, . . . , uq, Θu; ε), (3.4)

ϑ(Θu, t; ε) =


ϑ (mu)(Θu, t; ε), ϑ (xu)(Θu, t; ε), ϑ (α

(2)
u )(Θu, t; ε)


(3.5)

are the symbols of the operators σ̂ and ϑ̂ , respectively. We denote the symmetry by the symbol χ = (σ , ϑ).
The determining equation (3.2) in operator form reads

∂σ̂

∂t
= H ′

[u](t, x, ε)σ̂ , ut(t, x) = Ĥ[u](t, x, ε), (3.6)

ϑ̇ = Γ ′(Θu(t), t, ε)ϑ, Θ̇u = Γ (Θu(t), t, ε). (3.7)

Let the functions H, Γ , χ, σ , ϑ , and ζ depending on the real variables t, zq, Θu; ε be the symbols of the corresponding
operators, and let

Yζ =


i=0

(Dx)
i(ζ )

∂

∂ui
, (3.8)

whereDx is the operator of total differentiation (2.6).
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The determining equations (3.6) and (3.7) for the symmetry (σ , ϑ) can be written in terms of the operator symbols
as [11–14]

∂σ

∂t
+YH(σ ) −Yσ (H) +

∂σ

∂Θu
Γ (Θu(t), t) −

∂H
∂Θu

ϑ = 0, (3.9)

∂ϑ

∂t
+

∂ϑ

∂Θu
Γ (Θu(t), t) −

∂Γ

∂Θu
ϑ = 0. (3.10)

By solving Eqs. (3.6) and (3.7) or (3.9) and (3.10), we obtain the intermediate symmetries [10] σ and ϑ . Similar to
(2.17)–(2.19), we have additional integral constraints:

ϑ (mu)(t) =


+∞

−∞

σ̂ [u](t, x)dx,

ϑ (xu)(t) =
ϑ (mu)(t)
mu(t)

(xσ (t) − xu(t)), (3.11)

ϑ (α(2))(t) = −
ϑ (mu)(t)
mu(t)

α(2)
u (t) +

1
mu(t)


+∞

−∞

(x − xu(t))2σ̂ [u](t, x)dx.

Here, xσ =
1

ϑ(mu)(t)


+∞

−∞
xσ̂ [u](t, x)dx.

Let the function σ be the symbol of the first-order operator; then, the relations [11–13]

σ = η1
− ξ 1ut − ξ 2ux, ϑ (mu) = η2

− ξ 1ṁu,

ϑ (xu) = η3
− ξ 1ẋu, ϑ (α

(2)
u )

= η4
− ξ 1α̇(2)

u (3.12)

yield the generatorX = ξ 1∂t + ξ 2∂x + η1∂u + η2∂mu + η3∂xu + η4∂
α

(2)
u

(3.13)

of the point symmetry group for the consistent system (2.25) and (2.26) or (2.29).

4. The nonlocal FKPP equation with a quadratic operator

To illustrate the specificity of group-theoreticalmethods as applied to integro-differential equations by a simple example,
we consider a one-dimensional FKPP equation with a nonlocal nonlinearity:

−∂t + ε∂2
x + a −


+∞

−∞

b(t, x, y)u(t, y)dy

u(t, x) = 0. (4.1)

Here, ε is the diffusion coefficient. In general, b(t, x, y) is an influence function smooth in its arguments, and a is a positive
constant. For simplicity, we consider the calculation of symmetries for the case b(t, x, y) = b = const.

For Eq. (4.1) written in the form (2.25), we have

−ut(t, x) + Ĥ[u](t, x) = 0, (4.2)

Ĥ[u](t, x) = εuxx(t, x) + au(t, x) − bmu(t)u(t, x). (4.3)

Differentiating Eq. (2.17) with respect to t and taking into account (4.2) and (4.3), we obtain

ṁu(t) = amu(t) − bmu(t)2 = ϕ(mu(t))mu(t), (4.4)

where

ϕ(mu) = a − bmu. (4.5)

Similarly, from (2.18), (2.19), (4.2) and (4.3), we obtain for xu(t) and α
(k)
u (t)

ẋu = 0, (4.6)

α̇(2)
u = 2εmu, α̇(3)

u = 0, α̇(k)
u = εk(k − 1)α(k−2)

u , k > 4. (4.7)

Consider Eqs. (4.4), (4.6) and (4.7) as the Einstein–Ehrenfest (EE) system describing the evolution of time-dependent
variablesmu(t), xu(t) and α

(k)
u (t).
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The solution of Eqs. (4.4), (4.6) and (4.7) has the form

mu(t) =
am0eat

a + bm0(eat − 1)
, xu(t) = x0,

α(2)
u =

2ε
b

log

1 +

bm0

a
(eat − 1)


+ α

(2)
0 , α(3)

u = α
(3)
0 , (4.8)

α(k)
u = εk(k − 1)

 t

0
α(k−2)
u (t)dt + α

(k)
0 , k > 4, (4.9)

where

mu(t)|t=0 = m0, xu(t)|t=0 = x0, α(k)
u |t=0 = α

(k)
0 , k > 2.

Note that Eqs. (4.2) and (4.3) depend only on the zero-order moment. The EE system (4.4), (4.6) and (4.7) is of recurrent
type, i.e. any subsystem of the moment system, including the moments of the Mth order, does not include the moments of
the higher order.

Therefore, we can take Eqs. (4.2)–(4.4) as the consistent system for calculating the symmetries.

5. Lie symmetries

The symmetries χ̂ = (σ̂ , ϑ̂) of the consistent system (4.2)–(4.4) are given by the symbols (3.4) and (3.5),

σ = σ(t, x, zq,mu),

ϑ = ϑ(t,mu).
(5.1)

Here, zr = (x, u, u1, u2, . . . , ur); t, x, u, u1, u2, . . . , ur , andmu are independent real variables.
The function ϑ(t,mu(t)), according to (3.11), is related to σ(t, x, u(t, x), ux(t, x), . . . , ux···x(t, x),mu(t)) as

ϑ(t) =


+∞

−∞

σ̂ [u](t, x)dx. (5.2)

The Lie symmetries of Eqs. (4.2) and (4.3) are related to σ of the second order [11–13]:

σ = σ(t, x, u, u1, u2,mu), ϑ = ϑ(t,mu). (5.3)

The determining equations (3.9) and (3.10) for σ of the form (5.3) and for ϑ read

σt + ϕuσu + ϕu1σu1 + ϕu2σu2 − ϕσ − ε(σxx + 2u1σxu + 2u2σxu1 + 2u3σxu2 + 2u1u2σuu1 + 2u1u3σuu2

+ 2u2u3σu1u2 + u2
1σuu + u2

2σu1u1 + u2
3σu2u2) + ϕmuσmu + bϑu = 0, (5.4)

ϑt + ϕmuϑmu = −bϑmu + ϕϑ. (5.5)

With the change of variables

τ = t −
1
a
log

mu

a − bmu
, z =

1
a
log

mu

a − bmu
, (5.6)

we have

∂

∂t
+ ϕmu

∂

∂mu
=

∂

∂z
, (5.7)

and Eqs. (5.4) and (5.5) take the form

σz + ϕuσu + ϕu1σu1 + ϕu2σu2 − ϕσ − ε(σxx + 2u1σxu + 2u2σxu1

+ 2u3σxu2 + 2u1u2σuu1 + 2u1u3σuu2 + 2u2u3σu1u2 + u2
1σuu + u2

2σu1u1 + u2
3σu2u2) + bϑu = 0, (5.8)

ϑz = ϑ
a(1 − beaz)
1 + beaz

. (5.9)

From (5.9), we have

ϑ = S(τ )
eaz

(1 + beaz)2
, (5.10)

where S(τ ) is an arbitrary function of τ .
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Eq. (5.8) is solved in the standard way [11–13], and its general solution, in view of (5.10), is obtained as

σ =


1
2
A1(τ )z2 + A2(τ )z + A3(τ )


u2 +


1
2ε

A1(τ )zx +
1
2ε

A2(τ )x + A4(τ )z + A5(τ )


u1

+


1

8ε2
A1(τ )x2 +

1
2ε

A4(τ )x +
1
4ε

A1(τ )z + S(τ )
1

a(1 + beaz)
+ A6(τ )


u + R(τ , z, x). (5.11)

Here, Ai(τ ), i = 1, . . . , 6, are arbitrary functions of τ , and R(τ , z, x) is an arbitrary solution of the equation

Rz = εRxx + ϕR. (5.12)

DefiningmR =


+∞

−∞
R(τ , z, x)dx, in view of (5.12), we obtain an equation for the functionmR(τ , z):

(mR)z = ϕmR. (5.13)

In view of the integral relation (5.2), (5.10) and (5.11) yield

A1(τ ) = A4(τ ) = 0, A6(τ ) =
1
2ε

A2(τ ) −
mR

mu
. (5.14)

In terms of the variables (t,mu) related to (τ , z) by (5.6), relations (5.10), (5.11), in view of (5.14), take the form

ϑ = S(τ )
mu(a − bmu)

a2
, (5.15)

σ = A2(τ )σ1 + A3(τ )σ2 + A5(τ )σ3 + S(τ )σ4 + σ5. (5.16)

Here,

σ1 =
1
a
log

mu

a − bmu
u2 +

1
2ε

xu1 +
1
2ε

u, (5.17)

σ2 = u2, σ3 = u1, (5.18)

σ4 =
a − bmu

a2
u, (5.19)

σ5 = R −
mR

mu
u. (5.20)

Note that the equality τ(t,mu(t)) = const holds for the solutions of Eq. (4.4). In view of (5.13), we obtain that
mR(t,mu(t))/mu(t) = const.

From (5.15) and (5.17) to (5.20) we have the following symmetries: χi = (σi, ϑi), i = 1, . . . , 5, for the consistent system
(4.2)–(4.4):

χ1 = (σ1, 0) (5.21)

χ2 = (σ2, 0), χ3 = (σ3, 0), (5.22)

χ4 =


σ4,

a − bmu

a2
mu


, (5.23)

χ5 = (σ5, 0). (5.24)

According to (3.12) and (3.13), the functions σ and ϑ given by (5.17)–(5.24) give rise to the following generators of the
symmetry Lie group of point transformations for Eqs. (4.2) and (4.3):

X1 =
1
a
log

mu

ϕ

∂

∂t
+

x
2

∂

∂x
−


1
2

−
ϕ

a
log

mu

ϕ


u

∂

∂u
+

ϕmu

a
log

mu

ϕ

∂

∂mu
,

X2 = ϕu
∂

∂u
+ ϕmu

∂

∂mu
,

X3 =
∂

∂x
, X4 =

∂

∂t
, X5 =


R −

mR

mu
u


∂

∂u
. (5.25)
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The point transformations of dependent and independent variables generated byXi, i = 1, . . . , 5, are

X1 : x′
= xe

s
2 , t ′ = t + (es − 1)

1
a
log

mu

ϕ
,

u′
= u

m′
u

mu
e−s/2, m′

u =
a(mu/ϕ)e

s

1 + b(mu/ϕ)e
s ,

X2 : x′
= x, t ′ = t, u′

= u
m′

u

mu
, m′

u =
amuesa

a − bmu + bmuesa
,

X3 : x′
= x + s, t ′ = t, u′

= u, m′

u = mu,X4 : x′
= x, t ′ = t + s, u′

= u, m′

u = mu,X5 : x′
= x, t ′ = t, u′

= R
mu

mR


1 − e−(mR/mu)s


+ ue−(mR/mu)s, m′

u = mu,

where s is a group parameter.
Note that

1
a
log

mu

ϕ
= t + const

is valid for the solutions of Eq. (4.4).
Let us find a group-invariant solution of Eqs. (4.2) and (4.3) using σ1 of the form (5.17). To this end, we have to solve

Eq. (4.2) together with

σ̂1[u](t, x) = 0. (5.26)

Eq. (5.26), in view of (5.17), takes the form

αu(t)uxx(t, x) + xux(t, x) + u(t, x) = 0, (5.27)

where the coefficient

αu(t) =
2ε
a

log
mu(t)

a − bmu(t)
, (5.28)

depending on the momentmu(t), is a functional of u(t, x).
To construct a solution of Eq. (5.27), we previously solve the linear equation

α(t)uxx(t, x) + xux(t, x) + u(t, x) = 0 (5.29)

with a given arbitrary function α(t) having two independent solutions:

u1(t, x, α(t)) = v1(t) exp


−
x2

2α(t)


, (5.30)

u2(t, x, α(t)) = v2(t) exp


−
x2

2α(t)

  x

0
exp


x̃2

2α(t)


dx̃. (5.31)

Here, v1(t) and v2(t) are arbitrary functions of t .
The function αu1(t) is related to the second moment u1(t, x)α

(2)
u1 (t) as

αu1(t) =
α

(2)
u1 (t)

mu1(t)
.

For α(t) = αu1(t) in (5.30), u1(t, x, αu1(t)) is a solution of (5.27).
From (2.17) and (5.30), we havemu1(t) = v1(t)


2παu1(t), or

v1(t) = mu1(t)(2παu1(t))
−

1
2 = mu1(t)


4πε

a
log

mu1(t)
a − bmu1(t)

−
1
2

.

It follows that

u1(t, x, αu1(t)) = mu1(t)

4πε

a
log

mu1(t)
a − bmu1(t)

−
1
2

exp


−
x2

2αu1(t)


, (5.32)

where

αu1(t) =
2ε
a

log
mu1(t)

a − bmu1(t)
. (5.33)
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Direct calculation shows that (5.32) satisfies Eq. (4.2) in view of (4.4). Summarizing, we have that Eqs. (5.32) and (5.33)
define a group-invariant solution of Eqs. (4.2) and (4.3).

For the solution u2(t, x, α(t)), (5.31), the Riemann integral determining the moment mu2(t) by (2.17) does not exist.
Consequently, u2(t, x, α(t)) is not a solution of Eq. (4.2).

6. Discussion

For nearly linear IDEs, the semiclassical approach allow us to bridge the original IDE and a finite consistent system of
differential equations consisting of a PDE including nonlinear terms in the form of moments and a finite system of ODEs
describing the evolution of the moments. Classical group analysis applied to the consistent system provides information on
the original nonlinear IDE. Namely, the solution of the consistent system is a key point in constructing the principal term in
semiclassical asymptotic expansions.

For the nonlocal FKPP equation, the consistent system is obtained in the class of trajectory concentrated functionsP ε
t [43],

which ensures the existence of momentsmu(t), xu(t), α
(2)
u (t) ((2.17)–(2.19)).

The specificity of the group analysis of a consistent system shows up, in particular, in the integral constraints (e.g., (5.2))
that reduce arbitrariness in constructing group-invariant solutions.

It should also be noted that the symmetryX5 characteristic of nonlinear equations allows a linearization. An interesting
example of this type of linearization is Burger’s equation, whose solutions are reduced to positive solutions of the linear
heat equation by using the Hopf–Cole transform.

Group analysis reveals the relationship between these equations and derives the transformation [13].
More complicated cases of linearization with contact transformations are considered elsewhere [48,49].
Themethods of differential constraints, degenerate hodograph, and group analysis for constructing solutions of PDEs are

considered comprehensively elsewhere [19].
The nonlocal FKPP equation (4.1) also admits a linearization. For the general case of an operator quadratic in the space

variable and derivatives, the solution of the Cauchy problem has been constructed [43].
The approach considered, which is based on the reduction of IDEs to a finite consistent system followed by symmetry

analysis, has awide area of applications: symmetry analysis of the FKPP equationwith coefficients ofmore general form, and
other nonlinear equations, such as the Fokker–Planck equation and the Hartree-type equation. Calculations of high-order
symmetries and conditional symmetries are also of interest.

Additional prospects for symmetry analysis applications arise when a semiclassical approximation is constructed in a
class of functions other than P ε

t . For example, in a class of functions localized on curves or surfaces, the consistent system
can consist of integro-differential equations, and this is a case absolutely other than that of P ε

t .
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