Blow-up of solutions to semilinear parabolic equations on Riemannian manifolds with negative sectional curvature

Fabio Punzo
Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Roma, Italy

1. Introduction

We are concerned with finite time blow-up and global existence of solutions to semilinear parabolic Cauchy problems of the following type:

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \Delta u + h(t)|u|^{p-1}u \quad \text{in } M \times (0, T), \\
 u &= u_0 \quad \text{in } M \times \{0\},
\end{aligned}
\]

(1.1)

where \(M \) is a smooth \(N \)-dimensional complete noncompact Riemannian manifold with metric \(g \) and negative sectional curvature, \(\Delta \) is the Laplace–Beltrami operator on \(M \); \(h \) is a positive continuous function defined in \([0, \infty)\), the initial datum \(u_0 \) is continuous and bounded on \(M \), \(p > 1 \).

It is well known that the corresponding problem

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \Delta u + |u|^{p-1}u \quad \text{in } \mathbb{R}^N \times (0, T), \\
 u &= u_0 \quad \text{in } \mathbb{R}^N \times \{0\}
\end{aligned}
\]

(1.2)

(\(u_0 \geq 0 \)) does not admit global solutions for \(1 < p \leq 1 + \frac{2}{N} \) (see [8,14]). Instead, for \(p > 1 + \frac{2}{N} \) global solutions exist, provided that \(u_0 \) is sufficiently small. This dichotomy is usually said Fujita’s phenomenon.

Furthermore, it is proved in [16] that problem

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \Delta u + h(t)|u|^{p-1}u \quad \text{in } \Omega \times (0, T), \\
 u &= 0 \quad \text{in } \partial \Omega \times (0, T), \\
 u &= u_0 \quad \text{in } \Omega \times \{0\},
\end{aligned}
\]

(1.3)

(\(u_0 \geq 0 \)) does not admit global solutions for \(1 < p \leq 1 + \frac{\alpha}{N} \) (see [8,14]). Instead, for \(p > 1 + \frac{\alpha}{N} \) global solutions exist, provided that \(u_0 \) is sufficiently small. A key role will be played by the infimum of the \(L^2 \)-spectrum of the operator \(-\Delta \) on \(M \).
has a global solution, when u_0 is nonnegative and small enough, Ω is a bounded domain of \mathbb{R}^N; moreover, $h(t) \equiv 1$ ($t \geq 0$), or
\begin{equation}
\alpha_1 t^q \leq h(t) \leq \alpha_2 t^q \quad (t > t_0)
\end{equation}
for some $\alpha_1 > 0$, $\alpha_2 > 0$, $t_0 > 0$ and $q > -1$. On the contrary, if $h(t) = e^{\omega t}$ ($t \geq 0$), then a Fujita-type phenomenon holds for certain values of α.

Results given in [8] are generalized to Riemannian manifolds M in [19], provided there exist $C > 0$ and $\alpha > 2$ such that:

(a) $\mu(B(x, r)) \leq C r^d$, when r is large and for all $x \in M$;
(b) $\frac{\alpha}{4} \log \frac{h}{r} \leq \frac{\sqrt{r}}{r}$, when $r = d(x_0, x)$, for some $x_0 \in M$, is smooth. Here μ is the Riemannian volume on M, \sqrt{r} is the volume density of M, $B(x, r)$ is the geodesics ball with center $x \in M$ and radius $r > 0$.

Observe that if the Ricci curvature of M is nonnegative, then (a)–(b) are satisfied. On the other hand (see [11, Section 10.1]), hypotheses (a)–(b) imply that $\lambda_1(M) = 0$, where $\lambda_1(M)$ is the infimum of the L^2-spectrum of the operator $-\Delta$ on M.

Moreover, results similar to those established for (1.3) are obtained in [1] for problem (1.1) on the hyperbolic space \mathbb{H}^N, that is
\begin{equation}
\begin{aligned}
\partial_t u &= \Delta u + h(t)|u|^{p-1}u \quad \text{in} \; \mathbb{H}^N \times (0, T), \\
u &= u_0 \quad \text{in} \; \mathbb{H}^N \times \{0\}
\end{aligned}
\end{equation}
($u_0 \geq 0$). To be specific, in [1] it is shown that if $h(t) \equiv 1$ ($t \geq 0$) or (1.4) is satisfied, then there exist global solutions for sufficiently small initial data u_0. Moreover, when $h(t) = e^{\omega t}$ ($t \geq 0$) for some $\alpha > 0$, we have the following results:

(i) if $1 < p < 1 + \frac{\alpha}{\lambda_1(\mathbb{H}^N)}$, then every nontrivial solution of problem (1.5) blows up in finite time;
(ii) if $p > 1 + \frac{\alpha}{\lambda_1(\mathbb{H}^N)}$, then problem (1.5) possesses global solutions for small initial data;
(iii) if $p = 1 + \frac{\alpha}{\lambda_1(\mathbb{H}^N)}$ and $\alpha > \frac{4}{3}\lambda_1(\mathbb{H}^N)$, then there exist global solutions of problem (1.5) for small initial data.

Recall that
\[\lambda_1(\mathbb{H}^N) = \frac{(N - 1)^2}{4};\]

furthermore, note that \mathbb{H}^N has constant sectional curvature -1.

The blow-up result in (i) is proved in [1] by means of the following estimate derived in [6]:
\[c_N^{-1} \kappa(d(x, y), t) \leq p(x, y, t) \leq c_N \kappa(d(x, y), t) \quad (x, y \in \mathbb{H}^N, \; t > 0),\]

where
\[\kappa(d, t) := (4\pi t)^{-N/2}(1 + d)(1 + d + t) \frac{N-3}{2} e^{-\lambda_1(\mathbb{H}^N) d - \frac{N-1}{2} d - \frac{d^2}{4}} \]

($d \geq 0$, $t > 0$, $c_N > 0$ and p is the heat kernel on \mathbb{H}^N).

Moreover, in order to prove the global existence results in (ii)–(iii) a bounded supersolution to problem (1.1) is used. This supersolution is constructed by means of a bounded ground state on \mathbb{H}^N.

In this paper we shall extend results described in (i)–(ii) to Cartan–Hadamard Riemannian manifolds M with sectional curvature bounded above by a negative constant; clearly $\lambda_1(\mathbb{H}^N)$ will be replaced by $\lambda_1(M)$. This class of Riemannian manifolds includes, in particular, \mathbb{H}^N.

For this type of Riemannian manifolds we have $\lambda_1(M) > 0$. Hence the hypotheses (a)–(b) cannot be satisfied.

The proof of finite time blow-up relies on (2.5)–(2.6) below. Furthermore, the global existence can be proved by means of the same arguments as in [1]. Let us underline that the inequality $\lambda_1(M) > 0$ will be crucial in the sequel, in order to prove both finite time blow-up and global existence.

Observe that for problem (1.1) we are not able to prove the counterpart of (iii); this is an open problem. We underline that the method used in [1] do not work in our general case. Indeed, in [1], the proof of the statement (ii) makes heavily use of the term $(1 + d + t) \frac{N-3}{2}$, which appears in the estimates from above in (1.6)–(1.7). Instead, for general M there is not such a term in the estimate from above for the heat kernel (see (2.5)).

The paper is organized as follows. In Section 2 we recall preliminaries of heat semigroup and spectral analysis on M. In Section 3 we discuss some geometric conditions that ensure comparison principles on M. In Section 4 we state our results about finite time blow-up and global existence, that will be shown in Sections 5 and 6, respectively.
2. Mathematical background

2.1. Heat semigroup and spectral analysis on M

Let $\{e^{t\Delta}\}_{t \geq 0}$ be the analytical contraction semigroup generated by $-\Delta$ on $L^2(M)$ (see [11–13]). The semigroup $\{e^{t\Delta}\}_{t \geq 0}$ admits a heat kernel, more precisely there exists a function $p \in C^\infty(M \times M \times (0, \infty))$, $p > 0$ in $M \times M \times (0, \infty)$ such that

$$e^{t\Delta} f(x) = \int_M p(x, y, t) f(y) \, d\mu_y \quad (x \in M, \ t > 0) \quad (2.1)$$

for any $f \in L^2(M)$. Moreover, we have

$$p(x, y, t) = p(y, x, t) \quad \text{for all } x, y \in M, \ t > 0;$$

$$\int_M p(x, y, t) \, d\mu_y \leq 1 \quad \text{for all } x \in M, \ t > 0; \quad (2.2)$$

$$p(x, y, t + s) = \int_M p(x, z, t) p(z, y, s) \, d\mu_z \quad \text{for all } x, y \in M, \ t > 0. \quad (2.3)$$

Finally, for every $y \in M$ the function

$$u(x, t) := p(x, y, t) \quad (x \in M, \ t > 0)$$

is a classical solution to the heat equation

$$\partial_t u = \Delta u \quad \text{in } M \times (0, \infty);$$

furthermore, for any $f \in C_0^\infty(M)$

$$\int_M p(x, y, t) f(y) \, d\mu_y \rightarrow f(x) \quad \text{as } t \rightarrow 0 \text{ in } C_0^\infty(M).$$

Let $\text{spec}(-\Delta)$ be the spectrum in $L^2(M)$ of the operator $-\Delta$. Note that (see [13, Chapter 4])

$$\text{spec}(-\Delta) \subseteq [0, \infty).$$

Denote by $\lambda_1(M)$ the bottom of $\text{spec}(-\Delta)$, that is

$$\lambda_1(M) := \inf\text{spec}(-\Delta).$$

Let us recall (see [11]) next

Definition 2.1. A Cartan–Hadamard manifold is a geodesically complete, simply connected Riemannian manifold with non-positive sectional curvature.

For every $p \in M$ and for every plane $\pi \subseteq T_p M$ denote by $K_\pi(p)$ the sectional curvature of the plane π (see [9]). Observe that when M is a Cartan–Hadamard manifold and $K_\pi(p) \leq -k^2$ for some constant $k > 0$ and for any $p \in M$ and any plane $\pi \subseteq T_p M$, then (see [15]; see also [11])

$$\lambda_1(M) \geq \frac{(N - 1)^2}{4} - k^2. \quad (2.4)$$

Moreover, if M is a Cartan–Hadamard manifold, then (see [13, Corollary 15.17 and Remark 14.6])

$$p(x, y, t) \leq \frac{C}{(\min(t, T))^N} \left(1 + \frac{d^2}{t}\right)^{N/2} \exp\left\{-\frac{d^2}{4t} - \frac{\lambda_1(M)(t - T)}{T}\right\} \quad (2.5)$$

for all $x, y \in M, \ t > 0, \ T > 0$ and for some positive constant C; here we have set $d \equiv \text{dist}(x, y)$.

Furthermore, let us recall that if M is a noncompact Riemannian manifold, then (see [2, Corollary 1])

$$\lim_{t \rightarrow \infty} \frac{\log p(x, y, t)}{t} = -\lambda_1(M) \quad \text{locally uniformly in } M \times M. \quad (2.6)$$
2.2. Definition of solution

In what follows we always make the following assumption:

\begin{itemize}
 \item [(i)] \(h \in C([0, \infty)), h > 0 \) in \([0, \infty)\);
 \item [(ii)] \(u_0 \) is continuous and bounded in \(M \).
\end{itemize}

(A_0)

The identity (2.1) allows us to extend the definition of \([e^{\Delta} t]_{t \geq 0} \) as follows (see [13, Chapter 7]):

\[(e^\Delta f)(x) := \int_M p(x, y, t) f(y) \, d\mu_y \quad (x \in M, \ t > 0) \]

(2.7)

for any function \(f \) such that the right-hand side in (2.7) makes sense. In particular, if \(f \in L^1_{loc}(M), f \geq 0 \) in \(M \), then the function \((e^\Delta f)(x) \) is measurable in \(M \times (0, \infty) \). If, in addition, \((e^\Delta f)(x) \in L^1_{loc}(M \times I) \), where \(I \) is an open interval in \((0, \infty) \), then \((e^\Delta f)(x) \) is a classical solution to the heat equation

\[\partial_t u = \Delta u \quad \text{in } M \times I. \]

We give next definition.

Definition 2.2. A mild solution to problem (1.1) is a function \(u \in C(M \times [0, \tau]) \cap L^\infty(M \times (0, \tau)) \) for any \(\tau \in [0, T) \) such that

\[u(x, t) = e^{\Delta t} u_0(x) + \int_0^t (e^{(t-s)\Delta} h(s)(u|^{p-1} u)(x)) \, ds \]

(2.8)

\((x, t) \in M \times [0, T)\).

Moreover, we shall deal with weak solutions to problem (1.1) meant in the following sense.

Definition 2.3. A weak solution to problem (1.1) is a function \(u \in C(M \times [0, \tau]) \cap L^\infty(M \times (0, \tau)) \) for any \(\tau \in [0, T) \) such that

\[-\int_0^\tau \int_M u(x, t) \{ \Delta \psi(x, t) + \partial_t \psi(x, t) \} \, d\mu_x \, dt = \int_M u_0(x) \psi(x, 0) \, d\mu_x + \int_0^\tau \int_M h(t)(u(x))^{p-1} u(x)(x, t) \, d\mu_x \, dt \]

for any \(\tau \in [0, T) \), for any precompact set \(\Omega \subseteq M \) with smooth \(\partial \Omega \), and for any \(\psi \in C^{2,1}(M \times [0, \tau]) \) with \(\text{supp} \psi(\cdot, t) \subseteq M \) \((t \in [0, \tau])\) and \(\psi(\cdot, \tau) = 0 \).

Definition 2.4. A solution to problem (1.1) is called global, if it exists for any \(t > 0 \), that is if \(T = \infty \).

Instead, we say that a solution to problem (1.1) blows up in finite time, if

\[\lim_{t \to T^-} \| u(\cdot, t) \|_{L^\infty(M)} = \infty, \]

for some \(T > 0 \).

3. Auxiliary results

The one point compactification of \(M \) is the topological space \(M \cup \{ \infty \} \), where \(\infty \) is the ideal infinity point (that does not belong to \(M \)) and the family of open sets in \(M \cup \{ \infty \} \) consists of open sets of the form \((M \setminus K) \cup \{ \infty \})\), where \(K \) is an arbitrary compact set of \(M \). This family of sets determines the Hausdorff topology in \(M \cup \{ \infty \} \) and the topological space \(M \cup \{ \infty \} \) is compact.

Let \(Z : M \to \mathbb{R} \) be a function. Since in our case \(M \) is noncompact, the definition of topology of \(M \cup \{ \infty \} \) suggests to write

\[\lim_{x \to \infty} Z(x) = \infty, \]

(3.1)

if for any \(\alpha > 0 \) there exists a compact subset \(K_{\alpha} \subseteq M \) such that

\[Z(x) > \alpha \quad \text{for any } x \in M \setminus K_{\alpha} \]

(see, e.g., Paragraph 5.4.3 in [13]).

We will show next comparison principle. A key role will be played by weak supersolutions \(Z \) to equation

\[\Delta Z = \lambda Z \quad \text{in } M, \]

(3.2)

for some \(\lambda \in [0, \infty) \), such that (3.1) is satisfied.
Definition 3.1. Let $\lambda \in [0, \infty)$, $f \in C(\Omega)$. A weak supersolution to equation
\[
\Delta U - \lambda U = f \quad \text{in } M
\]
is a function $U \in C(M)$ such that
\[
\int_M U \Delta \psi \, d\mu \leq \int_M (\lambda U + f) \psi \, d\mu
\]
for any $\psi \in C^0_0(M)$, $\psi \geq 0$. Weak subsolutions and solutions of Eq. (3.3) are defined accordingly.

Proposition 3.2. Let assumption (A_0) be satisfied. Moreover, suppose that
\[
\begin{cases}
\text{there exists a weak supersolution to Eq. (3.2) for some} \\
\lambda > 0, \text{ such that condition (3.1) is satisfied.}
\end{cases}
\]
Let u be a weak subsolution and v a weak supersolution to problem (1.1). Then
\[
u \leq u \quad \text{in } M \times (0, T).
\]

Proof. The conclusion follows by the same argument as in the proof of Theorem 2.6 in [17], since $u, v \in L^\infty(M \times (0, T))$ for any $t \in (0, T)$. \qed

Let us recall that assumption (A_1) implies that M is stochastically complete, i.e. (see [11])
\[
\int_M p(x, y, t) \, d\mu_y = 1 \quad \text{for any } x \in M, \ t > 0.
\]

In order to provide explicit conditions for the existence of such a supersolution Z, we need to introduce some preliminary material.

Take a point $o \in M$ and denote by $\text{Cut}(o)$ the cut locus of o. We can define the polar coordinates in $M \setminus \text{Cut}^*(o)$, where $\text{Cut}^*(o) := \text{Cut}(o) \cup \{o\}$. Indeed, to any point $x \in M \setminus \text{Cut}^*(o)$ we can associate the polar radius $\rho(x) := \text{dist}(x, o)$ and the polar angle $\theta \in S^{N-1}$, such that the minimal geodesics from o to x star at o to the direction θ.

The Riemannian metric g in $M \setminus \text{Cut}^*(o)$ has, in the polar coordinates, the form:
\[
ds^2 = d\rho^2 + a_{ij}(\rho, \theta) \, d\theta^i \, d\theta^j,
\]
where $(\theta^1, \ldots, \theta^{N-1})$ are coordinates on S^{N-1} and $(a_{ij}(\rho, \theta))_{i,j=1,\ldots,N-1}$ is a positive definite matrix.

Let $a := \det(a_{ij})$, $B(\rho, r) := \{x = (\rho, \theta) \in M \mid \rho < r\}$. Then in $M \setminus \text{Cut}^*(o)$ we have
\[
\Delta = \frac{1}{\sqrt{\det a}} \frac{\partial}{\partial \rho} \left(\sqrt{\det a} \frac{\partial}{\partial \rho} \right) + \Delta_{\text{Bel}} = \frac{\partial^2}{\partial \rho^2} + m(\rho, \theta) \frac{\partial}{\partial \rho} + \Delta_{\text{Bel}}(\rho, \theta),
\]
where $\Delta_{\text{Bel}}(\rho, \theta)$ is the Laplace–Beltrami operator on the geodesics sphere $\partial B(\rho, \theta)$ and $m(\rho, \theta)$ is a smooth function on $(0, \infty) \times S^{N-1}$, which represents, from a geometrical viewpoint, the mean curvature of $\partial B(\rho, \theta)$ in the radial direction.

We say that M is a manifold with a pole, if there exists a point $o \in M$ such that $\text{Cut}(o) = \emptyset$. Observe that any Cartan–Hadamard manifold is a manifold with a pole (see [10]).

Let M be a manifold with a pole, $x \in M$. In the following we shall denote by ω the plane of T_xM with basis $(\frac{\partial}{\partial \rho} , X)$, where X is a unit vector orthogonal to $\frac{\partial}{\partial \rho}$. Furthermore, denote by $\text{Ric}_{(\rho)}(x)$ the Ricci curvature of M at x in the radial direction $\frac{\partial}{\partial \rho}$.

A manifold with a pole is called a spherically symmetric manifold or a model manifold if
\[
a_{ij}(\rho, \theta) \, d\theta^i \, d\theta^j = \sigma^2(\rho) \, d\rho^2,
\]
where $d\rho^2$ is the standard metric on S^{N-1} and σ is a function such that conditions
\[
\sigma \in C^\infty((0, R_0)) \quad \text{for some } R_0 \in (0, \infty], \sigma(0) = 0, \sigma'(0) = 1
\]
are satisfied. In this case we set $M \equiv M_{\sigma}$. As special cases, observe that if $\sigma(\rho) = \rho$ ($\rho \in [0, \infty)$), then $M = \mathbb{R}^N$; whereas, if $\sigma(\rho) = \sinh \rho$ ($\rho \in [0, \infty)$), then M is the N-dimensional hyperbolic space \mathbb{H}^N.

Note that, by hypothesis (3.5), the metric
\[
ds^2 = d\rho^2 + \sigma^2(\rho) \, d\rho^2
\]
can be smoothly extended from $M \setminus \{o\}$ to the whole of M.
Moreover, the area of the geodesic sphere \(\partial B(o, r) \) is

\[
S_{\sigma}(r) = \omega_N \sigma^{N-1}(r),
\]

where \(\omega_N \) is the area of the unit sphere of \(\mathbb{R}^N \), while the volume \(V(r) \) of the geodesic ball \(B(o, r) \) is

\[
V_{\sigma}(r) := \int_0^r S(\xi) \, d\xi = \omega_N \int_0^r \sigma^{N-1}(\xi) \, d\xi.
\]

From (3.6) it follows that the Laplace–Beltrami operator on \(M_{\sigma} \) can be written as

\[
\Delta = \frac{1}{\sigma} \frac{\partial^2}{\partial \rho^2} + (N - 1) \frac{\sigma'}{\sigma} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \Delta_{\theta} = \frac{1}{\sigma^2} \frac{\partial^2}{\partial \rho^2} + \frac{S_{\sigma}'}{S_{\sigma}} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \Delta_{\theta},
\]

(3.9)

where \(\Delta_{\theta} \) is the Laplace–Beltrami operator on \(S^{N-1} \). Furthermore, for every \(x \equiv (\rho, \theta) \in M_{\sigma} \) we have

\[
K_{\omega}(x) = -\sigma''(\rho) \frac{\sigma(\rho)}{\sigma(\rho)} \quad (x \equiv (\rho, \theta) \in M \setminus \text{Cut}^+(o)),
\]

(3.10)

\[
Ric_{\sigma}(x) = -(N - 1) \frac{\sigma''(\rho)}{\sigma(\rho)}.
\]

(3.11)

In the sequel we shall use the following known principle (see \cite{10,11}).

Lemma 3.3. Let \(M \) be a geodesically complete noncompact manifold. Suppose that

\[
Ric_{\sigma}(x) \geq -(N - 1) \frac{\sigma''(\rho)}{\sigma(\rho)} \quad (x \equiv (\rho, \theta) \in M \setminus \text{Cut}^+(o))
\]

(3.12)

for some function \(\sigma \) such that (3.5) with \(R_0 = \infty \) is satisfied. Then

\[
m(\rho, \theta) \leq (N - 1) \frac{\sigma'(\rho)}{\sigma(\rho)}
\]

(3.13)

for all \((\rho, \theta) \) in the domain of the polar coordinates.

Remark 3.4. In connection with Lemma 3.3, observe that (see \cite{10,11}) if \(M \) is a manifold with a pole and

\[
K_{\omega}(x) \leq -\frac{\sigma''(\rho)}{\sigma(\rho)} \quad (x \equiv (\rho, \theta) \in M)
\]

(3.14)

for some function \(\sigma \) such that (3.5) with \(R_0 = \infty \) is satisfied, then

\[
m(\rho, \theta) \geq (N - 1) \frac{\sigma'(\rho)}{\sigma(\rho)} \quad (\rho > 0, \theta \in S^{N-1}).
\]

(3.15)

Observe that the function \(m(\rho, \theta) \) used in Lemma 3.3 and in Remark 3.4 is the same as in Eq. (3.4). Moreover, the right-hand sides of (3.12)–(3.15) have a geometrical meaning for model manifolds (see (3.9)–(3.11)).

We shall prove the following comparison principle.

Proposition 3.5. Let assumption \((A_0) \) be satisfied. Let \(M \) be a manifold with a pole. Suppose that condition (3.12) is satisfied; moreover, assume that

\[
\int_1^\infty \frac{V_{\sigma}(\rho)}{S_{\sigma}(\rho)} \, d\rho = \infty,
\]

(3.16)

where \(V_{\sigma} \) and \(S_{\sigma} \) are given by (3.8) and (3.7) with \(\sigma \) defined in (3.12).

Let \(u \) be a subsolution and \(v \) a supersolution to problem (1.1). Then \(u \leq v \) in \(M \times (0, T) \).

Proof. At first we construct a classical supersolution \(z = z(\rho(x)) \) to equation

\[
\Delta z = 1 \quad \text{in} \ M \setminus B(o, 1),
\]
such that
\[
\lim_{\rho \to \infty} z(\rho) = \infty.
\] (3.17)

To this aim, let us distinguish two cases.

(a) Assume that
\[
\int_1^\infty \frac{d\xi}{S_\sigma(\xi)} = \infty.
\] (3.18)

Define
\[
z(x) \equiv z(\rho(x)) := \int_1^{\rho(x)} \frac{d\xi}{S_\sigma(\xi)} \quad (x \in M \setminus B(o, 1)).
\]

Note that by (3.12) and Lemma 3.3, (3.13) holds. Since \(z_\rho \geq 0\), from (3.4) and (3.13) it follows
\[
\Delta z = z_{\rho\rho} + m(\rho, \theta)z_\rho \leq z_{\rho\rho} + (N - 1) \frac{\sigma'(\rho)}{\sigma(\rho)} z_\rho = 0 \quad \text{in } M \setminus \overline{B(o, 1)};
\]
moreover, (3.18) yields (3.17).

(b) Assume that
\[
\int_1^\infty \frac{d\xi}{S_\sigma(\xi)} < \infty.
\] (3.19)

Define
\[
z(x) \equiv z(\rho(x)) := \int_1^{\rho(x)} \left(\int_1^t \frac{1}{S_\sigma(t)} \int_1 S_\sigma(\xi) d\xi dt \right) \quad (x \in M \setminus B(o, 1)).
\]

Since \(z_\rho \geq 0\), by (3.4) and (3.13),
\[
\Delta z = z_{\rho\rho} + m(\rho, \theta)z_\rho \leq z_{\rho\rho} + (N - 1) \frac{\sigma'(\rho)}{\sigma(\rho)} z_\rho = 1 \quad \text{in } M \setminus \overline{B(o, 1)}.
\]
Furthermore, (3.16) and (3.8) imply (3.17).

Since \(z_\rho \geq 0\), we can construct in both cases (a) and (b) a solution to problem
\[
\begin{cases}
\Delta w = 0 & \text{in } M \setminus \overline{B(o, 1)}, \\
w = -z & \text{on } \partial B(o, 1)
\end{cases}
\] (3.20)
such that
\[
- \max_{\partial B(o, 1)} z \leq w \leq 0 \quad \text{in } M \setminus \overline{B(o, 1)}.
\] (3.21)

Then
\[
\tilde{Z} := z + w \quad \text{in } M \setminus \overline{B(o, 1)}
\]
is a solution to problem
\[
\begin{cases}
\Delta \tilde{Z} = 1 & \text{in } M \setminus \overline{B(o, 1)}, \\
\tilde{Z} = 0 & \text{on } \partial B(o, 1);
\end{cases}
\] (3.22)
moreover, from (3.17) it follows
\[
\lim_{x \to \infty} \tilde{Z}(x) = \infty.
\] (3.23)
Since $z_\rho \geq 0$, we have that
\[
\tilde{Z} = z + w \geq z(\rho(x)) - \max_{\partial B(o,1)} z \geq 0 \quad \text{in } M \setminus \overline{B(o,1)}.
\] (3.24)

Let $W \in C^2(B(o,1))$ be the solution to problem
\[
\begin{cases}
\Delta W = 1 & \text{in } B(o,1), \\
W = 0 & \text{on } \partial B(o,1).
\end{cases}
\] (3.25)

By the strong maximum principle,
\[
\frac{\partial W}{\partial \nu} \geq \alpha \quad \text{on } \partial B(o,1)
\] (3.26)
for some constant $\alpha > 0$; here ν is the outer normal to $\partial B(o,1)$.

Define
\[
Z := \begin{cases}
H \tilde{Z} + 1 + \max_{B(o,1)} |W| & \text{in } M \setminus B(o,1), \\
W + 1 + \max_{B(o,1)} |W| & \text{in } B(o,1).
\end{cases}
\] (3.27)

where $H > 0$ is a constant to be chosen.

Clearly, $Z \in C(M)$ and
\[
Z \geq 1 \quad \text{in } M
\] (3.28)
(see (3.24)); furthermore, (3.23) implies
\[
\lim_{x \to \infty} Z(x) = \infty.
\]

From (3.22), (3.25) and (3.26) it easily follows that there exists $H > 0$ such that
\[
\int_M Z \Delta \psi \, d\mu \leq \int_M \mu \psi \, d\mu
\]
for any $\psi \in C^2_0(M)$, $\psi \geq 0$; here $\mu := \max\{1, H\}$. Hence Z is a weak supersolution to equation
\[
\Delta Z = \mu \quad \text{in } M
\]
(see Definition 3.1 with $\lambda = 0$ and $f \equiv \mu$).

By (3.27), Z is also a supersolution to Eq. (3.2) with $\lambda = \mu$. Then the conclusion follows from Proposition 3.2. \qed

Remark 3.6. (i) If (3.18) holds, then hypothesis (3.16) of Proposition 3.5 is not used.

(ii) In the proof of Proposition 3.8, if (3.19) holds, we can also define
\[
Z(x) := \int_0^{\rho(x)} \frac{1}{S_\sigma(t)} \int_0^t S_\sigma(\xi) \, d\xi + 1 \, dt \quad (x \in M).
\]
It is direct to check that z is a solution to equation
\[
\Delta z = 1 \quad \text{in } M,
\] and a supersolution to Eq. (3.2) with $\lambda = 1$, since $z \geq 1$; moreover, it satisfies (3.17). Thus the conclusion follows from Proposition 3.5.

(iii) Proposition 3.5 could also be shown for geodesically complete noncompact manifold. Since in this case $\text{Cut}(o) \neq \emptyset$, some difficulties arise. However they can be handled by the same method as in [3] (see also Theorem 15.1(i) in [11]). Moreover, in this case we must consider distributional solutions to Eq. (3.2) that are not necessarily continuous in M (see Definition 3.1).

However, in Proposition 3.5 we have considered manifolds with a pole, since in the sequel we will apply it for Cartan–Hadamard manifolds, that are manifolds with a pole.

Corollary 3.7. Let assumptions $(A_0)–(A_1)$ be satisfied. Let M be a manifold with a pole. Suppose that, for some $\beta > 0$,
\[
\text{Ric}_o(x) \geq -(N - 1)\beta^2 \quad \text{for any } x \in M.
\] (3.28)

Let u be a subsolution and v a supersolution to problem (1.1). Then $u \leq v$ in $M \times (0, T)$.
Proof. Hypothesis (3.28) implies that (3.12) is satisfied with \(\sigma(\rho) = \frac{1}{\beta} \sinh(\beta \rho) \) for any \(\rho \geq 0 \). It is immediate to check that (3.16) is satisfied. Hence the conclusion follows from Proposition 3.5.

In the sequel, we shall use next result.

Proposition 3.8. Let assumptions \((A_0)\)–\((A_1)\) be satisfied. Let \(u \) be a weak solution to problem (1.1). Then \(u \) is also a mild solution to problem (1.1).

The proof of Proposition 3.8 makes use of comparison principle, which follows from assumption \((A_1)\) and Proposition 3.5. However, this proof is omitted, for it is similar to that of an analogous result given in [18] (see also [1]).

4. Main results

4.1. Local existence

We have next local existence result.

Theorem 4.1. Let assumption \((A_0)\) be satisfied; suppose that \(u_0 \geq 0 \) in \(M \). Then there exists a nonnegative weak solution to problem (1.1), for some \(T > 0 \). Either the solution is global, or it blows up in finite time. Furthermore, if assumption \((A_1)\) is also satisfied, then the weak solution is unique.

4.2. Finite time blow-up

In the sequel, we shall assume that

\[
\begin{align*}
(i) & \quad M \text{ is a Cartan–Hadamard manifold;} \\
(ii) & \quad \text{there exists } k > 0 \text{ such that for any } p \in T_pM \text{ and for any plane } \pi \subseteq T_pM \text{ there holds } K_\pi(p) \leq -k^2.
\end{align*}
\]

\((A_2)\)

Set

\[
H(t) := \int_0^t h(s) \, ds \quad \text{for any } t \geq 0.
\]

We shall prove the following finite time blow-up result.

Theorem 4.2. Let assumptions \((A_0)\)–\((A_2)\) be satisfied; suppose that \(u_0 \geq 0, u_0 \not\equiv 0 \). Moreover, assume that

\[
\lim_{t \to \infty} \frac{[H(t)]^{1/p}}{e^{\lambda_1(M) + \epsilon t}} = \infty
\]

(4.1)

for some \(\epsilon \in (0, \lambda_1(M)) \). Then the weak solution to problem blows up in finite time.

Remark 4.3. From the proof of Theorem 4.2 it follows that if \(u \) is a mild solution to problem (1.1), then \(u \) blows up in finite time. Furthermore, in this case, assumption \((A_1)\) can be removed.

Remark 4.4. (i) If for some \(\alpha_1 > 0, \alpha_2 > 0, t_0 > 0 \) and \(q > -1 \)

\[
\alpha_1 t^q \leq h(t) \leq \alpha_2 t^q \quad \text{for any } t > t_0,
\]

then assumption (4.1) is satisfied for \(\epsilon \in (0, \lambda_1(M)) \).

(ii) Let

\[
\frac{\alpha}{p - 1} > \lambda_1(M).
\]

If

\[
h(t) = e^{\alpha t} \quad \text{for any } t \geq 0,
\]

then (4.1) is satisfied for appropriate \(\epsilon \in (0, \lambda_1(M)) \).
4.3. Global existence

Let
\[\tilde{h}(t) := h(t)e^{-(p-1)\lambda_1(M)t} \text{ for any } t \geq 0, \]
\[\tilde{H}(t) := \int_0^t \tilde{h}(s) \, ds \text{ for any } t \geq 0, \]
\[\tilde{H}_\infty := \lim_{t \to \infty} \tilde{H}(t). \]

Consider the elliptic equation
\[\Delta \varphi + \lambda \varphi = 0 \text{ in } M. \tag{4.2} \]
It is well known that for any \(\lambda \leq \lambda_1(M) \) there exists a classical positive solution \(\varphi_\lambda \) to Eq. (4.2) (see [4,13]). When \(\lambda = \lambda_1(M) \), then \(\varphi_\lambda \) is called a ground state on \(M \).

Suppose that \(\tilde{H}_\infty < \infty; \) \tag{4.3}
furthermore, suppose that such a positive solution \(\varphi_{\lambda_1(M)} \equiv \varphi_1 \) is bounded in \(M \). Then choose \(C > 0 \) such that
\[\| \varphi_1 \|_\infty < \frac{1}{C} \left[\frac{1}{(p-1)\tilde{H}_\infty} \right]^{\frac{1}{p-1}}. \tag{4.4} \]

Then define
\[\tilde{\varphi}_1(x) := C \varphi_1(x) \quad (x \in M). \]

We will show the following global existence result.

\textbf{Theorem 4.5.} Let assumptions \((A_0)\)–\((A_2)\) be satisfied. Suppose that \(\varphi_1 \in L^\infty(M) \) and that conditions \((4.3)\)–\((4.4)\) are satisfied. Moreover, assume that \(0 \leq u_0 \leq \varphi_1 \) in \(M \). Then the weak solution to problem \((1.1)\) is global; in addition, there exists \(\bar{C} > 0 \) such that
\[\| u(\cdot,t) \|_{L^\infty(M)} \leq \bar{C} \quad \text{for all } t > 0. \tag{4.5} \]

\textbf{Remark 4.6.} Observe that in Theorems 4.2 and 4.5, we can remove: (a) hypothesis \((A_2)(i)\), if we require that the estimate \((2.5)\) is satisfied; (b) hypothesis \((A_2)(ii)\), if we assume that \(\lambda_1(M) > 0. \)

\textbf{Remark 4.7.} (i) Let
\[\frac{\alpha}{p-1} < \lambda_1(M). \]

If
\[h(t) = e^{\alpha t} \quad \text{for any } t \geq 0, \]
then hypothesis \((4.3)\) is satisfied.

(ii) Theorem 4.5 remains true, if we suppose that \(\phi \) is a positive bounded supersolution to Eq. (4.2) with \(\lambda = \lambda_1(M) \). This easily follows from its proof.

Sufficient conditions for \(\varphi_1 \in L^\infty(M) \) can be found in \([7]\), where specific hypotheses on \(\text{spec}(-\Delta) \) and \(\varphi_1 \in L^2(M) \) are made, and in \([5]\), where it is assumed that \(\varphi_1 \in L^2(M) \) and \(\mu(M) < \infty. \)

A case in which \(\varphi_1 \in L^\infty(M) \setminus L^2(M) \) will be addressed in Lemma 6.1 and Remark 6.2.

For general Riemannian manifolds it is an open problem to understand when \(\varphi_1 \in L^\infty(M) \), without requiring \(\varphi_1 \in L^2(M) \).
5. Local existence and finite time blow-up: proofs

Proof of Theorem 4.1. We can find a unique $T > 0$ such that

$$H(T) = \frac{1}{(p-1)\|u_0\|_{\infty}^{p-1}}.$$

Let $\{\Omega_n\}_{n \in \mathbb{N}}$ be a sequence of domains $\{\Omega_n\}_{n \in \mathbb{N}} \subseteq M$ such that $\bar{\Omega}_n \subseteq \Omega_{n+1}$ for every $n \in \mathbb{N}$, $\bigcup_{n=1}^{\infty} \Omega_n = M$, $\partial \Omega_n$ is smooth for every $n \in \mathbb{N}$.

For any $n \in \mathbb{N}$ let u_n be the unique classical solution to problem

$$\begin{aligned}
\bar{\partial}_t u &= \Delta u + h(t)u^p \quad \text{in } \Omega_n \times (0, T), \\
u &= 0 \quad \text{in } \partial \Omega_n \times (0, T), \\
u &= u_0 \quad \text{in } \Omega_n \times \{0\}.
\end{aligned} \tag{5.1}$$

It is direct to show that

$$\bar{u}(t) := \|u_0\|_{\infty}[1 - (p - 1)\|u_0\|_{\infty}^{p-1}H(t)]^{-\frac{1}{p-1}} \quad (t \in [0, T))$$

is a classical supersolution to problem (5.1). On the other hand, $\bar{u} \equiv 0$ is a subsolution to the same problem. By comparison principle,

$$0 \leq u_n \leq \bar{u} \quad \text{in } M \times (0, T). \tag{5.2}$$

By standard compactness arguments, there exists a subsequence $\{u_{n_k}\} \subseteq \{u_n\}$, which converges locally uniformly in $M \times (0, T)$ to a weak solution u of problem (1.1). Furthermore, by (5.2),

$$0 \leq u \leq \bar{u} \quad \text{in } M \times (0, T).$$

If, in addition, assumption (A_2) is satisfied, then Proposition 3.2 implies that u is unique. \square

In order to prove Theorem 4.2 we need two preliminary results.

Lemma 5.1. Let assumptions (A_0) and (A_2) be satisfied, $\varepsilon \in (0, \lambda_1(M))$; suppose $u_0 \neq 0$. Then there exist a precompact set $\Omega \subseteq M$, $t_0 > 0$ and $C_1 > 0$ such that

$$\left(e^{t \Delta} u_0 \right)(x) \geq \frac{C_1}{e^{(\lambda_1(M)+\varepsilon)t}} \quad \text{for any } x \in \Omega, \ t > t_0. \tag{5.3}$$

Proof. Let Θ be a precompact subset of M such that $\inf_{\Gamma} u_0 > 0, \mu(\Omega) < \infty$. Let $\varepsilon \in (0, \lambda_1(M))$. By (2.6) there exists $t_0 > 0$ such that for any $x, y \in \Omega$ and $t > t_0$ there holds

$$p(x, y, t) \geq \frac{1}{e^{(\lambda_1(M)+\varepsilon)t}};$$

hence

$$\left(e^{t \Delta} u_0 \right)(x) \geq \int_{\Omega} p(x, y, t)u_0(y) d\mu_y \geq \frac{\mu(\Omega) \inf_{\Gamma} u_0}{e^{(\lambda_1(M)+\varepsilon)t}}.$$

This completes the proof. \square

Lemma 5.2. Let assumptions (A_0), (A_2) be satisfied. Let there exist a mild solution to problem (1.1). Then

$$\left(e^{\tau \Delta} u_0 \right)^{p-1} \leq \frac{1}{(p-1)H(\tau)} \quad \text{for any } x \in M, \ \tau \in (0, T). \tag{5.4}$$

Proof. Let $\tau \in (0, T)$. Let u be a mild solution to problem (1.1). We multiply by $p(x, z, \tau - t)$ equality (2.8) with x replaced by z, then integrate over M and use (2.3). So, we get

$$\int_{M} p(x, z, \tau - t)u(z, t) d\mu_z = \int_{M} p(x, y, \tau)u_0(y) d\mu_y$$

$$+ \int_{0}^{\tau} \int_{M} p(x, y, \tau - s)h(s)u^p(y, s) d\mu_y ds \quad (t \in (0, \tau)).$$
that is

\[
\phi_t(x, t) = \phi_t(x, 0) + \int_0^t \int_M p(x, y, \tau - s) h(s) u^p(y, s) \, d\mu_y \, ds,
\]

where we have set

\[
\phi_t(x, t) := \int_M p(x, z, \tau - t) u(z, t) \, d\mu_z \quad (x \in M, \ t \in (0, \tau]).
\]

By Jensen’s inequality,

\[
\left[\phi_t(x, s) \right]^p \leq \int_M p(x, y, \tau - s) u^p(y, s) \, d\mu_y \quad (x \in M, \ s \in (0, \tau]).
\]

This combined with (5.5) yields

\[
\int_0^t h(s) \left[\phi_t(x, s) \right]^p \, ds \leq \phi_t(x, t) - \phi_t(x, 0) \quad (x \in M, \ t \in (0, \tau]).
\]

Then by a Gronwall-type argument,

\[
(p - 1) H(t) \leq \frac{1}{\left[\phi_t(x, 0) \right]^{p-1}} - \frac{1}{\left[\phi_t(x, t) \right]^{p-1}} \quad (x \in M, \ t \in (0, \tau]),
\]

hence the conclusion immediately follows. □

Now we can show Theorem 4.2.

Proof of Theorem 4.2. By contradiction, suppose that the unique weak solution to problem (1.1) is a global solution.

Now, take \(\Omega \subseteq M \) and \(\varepsilon > 0 \) as in Lemma 5.1. Hence

\[
\phi_t(x, 0) \geq \frac{C_1}{e^{\lambda_1(M) + \varepsilon} t} \quad \text{for any } x \in \Omega, \ \tau > t_0
\]

for some \(C_1 > 0 \) and \(t_0 > 0 \).

Since \(u_0 \leq \tilde{\phi}_1 \) in \(M \), by Theorem 4.1 and Proposition 3.8, the unique weak solution to problem (1.1) is also a mild solution to the same problem. Hence by Lemma 5.2,

\[
\phi_t(x, 0) \leq \left(\frac{1}{p-1} \right)^{\frac{1}{p-1}} \left[H(t) \right]^{-\frac{1}{p-1}} \quad \text{for any } x \in M, \ \tau > 0.
\]

From (5.6)–(5.7) it follows that for any \(\tau > t_0 \) we have

\[
\frac{[H(t)]^{\frac{1}{p-1}}}{e^{\lambda_1(M) + \varepsilon} t} \leq \frac{1}{C_1 \left(\frac{1}{p-1} \right)^{\frac{1}{p-1}}}. \]

If we send \(\tau \to \infty \) in the previous inequality, we get a contradiction with (4.1); hence the proof is complete. □

6. Global existence: proofs

Proof of Theorem 4.5. Let

\[
\xi(t) = \left[1 - (p - 1) \| \tilde{\phi}_1 \|_{\infty}^{p-1} H(t) \right]^{-\frac{1}{p-1}} \quad (t \in [0, \infty))
\]

(see (4.3)–(4.4)). It is easily seen that \(\xi \) solves problem

\[
\left\{ \begin{array}{ll}
\xi' = \| \tilde{\phi}_1 \|_{\infty}^{p-1} \tilde{h}(t) \xi^p, & t \in (0, \infty), \\
\xi(0) = 1.
\end{array} \right.
\]

Define

\[
\tilde{u}(t) := e^{-\lambda_1(M) t} \xi(t) \tilde{\phi}_1(x) \quad ((x, t) \in M \times [0, \infty))
\]
Since \(u_0 < \hat{\phi}_1 \) in \(M \), from (6.1), (4.2), we can infer that \(\bar{u} \) is a bounded classical supersolution to problem (1.1) with \(T = \infty \). From Proposition 3.2 the conclusion follows. \(\square \)

For every \(h > 0 \) define
\[
 f_h(\rho) := \frac{1}{h} \sinh(h \rho) \quad (\rho \geq 0).
\]

Then \(M_{f_h} \) is a model manifold with constant negative sectional curvature \(-h^2 \). In particular, for \(h = 1 \) we have \(M_{f_1} \equiv \mathbb{H}^N \).

We shall consider positive classical solutions to equation
\[
 \Delta \phi + \lambda \phi = 0 \quad \text{in} \ M_{f_h}.
\]

In particular, we shall only consider positive radial solutions \(\phi = \phi(\rho) \); then \(\phi \) solves
\[
\begin{align*}
 \phi'' + h(N - 1) \coth(h \rho) \phi' + \lambda \phi &= 0 \quad \text{in} \ (0, \infty), \\
 \phi'(0) &= 0, \\
 \phi &> 0 \quad \text{in} \ [0, \infty).
\end{align*}
\]

Set
\[
 \phi(\rho) = \sinh^{-\frac{N-1}{2}}(h \rho) u(h \rho) \quad (\rho \geq 0).
\]

If \(\phi \) is a solution to (6.3), then \(u \) satisfies
\[
\begin{align*}
 u''(h \rho) &= \frac{1}{h^2} \left[\lambda_1(M_{f_h}) - \lambda + h^2 \frac{(N-2)^2 - 1}{4 \sinh^2(h \rho)} \right] u(h \rho) \quad \text{in} \ (0, \infty), \\
 u(0) &= 0, \\
 u &> 0 \quad \text{in} \ (0, \infty),
\end{align*}
\]

since \(\lambda_1(M_{f_h}) = \frac{(N-1)^2}{4} h^2 \). Hence analogously to Lemma A.1 in [1] we have next

Lemma 6.1. For any \(\lambda \leq \lambda_1(M_{f_h}) \) and \(c > 0 \) there exists a unique positive classical radial solution to Eq. (6.2) such that \(\phi(0) = c \). Furthermore, if \(\lambda > 0 \), then
\[
 \lim_{\rho \to \infty} \phi(\rho) = 0.
\]

Remark 6.2. Note that, as observed in Remark A.1 in [1], in general \(\phi \notin L^2(M_{f_h}) \).

References

