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In this paper, we introduce and study a new class of nonlinear variational 
inequalities. This new class enables us to apply variational techniques to the solu- 
tion of differential equations of both odd and even orders. A projection method is 
used to suggesl an iterative algorithm for finding the approximate solution of this 
class. We also discuss the convergence criteria of the proposed iterative algorithm. 
Several special cases are discussed, which can be obtained from the general result. 
‘(f 1991 Academic Press, lnc 

1. INTRODUCTION 

Variational inequality theory has become an effective and powerful 
technique for studying a wide class of problems arising in various branches 
of mathematical and engineering sciences. The variety of problems to which 
variational inequality techniques may be applied is impressive and amply 
representative for the richness of the field. This theory has been developed 
in several directions. Some of these developments have made mutually 
enriching contacts with other areas of pure and applied sciences including 
elasticity, fluid dynamics, transportation and economics equilibrium, and 
operations research. In recent years, variational inequalities have been 
extended and generalized in various directions. It is worth mentioning that 
differential equations of odd order cannot be studied in the general 
framework of the variational inequalities. 

Inspired and motivated by the recent research work going on in this 
field, we introduce and study a new class of variational inequalities. This 
class enables us to study differential equations of both odd and even order, 
which is the main motivation of this paper. A projection technique is used 
to suggest an iterative algorithm for finding the approximate solution. We 
also discuss the convergence criteria of the iterative algorithm. 

In Section 2, after reviewing some basic notations and results, we intro- 
duce the nonlinear variational inequality problem. Algorithms and con- 
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vergence results are considered and discussed in Section 3. In Section 4, we 
consider a simple example to illustrate the application of the results 
developed in Sections 2 and 3. 

2. FORMULATION AND BASIC FACTS 

Let H be a real Hilbert space with its dual H’, whose inner product and 
norm are denoted by ( ., .) and \I.Ij, respectively. Let C be a closed convex 
set in H. We denote by ( ., . ) the pairing between H’ and H. 

Given continuous mappings T, g: H + H’, we consider the problem of 
finding u E H such that g(u) E C, and 

cm g(u) - g(u)> 2 (A(u), g(u) - g(u)), for all g(u)E C, (2.1) 

where A(u) is a nonlinear continuous mapping such that A(u) E H’. The 
inequality (2.1) is known as the general mildly nonlinear variational 
inequality. 

Special Cases 

I. Note that, if g(u) = u E C, then Problem (2.1) is equivalent to 
finding UE C such that 

(Tu,u-u)3(A(u),u-u), for all u E C. (2.2) 

Inequalities (2.2) are known as mildly (strongly) nonlinear variational 
inequalities, which were introduced and considered by Noor [ 1,2] in the 
theory of constrained mildly (strongly) nonlinear partial differential equa- 
tions. For the finite element error estimates of these variational inequalities, 
see Noor [3]. 

II. If the nonlinear transformation A(u) E 0 (or A(u) is independent 
of the solution u, that is A(u) = f (say)), then (2.1) is equivalent to finding 
u E C such that g(u) E C and 

( Tu> g(u) - g(u) > > 0, for all g(u) E C. (2.3) 

The variational inequalities of the type (2.3) were studied by Noor [4], 
whose solution can be obtained by an iterative method. 

III. If A(u) E 0 and g = Z, the identity mapping, then problem (2.1) is 
equivalent to finding UE C such that 

(Tu,u-u)BO, for all u E C. (2.4) 

The problem (2.4) is originally due to Stampacchia [S]; see also [4,6]. 
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IV. If C*= {uEH’, (u, o)>O for all UEC) is a polar of the convex 
cone C in H, then Problem (2.1) is equivalent to finding u E H such that 

R(U)E CT (7-eA(U))EC*, (Tu-A(u),g(u))=O, (2.5) 

which is known as the general mildly nonlinear complementarity problem. 
Problem (2.5) appears to be a new one. 

It is clear that Problems (2.2))(2.5) are special cases of Problem (2.1). In 
brief, Problem (2.1) is the most general and unifying one, which is one of 
the main motivations of this paper. 

3. ITERATIVE ALGORITHMS 

In recent years, various numerical methods have been developed and 
applied to find approximate solutions of variational inequalities, including 
the projection method. To suggest an iterative algorithm for solving (2.1), 
we need the following results. 

LEMMA 3.1. If C is a convex set in H, then u E H is the solution of 
Problem (2.1) if and only if u satisfies the relation 

g(u)=P,Cg(u)--pn(Tu-A(u)l, (3.1) 

where p > 0 is a constant and P,, is the projection of H onto C. Here A is 
the canonical isomorphism,from H’ onto H such that for all v E H andf E H’, 

(f, u> = (iif, VI. (3.2) 

Proof: Its proof is similar to that of Lemma 3.1 in [7]. 

From Lemma 3.1, we conclude that Problem (2.1) can be transformed 
into the fixed point problem of solving 

u=F(u), 
where 

F(u)=u-g(u)+P,[g(u)-pA(Tu-A(u))]. (3.3) 

This formulation is very useful in approximation and numerical analysis of 
variational inequalities. One of the consequence of this formulation is that 
we can obtain an approximate solution of (2.1) by an iterative algorithm. 

ALGORITHM 3.1. Given u0 E H, compute u,, , by the iterative scheme 

%+1 =u,-g(u,)+P,Cg(u,)-pn(Tu,-A(u,)l, n = 0, 1, 2, (3.4) 

where p > 0 is a constant. 
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Special Cases 

(i) We note that if g(u) = u E C, then Algorithm 3.1 reduces to 

ALGORITHM 3.2 [S, 91. Given u0 E H, compute u,+ , by the iterative 
scheme 

%I+1 =PcCu,-pn(Tu,-A(u,)l, n=o, 1,2, . . . 

(ii) If A(u) s 0, then Algorithm 3.1 becomes 

ALGORITHM 3.3 [4]. Given u0 E H, compute u,+ i by the iterative 
scheme 

un+ 1= u, - d&J + PC Cd%) - PA %J, n = 0, 1, 2, . 

(iii) If g(u) = u E C and A(u) E 0, then Algorithm 3.1 reduces to 

ALGORITHM 3.4 [ 10, 111. Given u0 E H, compute u,, , by the iterative 
scheme 

U n+l =PcC%l-P~ stl, n=o, 1,2, . . . 

In brief, Algorithm 3.1 proposed here is more general and includes 
several previously known algorithms as special cases, which are mainly due 
to Glowinski, Lions, and Tremolieres [lo] and Noor [9]. 

We also need the following concepts. 

DEFINITION 3.1. A mapping T: H + H’ is said to be 

(a) Strongly monotone, if there exists a constant a>0 such that 

(Tu-Tv,u-v)acr IIu-vI/‘, for all u, v E H. 

(b) Lipschitz continuous, if there exists a constant p > 0 such that 

II Tu - Toll <B IIu - 011, for all u, v E H. 

In particular, it follows that u < j?. We now study the conditions under 
which the approximate solution computed by Algorithm 3.1 converges to 
the exact solution of the variational inequality (2.1). 

THEOREM 3.1. Let the mappings T, g: H--f H’ be strongly monotone and 
Lipschitz continuous, respectively. If the mapping A is Lipschitz continuous, 
then 

u,, + , + u strongly in H, 
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where u,, + , and u are solutions satiTf)iing (3.4) and (2.1), respet’tivel~~. 

Proof: From Lemma 3.1, we conclude that the solution u of (2.1) can 
be characterized by the relation (3. I ). Hence from (3.1) and (3.3), we 
obtain 

IIU n+ I - 4 = IIU,, - u - (g(u,) - g(u)) + p, Mu,) - PA(TU, - A(u))1 
-Pc-Cg(u)-p~(~u-A(u))lll 

d ll~,*-~-~~~~,~-gs(~~ll 

+ llPcCg(u,)--~(~u,,-A(u,))l 

-PcCg(u)-pn(Tu-A(u))l 
d 2 II% -u - (g(u,) - g(u))ll 

+ Ilu,-u-p~(~u,-Tu)+p~(A(u,)-A(u))ll, (3.5) 

since PC is a non-expansive mapping [lo]. 
Since T, g are both strongly monotone and Lipschitz continuous, by 

using the technique of Noor [7], we have 

11~,-~-~~~~,~-~~~~~112~~~ -2d+02) l/%--II2 (3.6) 

and 

/Iu,,-~-p~(Tu,-Tu)1)~~(1 -2pc(+p2j2) lIzi,-ul12. (3.7) 

From (3.5), (3.6), (3.7) and by using the Lipschitz continuity of A, we 
obtain 

llu n+l -24 < {(2&-E7)+py+ 1-2ap+p2p2} lIu,-2.11 

= {k+PY+t(P)I II%--II 

= 8 II% - 4, 

where 
k=2,/-, 

t(p) = JI - 2cqJ + p*p, 
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and 

Now t(p) assumes its minimum value for p=cr/fi2 with t(p)= 
dw. We have to show that 8~1. For p=p, k+py+t(p)<l 
implies that k < 1 and a > y( 1 -k) + (p’ - y2) k(2 - k). Thus it follows 
that 0 = k + py + t(p) < 1 for all p with 

cr+y(k-1) < 
p- pL$ 

&+y(k-1))2-(P2-y2)k(2-k) 

b2-Y2 
k< 1, 

cr>y(l-k)+ (P’-y2)k(2-k), and ~(1 -k)<a. 

Since 0 < 1, so the fixed point problem (3.1) has a unique solution u and 
consequently, the iterative solution U, + , obtained from (3.3) converges to 
U, the exact solution of the problem (2.1). 

Remarks 3.1. 1. If g = Z, the identity mapping, then we obtain a result 
of Noor [9]. In this case, k = 0 and (3.2) becomes 

F(u) = P, [u - pA( Tu - A(u))], 

and 8=py+t(p)<l for O<p<2(a-y)/(fl’-y*), py<l, and y<ol. 
Consequently, the mapping F(U) has a fixed point, which is the solution of 
(2.2); see Noor [9]. 

2. If g= I,, the identity mapping, and A(u) = 0, then we obtain a 
classical result. In this case, k = 0, y = 0, and (3.2) bcomes 

F(u) = P, [u - p/l Tu] 

and 8 = t(p) < 1 for 0 < p < 2cr/f12. Thus the mapping F(U) has a fixed point, 
which is the solution of (2.4), see [ 10, 111. 

3. If A(u) E 0, then we obtain a result of Noor [4]. Then y = 0 and 
(3.2) becomes 

F(u) = u - g(u) + PC Mu) - PA Tul, 

and 

tI=k+t(p)< 1 for k<l, a>p,/k(k-2), 

a2 - p2(2k - k2) 

B’ . 

Consequently the mapping F(U) has a fixed point, which is the solution of 
the problem (2.3); see Noor [4]. 
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4. APPLICATIONS 

A large number of differential equation problems of odd and even order 
can be characterized by a class of variational inequalities of the type (2.1 ). 
For simplicity, we consider the third order two-point boundary value 
problem 

Tu >J’(x, u(x)) in D 

4-x) a ‘h(x) in D 

CA-ax, 4x))lCdx) - $(x)1 = 0 in D ’ (4.1) 

U=O and u’=O on S 1 

where D is a domain in R2 with boundary S= [0, 11, T= -d3/dx3 is the 
differential operator of third order, f is a given nonlinear function of x, and 
e(x) is the given obstacle function. To study the problem (4.1) in the varia- 
tional inequality framework, we define 

C = {u E Hi(O), u(x) 3 I)(X) on D}, 

which is a closed convex set in Hi(Q). Now using the technique of 
K-positive definite operators, as developed in [12], we can show that the 
problem (4.1) is equivalent to finding u E H:(Q) such that KUE C and 

(Tu, Ku- Ku) 2 (A(u), Ku- Ku), for all Ku E C, (4.2) 

where 

(Tu,Kv)=-j-‘D3uDvdx=~‘D2uD2vdx 
0 0 

(4.3) 

and 

(A(u), Ku) = j-‘f(x, u(x)) Dv dx (4.4) 
0 

with K = d/dx = D. 
It is clear that with g= K, we have the variational inequality problem 

(2.1). With proper choice of the mapping g and suitable assumptions on 
the operators T and A, we can verify all the hypothesis of Theorem 3.1. 

5. CONCLUSION 

In this paper, we have considered and studied a new class of variational 
inequalities, which includes the previously known ones as special cases. It 
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is shown that the differential equations of odd order can be formulated in 
terms of this class. We have also suggested an iterative algorithm along 
with convergence criteria for finding the approximate solution of the varia- 
tional inequalities. Development and improvement of an implementable 
algorithm for this class of variational inequalities deserve further research 
efforts. For related work, see also Noor [13, 141. 
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