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Abstract

The anomaly in the vacuum expectation value of the product of axial and two vector currents (AVV) in QCD is investigated. The goal is to
determine from its value the π0 → 2γ decay width with high precision. The sum rule for AVV formfactor is studied. The difference fπ0 − fπ+
caused by strong interaction is calculated and appears to be small. The π0–η mixing is accounted. The π0 → 2γ decay width determined
theoretically from the axial anomaly is found to be Γ (π0 → 2γ ) = 7.93 eV with an error ∼ 1.5%. The measurement of the π0 → 2γ decay width
at the same level of accuracy would allow one to achieve a high precision test of QCD.
© 2007 Elsevier B.V.

PACS: 11.15.-q; 11.30.Qc; 12.38.Aw

The statement that in massless QED the axial anomaly is contributed by massless pseudoscalar state had been first done by
Dolgov and Zakharov in 1971 [1]. Later this problem was investigated in many papers. (See, e.g., the book [2] and the reviews
[3,4]). Now it is known, that the anomaly for transition of axial isovector current into two massless vector currents, i.e., into two
photons, is almost completely exhausted by the contribution of π0 → 2γ decay. However, the accuracy of the calculation of the
π0 → 2γ decay contribution is about 5–7% [4] and of the same order is the experimental error in the determination of the π0 → 2γ

decay width Γ (π0 → 2γ ) [5]. The PriMex experiment at JLab [6], where it is planned to reduce the error in the experimental value
of Γ (π0 → 2γ ) down to 1–2%, is under way. Also, it is desirable to have theoretical prediction at the same level of accuracy and
therefore, to have a possibility of high precision test of the anomaly—a significant ingredient of the modern field theory.

The calculation of hadronic contribution to the AVV anomaly at the desired level of accuracy was done by Moussalam [7] and
by Goity, Bernstein and Holstein [8] in the framework of the Chiral Effective Theory (CET) (in the second order) and of 1/Nc

expansion. In these calculations the result is expressed through the parameters of the CET Lagrangian in the second order, which
were determined from the set of the data. In the present paper we perform such calculation in QCD using the dispersion relation
representation for the AVV formfactor, QCD sum rules to determine fπ0 − fπ+ difference and accounting for π0 − η mixing. The
only parameter, which enters the result, is the value Γ (η → 2γ ).

The notation

(1)Tμαβ(p,p′) = 〈p,εα;p′, ε′
β |j (3)

μ5 |0〉
is used for the matrix element of the transition of the isovector axial current

(2)j
(3)
μ5 = (ūγμγ5u − d̄γμγ5d)/

√
2
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into two photons with momenta p, p′ an polarizations εα , ε′
β . (Here u and d are the fields of u and d quarks.) The general form of

Tμαβ(p,p′) is (q = p + p′) [4,9,10]:

(3)Tμαβ(p,p′) = F1
(
q2)qμεαβρσ pρp′

σ + 1

2
F2

(
q2)(pαεμβρσ − p′

βεμαρσ )pρp′
σ .

The functions F1(q
2) and F2(q

2) can be represented by nonsubtracted dispersion relations and in QCD the anomaly condition can
be written as the sum rule [4,9]:

(4)

∞∫
(mu+md)2

ImF1
(
q2)dq2 = √

2α
(
e2
u − e2

d

)
Nc,

where eu and d are u- and d-quarks electric charges, eu = 2/3, ed = −1/3, Nc is the number of colours, Nc = 3. Note, that at
large q2 the function ImF1(q

2) ∼ (1/q4) lnq2 and the integral in (4) is well converging. Emphasize, that in QCD there are no
perturbative corrections to Eq. (4) [11] and it is expected, that nonperturbative corrections are absent also.

Let us saturate the left-hand side (l.h.s.) of (4) by the π0 contribution. Use the relation

(5)〈0|j (3)
μ5 |π0〉 = ifπ0qμ.

The general form of the π0-contribution to Tμαβ(p,p′) is

(6)Tμαβ(p,p′) = −fπ0
1

q2 − m2
π

Aπqμεαβλσ pλp
′
σ ,

where Aπ is a constant. In the approximation, when only pion contribution is accounted in the l.h.s. of (4) the constant Aπ is found
by substituting (6) into (4). The result is (numerical values of eu, ed , Nc were used):

(7)A(1)
π = α

π

1

fπ0
.

The π0 → 2γ decay width is easily calculated from (6), (7),

(8)Γ (0)
(
π0 → 2γ

) = α2

32π3

m3
π0

f 2
π0

.

Index (0) at Γ means that the saturation of the sum rule (4) by the π0 state was exploited. At fπ0 = fπ+ = 130.7 ± 0.4 MeV and
mπ0 = 135.0 MeV [5] we get from (8):

(9)Γ (0)
(
π0 → 2γ

) = 7.73 eV.

Turn now to the calculation of correction to zero approximation. The first correction is due to the fact, that generally fπ0 is
not equal to fπ+ . There are two sources of the fπ0 − fπ+ difference: the electromagnetic interaction and violation of isospin in
strong interaction. π0 has no electromagnetic interaction and the electromagnetic interaction of π+ was already accounted, when
the value of fπ+ was found from the π+ → μ+ν decay data [5]. So, the electromagnetic interaction does not change the value
of fπ0 in comparison with the presented above value of f +

π . (The discussion of magnitude of fπ0 − fπ+ difference, caused by
electromagnetic interaction was done in Ref. [8].) In order to find fπ0 − fπ+ caused by strong interaction consider the polarization
operators Π

(3)
μν and Π

(+)
μν of axial currents j

(3)
μ5 (2) and j

(+)
μ5 = ūγμγ5d . (The presented below method is exposed in [12,13] and

reviewed in [14].) The general form of these polarization operators is

(10)Π(i)
μν (q) = Π

(i)
T

(
q2)(qμqν − δμνq

2) + qμqνΠ
(i)
L

(
q2), i = 3,+.

The pion contribution to Πμν(q) is given by [12]:

(11)Πμν(q)π = −f 2
π

q2

(
qμqν − δμνq

2) − m2
π

q2
qμqν

f 2
π

q2 − m2
π

.

Consider the longitudinal polarization operator Π
(i)
L (q2) to which only pseudoscalar mesons are contributing. In order to separate

the interesting for us second term in (11) let us multiply (11) by qμqν/q
2 and consider the difference

(12)q2(Π(3)
L

(
q2) − Π

(+)
L

(
q2)) = − m2

π0f
2
π0

q2 − m2
π0

+ m2
π+f 2

π+

q2 − m2
π+

.



B.L. Ioffe, A.G. Oganesian / Physics Letters B 647 (2007) 389–393 391
As was demonstrated by Weinberg [15], in the first order in mu − md the π+ and π0 masses are equal and the experimentally
observed π+ and π0 mass difference arises from electromagnetic interaction. In the second order in u- and d-quark masses m2

π0 −
m2

π+ is proportional to (mu − md)2 or (mu − md)[〈0|ūu|0〉 − 〈0|d̄d|0〉] and, as can be shown, is very small. So, in (12) we can put
m2

π+ = m2
π0 and have

(13)Δ
(
q2) ≡ q2(Π(3)

L

(
q2) − Π

(+)
L

(
q2)) = − m2

π

q2 − m2
π

(
f 2

π0 − f 2
π+

)
.

Exploit the standard QCD sum rule technique and represent Δ(q2) as an operator product expansion (OPE)

(14)Δ
(
q2) = R2

(
q2) + R4

(
q2) + R6

(
q2),

where R2 corresponds to the contribution of bare loop diagram, R4—to the operator of dimension 4 and R6—to the operator of
dimension 6. Only the terms, proportional to mu − md and 〈0|ūu|0〉 − 〈0|d̄d|0〉 remain in (14). Note, that Δ(q2) is even under
interchange u ↔ d . For this reason no linear in mu − md or 〈0|ūu|0〉 − 〈0|d̄d|0〉 terms can survive in the right-hand side of (14).
Calculating the terms of OPE we get after Borel transformation:

(15)
m2

π

M2
e−m2

π /M2(
f 2

π0 − f 2
π+

) ≈ m2
π

M2

(
f 2

π0 − f 2
π+

) = 3

8π2
(mu − md)2 − md − mu

4π2M2
(au − ad),

where

(16)aq = −(2π)2〈0|q̄q|0〉, q = u,d,

and M2 is the Borel parameter. The contribution of the d = 6 operator vanishes. For the difference fπ0 − fπ+ we have

(17)
Δfπ

fπ

≡ fπ0 − fπ+

fπ

= 3

16π2

M2

m2
πf 2

π

[
(mu − md)2 − 2

3

md − mu

M2
γ aq

]
,

where

(18)γ = au − ad

aq

.

For numerical estimations we put md − mu = 3.5 MeV ± 20% [14], γ = 6 × 10−3 [16] or γ = 3 × 10−3 [17] and M = 1 GeV.
The calculations give

(19)
Δfπ

fπ

 2 × 10−4 [16]; Δfπ

fπ

 4 × 10−4 [17].

Therefore, the difference fπ0 − fπ+ is negligible.
The additional source of the fπ0 −fπ+ difference arises because there is the contribution of η-meson to the polarization operator

Π
(3)
L , besides the π0. This contribution appears from the η–π mixing and must be subtracted from the value of fπ0 . Omitting the

details of simple calculations, we present the result

(20)

(
Δfπ

fπ

)
= −1

2

m2
η

m2
π

Sin2 θηπ exp
[−(

m2
η − m2

π

)
/M2],

where θηπ is the η − π mixing angle given below (Eq. (29)). Numerically

(21)

(
Δfπ

fπ

)
= −1.3 × 10−3

and is also very small.
Let us dwell now on the main correction to the zero approximation result for Γ (π0 → 2γ ) arising from excited states contribu-

tions to the sum rule (4). The next after π0 pseudoscalar meson is η. It can contribute to (4) because of isospin violation, caused by
different masses of u- and d-quarks and resulting in π0–η mixing. The problem of π0–η mixing in QCD was considered in [18–20].
Following [18,20] introduce nonorthogonal states |P3〉 and |P8〉 and the corresponding fields ϕ3, ϕ8, coupled to j

(3)
μ5 and j

(8)
μ5 :

(22)〈0|j (k)
μ5 |Pl〉 = iδklfkqμ, k = 3,8.

Nonorthogonality of the fields ϕ3, ϕ8 corresponds to the non-diagonal term ΔH = m2
ηπϕ3ϕ8 in the effective interaction Hamil-

tonian. In the presence of such term the standard PCAC relations are modified in the following way [18]

∂μj
(3) = fπ

(
m2

πϕ3 + m2
ηπϕ8

)
,
μ5
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(23)∂μj
(8)
μ5 = fη

(
m2

ηϕ8 + m2
ηπϕ3

)
.

The fields ϕ3, ϕ8 are expressed through the physical fields ϕπ , ϕη as

ϕ3 = Cos θηπϕπ + Sin θηπϕη,

(24)ϕ8 = −Sin θηπϕπ + Cos θηπϕη,

where the mixing angle is given by

(25)θηπ ≈ m2
ηπ

m2
η − m2

π

≈ m2
ηπ

m2
η

.

In QCD the nondiagonal mass m2
ηπ is expressed through the difference of u- and d-quark masses [18,19]:

(26)m2
ηπ = 1√

3

mu − md

mu + md

m2
π .

Now ImF1(q
2) is given by the sum of contributions of π0 and η mesons. In order to separate the formfactor F1(q

2) and to kill the
contributions of axial mesons in the representation of ImTμαβ(p,p′) in terms of physical states, multiply Eq. (3) by qμ/q2. Using
Eqs. (1), (23), (24) and taking the imaginary part, we get:

Imqμ

1

q2
〈2γ |j (3)

μ5 |0〉 = − 1

q2
Im〈2γ |m2

π (Cos θηπϕπ + Sin θηπϕη) + m2
ηπ (−Sin θηπϕπ + Cos θηπϕη)|0〉

≈ π

[
δ
(
q2 − m2

π

)
Aπ + m2

π

m2
η

m2
ηπ

m2
η

δ
(
q2 − m2

η

)
Aη − (m2

ηπ )2

m2
πm2

η

δ
(
q2 − m2

π

)
Aπ + m2

ηπ

m2
η

δ
(
q2 − m2

η

)
Aη

]

(27)≈ π

{
δ
(
q2 − m2

π

)
Aπ

[
1 − m2

π

m2
η

1

3

(
mu − md

mu + md

)2]
+ 1√

3

m2
π

m2
η

(
mu − md

mu + md

)
δ
(
q2 − m2

η

)
Aη

}
,

where Aη is the amplitude η → 2γ decay. The ratio Aη/Aπ is equal

(28)
Aη

Aπ

=
[

Γ (η → 2γ )

Γ (π0 → 2γ )

m3
π

m3
η

]1/2

.

Numerically, at Γ (η → 2γ ) = 510 eV [5] and Γ (π0 → 2γ ) = 7.73 eV, Aη/Aπ = 1.0. According to (25), (26) the mixing angle
θηπ is given by (the numerical data were taken from Ref. [14]):

(29)θηπ = 1√
3

mu − md

mu + md

m2
π

m2
η

= −0.0150 ± 0.020

and the total correction to the amplitude of π0 → 2γ decay arising from η–π mixing is

(30)
(F1)η

(F1)π
= −(1.2 ± 0.25)%.

Let us estimate the contributions to the sum rule (4) from higher pseudoscalar mesons. The η′ meson contributes through ηη′
mixing. Its contribution is suppressed by the ratio (mη/mη′)2 in comparison with η contribution and we have

(31)
(F1)η′

(F1)η
∼

√
Γ (η′ → 2γ )

Γ (η → 2γ )

(
mη

mη′

)3/2(
mη

mη′

)2

Sinϑηη′ ,

where ϑηη′ is the ηη′ mixing angle. In accord with [21] we can put ϑηη′ ≈ −20◦. Using Γ (η′ → 2γ ) = 4.29 MeV [5] we have the
estimation

(32)(F1)η′/(F1)η ∼ 0.15.

Finally, estimate the contribution of the resonance π(1300). The contribution of this resonance to Tμαβ(p,p′) (1) (as well as any
other excited states) should be proportional to mu +md or, what is equivalent, to m2

π , otherwise the axial current would not conserve
in the limit mu + md → 0. Therefore, for dimensional grounds,

(33)
(F1)π(1300)

(F1)π
∼ m2

π

m2
π(1300)

< 1%.
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In fact, probably, (33) overestimates the π(1300) contribution, since, as was mentioned above, F1(q
2) decreases as 1/q4 at large q2.

So, in what follows we take (F1)π(1300)/(F1)π ∼ 0.5%. Summing all uncertainties in squares we have the total uncertainty in the
amplitude about 0.7%. The final result for Γ (π0 → 2γ ) from the axial anomaly is (the correction, given by Eq. (21) is accounted):

(34)Γ
(
π0 → 2γ

) = 7.93 eV ± 1.5%.

In the limit of errors this agrees with those found in [7] and [8]. The experimental test of this relation, which is planned by PriMex
Collaboration would be very important: it would be a high precision test of QCD and even more general—the phenomenon of the
anomaly. Not too many such high precision tests of QCD are known till now.
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