A. NEAR-SELECTION THEOREM

William E. HAVER
Machematics Deparment. Universiry of Tennessee, Znoxville, TN 37916, USA

Received 12 July 1976

Abstract

A near-selection :heorem is proven for carriers defieed on spaces that are the countable union of finite dimensional compacta. As an application a new proof is given of the fact that the space of homeomorphisns on a compact piecewise linear manifold is locilly contractible. In addition a new criterion is given to determine if the space of homeomorphisms on a compait n-manifole is an i_{2}-manifoid.

> AMS Subj. Class. (1970): Primary 54C35, 54F45, 57A20; Secondary 57C55.
> infinite dimensional manifolds selection theorem
> cell-like
> C-spaces
> spaces of homeomorphisms

0. Introduction

The study of the space of homeomorphisms on a compact manifold can be reduced to the problem of canonically approximating homeomorphsisms by piecewise linear homeomorphism (cf. [9] and the last section of this paper). This provilem is essentially a "near-selection" probleni. In this paper we state and prove a general near-selection theorem, given an application to the space of piecewise line r homeomorphisms on a manifold and, in our final remarks, show that if for a given integer $n, H_{s}\left(B^{n}\right)$ is an ANR, then for any n-manioid, $M^{m^{n}}, H\left(M^{n}\right)$ is an AMR.

Jir near-selection theorem is stated in terms of C-spaces which were originally defined in [12] and studied further in [1]. A metric space X is said to have Property C (be is C-space) if for each sequence of positive numbers $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$, there exists a sequence of collection of open sets $\mathscr{थ}_{1}, \mathscr{U}_{2}, \ldots$ such that
(a) if $U_{i} \in d \ell_{i}$, then diam $U_{i}<\varepsilon_{i}$;
(b) If $U_{i}, U_{i}^{\prime} \in \mathscr{U}_{i}$ and $U_{i} \neq U_{i}^{\prime}$, then $U_{i} \cap U_{i}^{\prime}=\varphi$; and
(c) $\mathscr{Q}:=\bigcup_{i=1}^{\infty} u_{i}$ is a cover of X.

In [12] it is shown that every countable-dimensional metric space is a C-space, so the following theorem can he considered as a theorem involving such spaces. Note that trivially every finite dimensional compactum is a C-space.

1. A mear -selection theorem

Selection theorems have proven to be important tools in dealing with function spaces [cf. 5, 10, 16]. However, their use is limited yy the hypothesis that the base space must be finite dimensional. In some cases ob aining a ncar-selection may be sufficient. Our theorem deals with obtaining near-selections when the base space is the countable union of compact C-spaces. Compare with Proposition 3 of [12] that holds only for compact C-spaces. A subset S of a metric space Y is CE if given $\varepsilon>0$ there is a $\varepsilon>0$ so that $N_{s}(S)$ is null-homotopic in $N_{s}(S)$. The function $\varphi: X \rightarrow 2^{\boldsymbol{Y}}$ is a continuous carrier if for each $x \in X$ and $\varepsilon>0$ there is a $\delta>0$ so that ii $d\left(x, x^{\prime}\right)<\delta$, then $\varphi(x) \subset N_{\varepsilon}\left(\varphi\left(x^{\prime}\right)\right)$ and $\varphi\left(x^{\prime}\right) \subset N_{s}(\varphi(x))$. If \mathscr{Q} is an open cover of $\mathcal{X}, \mathcal{N}(\mathscr{U})$ will denote the nerve of \mathscr{U}. When there is no possibility of confusion, we will not distinguish between a finite simplicial complex, K, and its underlying point set, $|\boldsymbol{K}|$.

Theoresin 1. Let $X=\bigcup_{n=1}^{\infty} X_{n}$ be a metric space such that for each n, X_{n} is a compact space with property C. Let \mathscr{S} be a collection of CE subspaces of Y and $\varphi: X \rightarrow S \subset 2^{Y}$ be a continuous carrier. Then given a continuous function $\mathrm{c}: X \rightarrow(0,1]$ there exists a map $f: X \rightarrow Y$ such that for all $x \in X, f(x) \in N_{(x)}(\varphi(x))$.

Proof. Without loss of generality we assume that $X_{n} \subset X_{n+1}$ for all n. We first define a decreasing sequence of positive numbers $\left\{\delta_{i}\right\}_{i=0}^{\infty}$, such that $\delta_{i} \leqslant 1 / 2^{i+3}$ for all i, and such that if $i>0$ and $x \in X_{b}$, then $N_{2 A_{1}}(\varphi(x))$ is contractible in $N_{\delta_{i-1}}(\varphi(x))$. [The same number δ_{i} suffices for all $x \in X_{i}$ since X_{i} is compact.] Then let $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$ be a decreasing sequence of positive numbers such that if $x \in X_{i}$ and $x^{\prime} \in X$ with $d\left(x, x^{\prime}\right)<2 \varepsilon_{i}$, then $\varphi(x) \subset N_{\delta_{i}}\left(\varphi\left(x^{\prime}\right)\right)$ and $\varphi\left(x^{\prime}\right) \subset N_{\delta_{i}}(\varphi(x))$.

Then we can obtain a sequence of collections of open subsets of $X, \mathscr{U}_{1}, \mathscr{U}_{2}, \ldots$ such that $\mathscr{U}=\bigcup_{i=1}^{\infty} \mathscr{U}_{i}$ is a countable open cover of X and for each i if $U_{b} U_{i}^{\prime} \in \mathscr{U}_{i}$ then:
(i) if $U_{i} \neq U_{i}^{\prime}$ then $U_{i} \cap U_{i}^{\prime}=1$,
(ii) $\operatorname{diam} U_{i}<\varepsilon_{i}$,
(iii) $U_{i} \cap X_{i} \neq \emptyset$,
(iv) if $U_{i} \cap c^{-1}\left(\left[\frac{1}{2^{i+1}}, \frac{1}{2^{i}}\right]\right) \neq \emptyset$, then $i \geqslant j$.
[We constract the cover \mathscr{U} : First fix an integer j and for each positive integer n let

$$
X_{n}=X_{n} \subset \mathbb{A}^{-1}\left(\left[\frac{1}{2 j}, \frac{1}{2^{i-1}}\right]\right) .
$$

Partition the positive integers, Λ, into a countable number of ininite set, A_{n}, in such a way that if $k \in \Lambda_{n}, k \geqslant n$. Now for each n consider ${ }_{i} X_{n}$ a ad the stquence $\left\{\varepsilon_{i+2 i_{0}}\right\}_{i_{0} \in A_{n}}$. Since ${ }_{j} X_{n}$ is a compact C-space there exists a se ${ }_{i}$ uence of finite
collections of open sibsets of

$$
\iota^{-1}\left(\left(\frac{1}{2^{i}}-\frac{1}{2^{i+2}}, \frac{1}{2^{i-1}}+\frac{1}{2^{i+2}}\right)\right), u_{i, i+2 i_{1}}, u_{i, i+2 i_{2}}, \ldots,
$$

such that
(a) if $U_{i, j+2 i_{\mathrm{o}}} \in U_{i, j+2 i_{\mathrm{p}}}$ diam $U_{i, i+i_{i}}<\varepsilon_{i+2 i_{\mathrm{o}}}$
(b) if $U_{i, j+2 i_{b}}, U_{j, j+2 i_{p}}^{\prime} \in \mathscr{U}_{i, j+2 i_{p}}$ and $U_{i, j+2 i_{p}} \neq U_{i, j+2 i_{p},}^{\prime}$, then $U_{i, j+2 i_{p}} \cap U_{i, j+2 z_{c}}^{\prime}=\Phi$ and
(c) $U_{i_{0} \in A_{n}} U_{i, j+2 i_{p}}$ is a cover of ${ }_{j} X_{n}$. Then for each j, the sequence of collections of open subsets of $X, q_{i,}, \mathscr{q}_{i, j+2}, \ldots$ is such that $\bigcup_{k=0}^{\infty} q_{i_{j, j+2 k}}$ is an open cover of ${ }^{-1}\left(\left[1 / 2^{j}, 1 / 2^{i-1}\right]\right)$ and for each k if $U_{i, j+2 k}, U_{i, j+2 k}^{\prime} \in \mathscr{U}_{i, j+2 k}$ then:
(i^{\prime}) if $\boldsymbol{U}_{i, i+2 k} \neq U_{i, i+2 k}^{\prime}, U_{i, i+2 k} \cap U_{i, i+2 k}^{\prime}=\emptyset$,
(ii') $\operatorname{diam} U_{i, j+2 k}<\varepsilon_{i+2 k}$.
(iii) $U_{i, j+2 k} \cap X_{i,-2 k} \neq \emptyset$,
(iv') $U_{i, j+2 k} \in \iota^{-1}\left(\left[1 / 2^{i}-1 / 2^{i+2}, 1 / 2^{j-1}+1 / 2^{i+2}\right]\right)$.
Then for each i, let $\mathscr{U}_{i}=\bigcup_{i=1}^{i} \mathscr{u}_{i, i}$. Obviously $\mathscr{U}=\bigcup_{i=1}^{\infty} \mathscr{U}_{i}$ is an open cover of $X=\bigcup_{i=1}^{\infty} i^{-1}\left(\left[1 / 2^{i}, 1 / 2^{i-1}\right]\right)$. Then property (i) tollows from (i') and (iv'); properties (i), (iii) and (iv) follow from (ii'), (iii') and (iv') respectively.]

Let \mathscr{V} be a countable star finite refinement of \mathscr{U} and $b: X \rightarrow N(\mathscr{V})$ be the canonical barycentric map to the nerve cf the cover \mathscr{V}. For each $V \in \mathscr{V}$ pick an element U of \mathscr{Q} that contains V. Set $\mu((V))=U$ and, by extending linearly, define a map $\mu: N(V) \rightarrow N(\%)$. Let Q denote the (not necessarily locally finite) polyhedron $\mu(. V(V))$. We wish to define $g: Q \rightarrow y$ so that $d(g \mu b(x), \varphi(x))<\imath(x)$ for all $\boldsymbol{x} \in \boldsymbol{X}$.

For each vertex $U_{i} \in \mathscr{U}_{i}$ of $N(\mathscr{q})$, pick $x_{U_{i}} \in U_{i} \cap X_{i}$ and $y_{L_{i}} \in \varphi\left(x_{U_{i}}\right)$. We define \tilde{g} from the 0 -skelton of $\mathcal{N}(\mathscr{Q})$ into Y by $\bar{g}\left(\left(U_{i}\right)\right)=y_{U_{i}}$. Since $x_{U} \in X_{i}$ we can defire the map

$$
\Psi_{U_{1}}: N_{2 \varepsilon_{1}}\left(\varphi\left(x_{U_{1}}\right)\right) \times I \rightarrow N_{\mathcal{S}_{1-1}}\left(\varphi\left(x_{U_{1}}\right)\right),
$$

with $\Psi_{U_{i}}\left(w_{1}, 0\right)=w$ and $\Psi_{U_{i}}(w, 1)=y_{U_{\mathrm{t}}}$ for all $w \in N_{2 \delta_{1}}\left(\varphi\left(x_{U_{i}}\right)\right.$). (It is critical for the foliuwing that such a map $\Psi_{u^{\prime}}$ be fixed at this point.)

We need now some specialized terminology. With the converition that $U_{m_{3}} \in \mathcal{E}_{U_{m}}$ for each s, let

$$
\begin{aligned}
& K_{j}=\left\{\sigma<Q \mid \sigma=\left\langle U_{m_{1}}, \ldots, U_{m_{1}}\right\rangle \text { with } m_{s} \leqslant j \text { for } 1 \leqslant s \leqslant t\right\}, \\
& n_{K_{i}}=\left\{\sigma<K_{i} \mid \sigma=\left\langle U_{m_{1}}, U_{m_{2}}, \ldots, U_{m_{t}} \text { with } m_{i} \geqslant n \text { for } 1 \leqslant s \leqslant t .\right\}\right.
\end{aligned}
$$

We first define $g_{1}: K_{1} \rightarrow Y$ by $g_{1}\left(\left\langle U_{1}\right\rangle\right)=\tilde{g}\left(\left(U_{1}\right\rangle\right)$ for all $U_{1} \in K_{1}$. Atsume inductively that we have defined $g_{i}: K_{j} \rightarrow Y$ for all $j<i$ suc: that g_{i} estends $\boldsymbol{g}_{i-1} \mid K_{i-1}$ and if $\sigma=\left\langle U_{m_{1}}, \ldots, U_{m_{2}}\right\rangle \subset K_{i}$ with $m_{1}<\cdots<m_{i}$ and w is a pinin of σ with $w=s\left(U_{m_{1}}\right\rangle+(1-s) w^{\prime}$, where w^{\prime} is a point of $\left\langle U_{n_{2}}, \ldots, \ell_{m_{i}}\right\rangle$, then $g_{i}(w)=$ $\Psi_{y_{m_{i}}}\left(g_{i}\left(w^{\prime}\right), s\right)$.

We will now define $g_{i}: K_{i} \rightarrow Y$ satisfying the inductive hypothesis. Assume (subinductively) that we have derined ${ }^{\prime} g_{i}{ }^{\prime} K_{i} \rightarrow Y$ for $\varepsilon \| j$ with $i: j>n$, such that for $i>j>n, g_{i}$ extends ${ }^{j+1} g_{i}$ and for $i \geqslant j>n^{\prime} g_{i}$ extends $g_{i-1} \mid K_{i-1} \cap^{\prime} K_{i}$ and if $\sigma=\left(U_{m_{2}}, \ldots, U_{m_{i}}\right) \in^{j_{i}}$ with $m_{1}<\cdots<m_{t}$ and w is a poins of σ with $w=$ $s\left(U_{m_{1}}\right\rangle+(1-s) w^{\prime}$ (where w^{\prime} is a point of $\left.\left\langle U_{m_{2}}, \ldots, U_{m_{1}}\right\rangle\right)$ then ${ }^{i} 3(w)=$ $\phi U_{m, 1}\left({ }^{\prime} g\left(w^{\prime}\right), s\right)$. For the following note that this condition implies that ${ }^{\prime} g(\sigma) \subset$ $N_{m_{i}-2}\left(\varphi\left(x_{U_{m}}\right)\right)$ and recall that we are now subinducting downward.
We now wish to define ${ }^{n} g_{i}:{ }^{n} K_{1} \rightarrow Y$ satisfying the subinductive hypothesis (we start trivially by letting $\mathrm{g}_{\mathrm{i}}(\langle U\rangle)=\dot{g}(\langle U\rangle)$ for each simplex $\langle U\rangle$ of $\left.{ }^{\prime} K_{1}\right)$. Let $\sigma=$ ($U_{m_{2}}, \ldots, U_{m_{i}}$) be an element of ${ }^{n} K_{i}$ with $m_{1}<m_{2}<\ldots<m_{r}$ (Of sourse the entire argument relies on the strict inequality of the integers $m_{1}, m_{2}, \ldots, m_{6}$) If $m_{1}>n$, $\sigma<{ }^{n+1} K_{i}$ and we let ${ }^{n} g_{i}\left|\sigma={ }^{n+1} g_{i}\right| \sigma$. If $m_{1}=n$ we note by the subinductive hypothesis that

$$
{ }^{n+1} g r t\left(\left(U_{m_{2}}, \ldots, U_{m_{1}}\right\rangle\right) \subset N_{U_{m_{2}-1}-1}\left(\varphi\left(x_{m_{m_{2}}}\right)\right) \subset N_{\delta_{m_{1}}}\left(\varphi\left(x_{U_{m_{2}}}\right)\right) .
$$

We note that $U_{m_{1}} \cap U_{m_{2}} \neq \varphi$ and hence that

$$
d\left(x U_{m_{1}}, x v_{m_{2}}\right)<\operatorname{diam} U_{m_{1}}+\operatorname{diam} U_{m_{2}}<\varepsilon_{m_{1}}+\varepsilon_{m_{2}}<2 \varepsilon_{m_{1}}
$$

and hence that $\varphi\left(x_{U_{m_{2}}}\right)=N_{\delta_{m_{1}}}\left(\varphi\left(x_{U_{m_{1}}}\right)\right)$. Therefore

$$
{ }^{n+1} g_{i}\left(\left(U_{m_{2}}, \ldots, U_{m_{1}}\right) \subset N_{2 \Omega_{1}}\left(\varphi\left(x_{U_{m_{1}}}\right)\right) .\right.
$$

We can therefore define "sio as desired: If w is a point $\sigma \sigma$ with $w=$ $s\left(U_{n+1}\right\rangle+(1-s) w^{\prime}$ (where w^{\prime} is a point of $\left\langle U_{m_{2}}, \ldots, U_{m}\right\rangle$ let " $g(w)=$
 $g_{1-1} \mid \sigma \cap K_{i-1}$ since in both cases we made use oi the nap $\psi U_{m_{1}}$. We repeat the argument for each $\sigma<{ }^{n} K_{i}$ to obtain ${ }^{n} g_{i}:{ }^{n} K_{i} \rightarrow Y$. Tiis ocmpletes the subinductive argument. Let $g_{i}={ }^{1} g_{i}:^{1} K_{i}=K_{i} \rightarrow Y$.

Finally let $g: Q \rightarrow Y$ be defined by $g=\lim _{i \rightarrow \infty} g_{i} ; g \mu$ is obviously well-defined and continuous. We need only check that for each $x \in X, d(g \mu b(x), \varphi(x))<\iota(x)$. Suppose $\left.\mu b(x) \in<U_{m_{1}}, \ldots, U_{m_{2}}\right)$ with $m_{1}<\cdots<m_{1}$. Now there is a non-negative integer j with $1 / 2^{j+1} \leqslant \iota(x) \leqslant 1 / 2^{i}$. We note that since $x \in U_{m_{1}}$, condition (iv) implies that $m_{1} \geqslant j$ and hence that $1 / 2^{m_{1}+1} \leqslant \iota(x)$. But

$$
g \mu b(x) \in N_{\delta_{m_{1}-1}}\left(\varphi\left(x_{U_{m_{1}}}\right)\right) \subset N_{\delta_{m_{1}-1}}\left(N_{\delta_{m_{1}}}(\varphi(x))\right) \subset N_{2 m_{m_{1}-1}}(\varphi(x)) .
$$

Hence

$$
d(g \mu b(x), \varphi(x))<2 \delta_{m_{1}-1} \leqslant 2\left(\frac{1}{2^{m_{1}-1+3}}\right)=\frac{1}{2^{m_{1}+1}} \leqslant \ell(x) .
$$

2. An application

Selection theorems have been particularly effective in dealing with finite dimensional spaces of homeomorphisms [5,10,16]. In [8] Geoghegan showed that the space of piecewise linear homeomorphisms, PLHY(M), on a compact piecewise
linear manifold, M, is the countable union of finite dimensional crmpacta. It is therefore not surprising that the near-selection theorem is useful in dealing with PLH(M). We give here ather proof of the fact that PLH(M) is locally contractible. This was first shown vy R. Edwards ([11], see also [7]). These proofs involve refining the arguments of Chernavskii [3] or Edwards-Kiroy [6], wiile the present proof demonstrates that the local contractibility of $\operatorname{PLH}(M)$ follows from general principles and information concerning $\mathbf{H}(\mathbf{M})$, the space of all topological homeomorphisms on M. Our proof is valid for piecewise linear manifolds M of dimension not equal to A.

Let $H_{s}(M)$ denote the subspace of all homeomorphisms which equal the identity on the boundar of \mathbf{M} and $\mathrm{PLH}_{s}(\mathbf{M})=\mathrm{H}_{s}(\mathbf{M}) \cap \mathbf{P L H}(M)$. The various function spaces on comptet manifolds will be assumed to have the supremum metric, p, i.e., if $f, g \in H(M)$, with the metric on M, then $\rho(f, g)=\sup _{x \in M}\{d(f(x), g(x))\}$. If $A \in X$ let l_{A} denote the inclusion of A in $X ;$ for sitive δ let $N_{8}\left(l_{u}\right)=$ $\left(h \in H(M) \mid \rho\left(h, 1_{M}\right)<8\right\}$.

To begin we state two lemmas. The first is from Edwards-Kirby [6, p. 79], and the second will follow easily from Theorem 1.

Leaman 2.1 (Edwards-Kirby). Let $M^{\prime \prime}$ be a compact n-manifold (not necessarily $p .1$.$) and \left\{B_{1}, \ldots, B_{p}\right\}$ be an open cover of M^{n} with \bar{B}_{i} a closed n-bali for each i. Then there exists $a \delta>0$ and a map $\varphi N_{s}\left(1_{m}\right) \rightarrow H_{s}\left(\bar{B}_{1}\right) \times \cdots \times H_{s}\left(\bar{B}_{n}\right)$ such that for each $\left.h \in N_{\mathrm{o}}\left(1_{M}\right), h=\left\{\boldsymbol{\pi}_{\boldsymbol{p}}(\varphi(h))\right]^{\prime} \cdots \cdot \pi_{1}(\varphi(h))\right]^{\prime}$ and $\left[\pi_{i}\left(\varphi\left(1_{M}\right)\right)\right]^{\prime}=1_{M}$ for $i=$ 1.....p.

Here for each $i,\{\pi,(\varphi(h))]^{:}: M \rightarrow M$ is the honcomorphism defined by

$$
\left[\pi_{i}(\varphi(h))\right]^{\prime}(x)=\left\{\begin{array}{l}
\pi_{1}(\varphi(h))(x), \quad x \in B_{h} \\
x, \quad x \in B_{j}
\end{array}\right.
$$

Lemman 2.2. Let X be the courable union of compact C-spaces. Given continuous $\lambda: X \rightarrow(0,1]$ and $\mu: X \rightarrow H_{8}\left(B^{n}\right)$ there exists a map $f: X \rightarrow \operatorname{PLH}_{8}\left(B^{n}\right)$ with $\rho(f(x), \mu(x))<A(x)$ for all $x \in X$.

Preof. For $h \in H_{s}\left(B^{n}\right)$ and $\alpha>0$, let $S_{\text {h, }}=\left\{g \in \operatorname{PLH} H_{s}\left(B^{\prime \prime}\right) \mid \rho(g, h)<\alpha\right\}$ and let $\mathscr{S}=\left\{S_{\text {ha }} \mid h \in H_{s}\left(B^{n}\right)\right.$ and $\left.a>0\right\}$. Then define $\varphi: \delta \Rightarrow \mathscr{S}$ by $\varphi(x)=S_{\mu(x), A(x)}$ for all $x \in X$. An application of the triangle inequality shows that φ is a continuous carrier, so to apply Theorem 1 we need only show that for $\in \mathcal{H}_{8}\left(B^{n}\right)$ and $\alpha>0, S_{h, \alpha}$ is CE. Suppose $\varepsilon>0$ is given. Let $\delta=\min (\alpha / 4, \varepsilon / 4)$ and let $h^{\prime} \subset \operatorname{PLH}_{8}\left(B^{n}\right)$ be such that $\rho\left(h^{\prime}, h\right)<8$. Such an h^{\prime} exists since PLH $_{8}\left(B^{\prime \prime} \backslash\right.$ is dense in $H_{8}\left(B^{n}\right), n: 4$. (See $[9,14]$. This is the only place the requirement 1 a: $n \neq 4$ is necessary.) Then note that $S_{h^{\prime},+2 s}$ is contractible within itself by the siecewise linear Alexander isotopy (cf. [17]). But

$$
N_{s}\left(S_{h, a}\right)=S_{h, a+\delta} \subset S_{h ; a+2 s} \subset S_{h, a+\varepsilon}=N_{\varepsilon}\left(S_{i, \alpha}\right)_{2}
$$

so $N_{s}\left(S_{h, a}\right)$ is contractible in $N_{s}\left(S_{h, a}\right)$.

We are now in a position to prove that PLH(M) is locally contractibie. In the following if B is homeomorphic to the standard n-ball, B^{n}, let ${ }_{B} A: H_{8}(E) \times I \rightarrow$ $H_{8}(B)$ be the induce Alexander isotopy (cf. $[6,16]$) on B where $B(h, 0)=$ ${ }_{B} A_{0}(h)=h$ and ${ }_{B} A(h, 1)=A_{B}(h)=1_{B}$ for all $H \in H_{s}(B)$.

Theorem 2.3. Let M^{n} be a compact piecewise linear manifold; $n \neq 4$. Then $\mathrm{PLH}\left(M^{n}\right)$ is locally contractible.

Proof. Since $\mathrm{H}\left(M^{n}\right)$ is a topological group, it suffices to show local contractibility at 1_{M}. Let $\left\{B_{1}, \ldots, B_{p}\right\}$ be an open cover of M^{n} with \bar{B}_{i} a closed piecewise linear n-ball for each i. Then by Lemma 2.1 there exists a $\delta>0$ and a map

$$
\varphi: N_{\delta}\left(I_{M}\right) \rightarrow H_{\delta}\left(\bar{B}_{1}\right) \times \cdots \times H_{\delta}\left(\bar{B}_{p}\right),
$$

such that for each $h \in N_{\delta}\left(1_{M}\right), h=\left[\pi_{p}(\varphi(h))\right]^{\prime} \circ \cdots \circ\left[\pi_{1}(\varphi(h))\right]^{\prime}$ and $\left[\pi_{i}\left(\varphi\left(1_{M}\right)\right)\right]^{\prime}=$ 1_{M} for $i=1, \ldots, p$.

To show that $\operatorname{PLH}(M)$ is locally contractible at 1_{M}, it suffices to define a map

$$
\psi:\left[N_{\delta}\left(1_{H}\right) \cap \operatorname{PLH}(M)\right] \times[0,1] \rightarrow \operatorname{PLH}(M),
$$

with $\psi\left(h_{0}\right)=h$ and $\psi(h, 1)=1_{M}$ for all $h \in N_{\delta}\left(1_{M}\right)$ rnd $\psi\left(1_{M}, t\right)=1_{M}$ for each $t \in[0,1]$. To obtain this map we will make p applications of Lemma 2.2. First recall that $\operatorname{PLH}(M)$ is the countable union of finite dimensional compacta [8] and hence that Lenuma 2.2 is applicable with $X=\operatorname{PLH}(M) \times(0,1)$. Let $\lambda_{i}: \operatorname{PLH}(M) \times(0,1) \rightarrow$ $(0,1]$ be given by $\lambda_{i}(h, t)=\min (t, 1 \cdots t)$ and $\mu_{i}: \operatorname{PLH}(M) \times(0,1) \rightarrow H_{s}\left(\bar{B}_{i}\right)$ be given by $\mu_{i}(h, t)={ }_{B_{i}} A\left(\pi_{i} \varphi(h), t\right)$. Then by Lemma 2.2 there exists a map $f_{i}:$ PL.H $(M) \times$ $(0,1) \rightarrow \operatorname{PLH}_{8}\left(\widetilde{B}_{i}\right)$ with $\rho\left(f_{i}(h, t), \mu_{i}(h, t)\right)<\min (t, 1-t)$. Define

$$
i \psi:\left[N_{\delta}\left(1_{M}\right) \cap \operatorname{PLH}(M)\right] \times I \rightarrow \mathrm{PLH}_{\delta}\left(\bar{B}_{i}\right)
$$

by

$$
{ }_{i} \psi(h, t)=\left\{\begin{array}{l}
f_{i}(h, t) \circ\left(f_{i}\left(1_{M}, t\right)\right)^{-1}, \quad t \in(0,1) \\
\pi_{i \varphi}(h), \quad t=0 \\
1_{B_{i}^{n}, \quad t=1}
\end{array}\right.
$$

We note that ${ }_{i}$'s canonically assigns to each $h \in N_{\delta}\left(1_{M}\right) \cap \operatorname{PLH}(M)$ a path in PLH $_{8}\left(\bar{B}_{i}\right)$ taking $\pi_{i} \varphi(h)$ to $1_{\bar{B}_{i}}$ [of course $\pi_{i} \varphi(h) \in \mathrm{H}_{8}\left(\bar{B}_{i}\right)$ may not itself be in $\mathrm{PLH}_{\delta}\left(\bar{B}_{i}\right)$].

Finally define $\psi:\left[N_{\delta}\left(1_{M}\right) \cap \operatorname{PLH}(M)\right] \times[0,1] \rightarrow \operatorname{PLH}(M)$ by $\psi(h, t)=$ $\left.{ }_{[0} \psi(h, t)\right]^{\prime} \circ \cdots \circ[i \psi(h, t)]^{\prime}$, where $[i \psi(h, t)]^{\prime}$ is the extension to all of M by the identity of $i \psi(h, t)$.

For $t \in(0,1], \psi(h, t) \in \operatorname{PLH}(M)$ since for each $i,[i \psi(h, t)]^{\prime} \in \operatorname{PLH}(M)$. For $t=0$, $\psi(h, 0)=h \in \operatorname{PLH}(M)$. It is trivial to check that ψ is continuous and that $\psi\left(1_{M}, t\right)=$ $\mathbf{1}_{\mathrm{M}}$ for $\boldsymbol{t} \in[0,1]$.

3. Remarks

One reason for studying the relationship between $\operatorname{PLH}\left(M^{\prime}\right)$ and $H(M$; is to gain insight into she question of whether $H(M)$ is an $A N R$ or, equivalently, an l_{2} manifold. (Here l_{2} denotes the ifilbert space of square summable sequences and l_{2}^{f} the subspace of sequences having only finitely many non-zero entries.) Using the fact that $\mathrm{PLH}(M)$ is locally contractible and the countable union of compact C-spaces it follows that $\operatorname{PLH}(M)$ is an ANR [11] and hence an l_{2}^{f}-manifold [13, 18].

It is known that for any compact 2 -manifold, $M^{2}, H\left(M^{2}\right)$ is an ANR $[15,16]$ and hence an l_{2}-manifold [18]; however, for $n \geqslant 3$ the question is unresolved. Jsing the lemma from Edwards-Kirby we make the following observation:

Propostion 3.1. For a given integer n, if $H_{s}\left(B^{n}\right)$ is an $A P \cdot R$, then for any n manifold $M^{n}, \mathbf{H}\left(M^{n}\right)$ is an ANR.

Proof. Let M^{n} be an n-manifold. As in the proof of Theorem ?.3, let $\left\{B_{1}, \ldots, B_{p}\right\}$ be an open cover of M^{n} with \bar{B}_{i} a closed \boldsymbol{n}-ball for each \boldsymbol{i}. Again by Lemma 2.1, there exists a $\delta>0$ and a map

$$
\varphi: N_{8}\left(1_{M}\right) \rightarrow H_{\delta}\left(\bar{B}_{i}\right) \times \cdots \times H_{\delta}\left(\bar{B}_{p}\right)
$$

with $\left.h=\left[\pi_{r}(\varphi(h))\right]\right]^{\prime} \cdot \cdots \circ\left[\pi_{1}(\varphi(h))\right]^{\prime}$ for all $h \in N_{b}\left(1_{M}\right)$. Define $\Phi: H_{\delta}\left(\bar{B}_{1}\right) \times \cdots \times$
 $\rightarrow N_{8}\left(1_{M}\right)$ is an r-map; i.e., there exists a ..1ep

$$
\varphi: N_{\mathrm{g}}\left(1_{M}\right) \rightarrow \Phi^{-1}\left(N_{\mathrm{g}}\left(1_{M}\right)\right),
$$

such that $\left[\Phi \mid \Phi^{-1}\left(N_{B}\left(1_{M}\right)\right)\right] \circ \varphi: N_{B}\left(1_{M}\right) \rightarrow N_{s}\left(1_{\cdot 1}\right)$ is equal to $1_{N_{B}\left(1_{M}\right)}$. But $\Phi^{-1}\left(\mathcal{N}_{,}\left(1_{M}\right)\right)$ is an open subset of $H_{8}\left(\bar{B}_{1}\right) \times \cdots \times H_{s}\left(\overline{B_{p}}\right)$ and hence, by assumption, is an ANR. Therefore, being the r-image of an ANR [2], $N_{8}\left(1_{M}\right) \subset H\left(M^{n}\right)$ is an ANR. But then since $H(M)$ is a topological group, each point has an open $A N R$ neighborhood and hence $H\left(M^{n}\right)$ is an ANR.

Finaity we note that since $\mathrm{PLH}_{8}\left(B^{\prime}\right)$ is an ANR, an immediate consequence of the proceding observation is that an affirmative answer to the following nearselection question would show that for every n-manifold $n, H\left(M^{n}\right)$ is an ANR (and hence an l_{2}-manifold):

Question 3.2. Given $\varepsilon: H_{g}\left(B^{n}\right) \rightarrow(0,1]$, does there exist a map $\varphi: H_{s}\left(B^{\prime \prime}\right) \rightarrow$ $\mathrm{PLH}_{8}\left(B^{n}\right)$ with $\rho(\varphi(h), h)<\varepsilon(h)$ for all $h \in H_{\delta}\left(B^{n}\right)$?

References

[1] D. Addis and I. Gresham, A Class of Infinite-Dimensional Spaces. I, II, to appear.
[2] K. Borsuk, Theory of Retracts, Polska Al ademia Mauk., Warseawa (1967).
[3] A.V. Chernavskii, Local contractibility of the homeomorphism group of a manifold, Soviet Math. Dokl. 9 (1968) 1171-1174.
[4] J. Dugundji, Topology (Alijn and Bacon, Bostoa, MA, 1966).
[5] E. Dyer and M.E. Hamstrom, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958) 521-532.
[6] R.D. Edwards and R.C. Kinby, Deformations of spaces of embeddings, Ann. of Math. 93 (1971) 63-88.
17. D.B. Gauld, Lecal contractibility of PL(M) for a compact manifold, Nath. Chronicle 4 (1975) 1-6.
[8] R. Geoghegan, On spaces of homeomorphisms, embeddings, and functions (II)-the piecewise linear case, Proc. London Math. Soc. 3(2) (1973) 463-483.
[9] R. Geoghegan and W.E. Haver, On the spuce of piecewise linear homeomoninisms of a manifold, Proc. Amer. Math. Soc. 55 (1976) 145-151.
[10] M.E. Hamstrom, Unifcrm PL approximasions of isotopies and extending PL isotopies in low dimensions, Advances in Mathematies 19 (1976) 6-18.
[11] W.E. Haver, Localy contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973) 280-284.
[12] W.E. Haver, A coverin/ property for metric spaces, Leeture Notes in Mathematiss \#375, Top. Conf. at VPI (1974) 109-113.
[13] J. Keesling and D. Wilson. The group of PL-homeomorishisms of a compect PL-mp uifold is an y_{2}-manitold, Trans. Amier. Math. Soc 198 (1974) 249-256.
[14] R. Kirby, Lectures on triangulations of manifolds, mimeographed notes, Univ. of California, Los Angelen (1969).
[15] R. Luke and W. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972) 273-285.
[16] W.K. Mason, The space of all self-homeomorphisms of a 2 -cell which fix the cell's boundary is an absolute retract, Trans. Amer, Math. Soc 161 (1971) 185-206.
[17] C.P. Rourke and BJ. Sanderson, Introduction to Piecewise-Linear Topology (Springer-Verlag. New York, 1972)
[18] H. Torunczyk, Absolute retracts as factor; of normed linear spaces, Fund. Math. 86 (1974) 53-67.

