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1~ tlijiorews have proiven to be important tools in dealing with function 
5, 10, 163. However, their use is limited ‘ay the hypothesis that the base 

must.be finite dimension& In mme cases ob%Mng a ntzar-selectjon may b-e 
&at. Our theorem tkals with obtaining near=&: ons v&+ the base spa= is 

untabk uni\on of compact C-spaces. Compare t Prqd$ion 3 of [i2] that 
only for compact cCq3at;?1:s. A subset S of a mct.tic space Y is CE if given 

8 3 0 there is a & :, r) so that l&(S) is null-homotoplc in N&9), The fun&on 
0:x *2* is a continuoufs car&r if for each x EX and 8 30 thd=n: is a S >O so that 

then ~lp(x)c=:N,(&‘)) and &‘)c3’V&p(x)). If Cer is an opn cover of 
) will denote the nerve ab 4k When tl~re is no possibility of ciot 

Ii not dis;tinriguish between a finite simplicia) @Omplex, K, and its under&ing point 

[We constrxt the cover c4tl: First fix an integer j and for eaclr rnsitive int 
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ooliections of 0 

such that 

00 if Q*j*zr, 
f-w if &j+zlpr L’;,j+ Zip* theft Uj,j--~2i, n Ul;j+ t?,. = dz 

mnd 

0 c A Uj,j+q is 8 cover of a,,. Then for each j, ahe sequence of collections of 
open of x, 
i’Q9 

is an open cover of 
I-‘j) a 

(i’) if Wj.j+2& f U&a. Uf.i+a~ n U;j+Zk = 4% 

(ii’) dim U~j+aa c q+2~. 
(iii’) Uj,j+2k nXk 4 

(iv’) wjJ+ti$ c c ‘([ 

Themi for each i, let IJLi $li iS an open cover of 
X = j3J”I 1 i’([ l/2’, 1/2’3). Then pr0pfx-Q (i) fallows from (r) and (iv’); properties 
(2h (iii (iv) fol!ow from (ii’), (iii’) and (iv’) respectively,] 

Let a countable star finite refinement of $I and b: X + N(V) be the 
canonical baryantric map to the nerve cf the cover 9”. For each V E ?f pick an 
eiement U of ntains V. Set p(( V)) = U and, by extending linearly, define 

). Let Q denote the (not necessaril:pr loccilly finite) poly- 
ish to define g: 0 + y so that d(g&fx), p (x))c L(X) for all 

XEX. 
For each vertex Wd f N(‘itd), pick XV, E Wi n Xi and y~:~ E &v,). We define f 

from the O&&on of into Y by g(( Ui)) = yu,. Since xu E Xi we can define the 

*aP 

d !Pu~(w, I)= yu, for all w E Ns~,((B(xu,)). (It s critical for the 
ap tvu, be fixed at t 

me specialized terminolo the convention Ithat Wm, E 



lection theoterms have 

of pkcewise hear 



ntinuau3 carrier, 



W: are now in a position to ruve :thaP PLH ) is tocaliy contractib,‘re_ 1~ the 
following if B is homeomorphic to thle standard n-ball, B”, let A: H&F)% I + 
Ha(D) be the induls;er.t Alexander isotopy (cf. [6,96]) on B where d(h, 0)~s 
&#+=h and .&(rFr, 1)=&1(k)= 1~ for al! E?EH~(B). 

Prod. Since H(M”) is a topological group, it suffices to show lo& contracUbili@ at 
Is Let -{BE,. a . , BP] be an open cover of M” with ffi a closed piecewise linear 
n-ball for each i. Then by Lemma 2.1 there exists a S > 0 and a map 

such that for each h dVe(l&, h = [a&p(h))]‘a l 4 l Q [a&(h))] and [m(o(kj~]tt: 

lwfori=19, ..,p+ 
TO show that lPLN(Ad) is focally contractible at lo, it suffices to define 8 map 

lsvith $(!1,,0)= h and @(h, 1)s 1~ tir all h eNa snd #(lkl; t)= 1~ for each 
,t E [O, lf. To obtain this map we will make p applications of Lemma 2.2, First recall 
that PLES(M) js the countable union of finite dimensional xmpacta [8j and hence 
t:hat Lemma 2.2 is applicable with X = PLH(M) x (0,l). Let Ai: PLH(M)x (0, l)+ 

f&l) be given by &(h., t) = min(t, l-9 t) and pl: PLH(M)x (0, l)+ E-I&) be given 
by &&L t)= Bp(wgq[h), t). Then by Lemma 2.2 there exists a map pi: PLH(M)x 
(0,1)+ PLH&) with ~(j$& t)l p&i, t))C min(t, 1 - t), Define 

A:[N~(l~)nPLH(M)]xf q*PLHa(&) 

canonically assigns t0 f3 

1~ for t E [O, l]. 

(A#) since for ~tdli i, [i#( 
ntinuous and th 



tween PLH(IcT) and H(M j is to gain 
8n AI+&2 or, equivalently, an 12- 

ce of square sgrn able sequences and /‘, 
itely many non-zero entries.) Using the 

the cxwntable union of compact 
[f l] and hence an !{ -manifo,ld 

‘, N(ICf *) is an ANR [ 15,161 and 
3 the question is unresolved. Jsi;zg the 

wing obervation: 

-manifold. As in the f of Theorem T.3, let {&, . . . , BP} 

m with Bi a cbsed n- for each i. Again by Lemma 2.11, 

int has an open 
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