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A near-selection cheorem is proven for carriers defired on spaces that are the countable union
of finite dimensional compacta. As an application: a new proof is given of the fact that the space of
homeomorphistas on a compact piecewise linear manifold is loczlly contractible. In addition a
new criterion is given to determine if the space of homeomorphisms on a compa.t n-manifolc is
an iz-manifold.
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0. Introduction

Th= study of the space of homeomorphisms on a compact manifold can be
redaced to the problem of canonically approximating homeomorphsisms by
viecewise linear homeomorphism (cf. [9] and the last section of this paper). This
proi:lem is essentially a *‘near-selection’ probleni. In this paper we state and prove
a geaeral near-selection theorem, given an application to the space of piecewise
line -r homeomorphisms on a manifold and, in our final remarks, show that if for a
given integer n, Hg(B") is an ANR, then for any n-maniioid, /4", H(M") is an
AliR.
J1r near-selection theorem is stated in terms of C-spaces which were originally
defined in [12] and studied further in [1]. A metric space X is said to have Property
- C (be a C-space) if for each sequence of positive numbers {e:};-1, there exists a
- sequence of collection of open sets %,, U, . . . such that

(a) if U;e ¥, then diam U, <eg;;

) U, Uie¥ and U, # U}, then UnU! =¢; and

() %=, ¥, is a cover of X.

In [12] it is shown that every countable-dimensional nietric space is a C-space, so
. the following theorem car be considercd as a theorem involving such spaces. Note
that trivially every finite dimensional compactum is a C-space.
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l. Aneat-seiecﬂon theorem

Selection theorems have proven to be important tools in dealing with function
spaces [cf. 5, 10, 16]). However, their use is limited by the hypothesis that the base
space rust be finite dimensional. In some cases ob:aining a ncar-selection may be
sufficient, Our- them em cleals with obtaining near-s::lections when the base space is
the countable union of compact C-spaces. Compare with Propsition 3 of [12] that
%holds only for compact C-spaces. A subset S of a metric space Y is CE if given
e>0 there is a §>0 so that Ny(S) is null-homotopic in N,(S). The function
:p X »2Y is a continuous carrier if for each x € X and £ >0 thzreisa é >0so that

if d(x, x')< &, then @(x)< N, (¢(x")) and g(x")< N, (@(x)). If U is an open cover of
X, N(U) will denote the nerve of %. When there is no possnblltty of confusion, we
will not distinguish between a finite sxmplic:al complex, K and its underlying point
set, IK].

Theerein 1. Let X =\ ;-1 X, be a metric space such that for each n, X, is a compact
space with property C. Let S be a collection of CE subspaces of Y and @: X » <2
be a continuous carrier. Then given a continuous function ¢: X = (0, 1] there exists a
map f:JC - Y such that for all x ¢ X, f(x)e N,i(@(x)).

Prool. ‘Without loss of _generality we assume that X.. < Xy+1 for all n. We first
define a decreasing sequence of positive numbers {8,}>0, such that 8 =1/2'* for
all i, and such that if i >0 and x ¢ X, then N (@¢(x)) is contractible in Nj,_, (¢ {x)).
[The same number 5; suffices for all x € X; since X; is compact.] Then let {¢;}i=, be a
decreasing sequence of positive numbers such that if xeX, and x'e X with
d{x, x')<2¢,, then ¢(x)< Na(p(2 ) and ¢(x') < N (p(x)).

Then we can obtain a sequence of collections of open subsets of X, U,, ¥a, ...

- such that % = U‘f;l Uisa «counmble open cover of X and for each i if U, Ui, € ¥
‘then:
@) it U;#U; then UinU; =0,
(i) diam U; <e;,
(i) Uin X; #0,

(iv) ifUénf’([ 1 1

ﬁ"+ ’ 21

]) #4, then i =j.

[We constract the cover %: First fix an integer j and for each positive integer 2 let

et )

Partition the positive integers, A, into a countable number of iniinite set., A, in
such a way that if k € A,, k =n. Now for each n consider ;X, a3d the scquence
{€i+2i, Yien,. Since X, is a compact C-space there exists & seyuence of finite



W.E. Haver / A near-selection theorem 119

collections of open sabsets of

affl 1 1 1
1
‘ ((5’” 27 oY 2"*2))’ Usivzins Uiivzins - -

such that

(ﬂ) if Ui,;*z(, & qu,j+2!,~ diam Ui,i-i-li, <E€j+2i,

(b) if Uf.i'*zi,p U;.j+2i, € %i,ﬁ»z;, and U;,,-+2i, # L‘r;,,'-o 2igy then U,',,u,-.z,-’ N U;.i-‘ 2, = (e /]
and

(©) Uk, Uiz, is a cover of :X,. Then for each j, the sequence of collections of
open subsets of X, U, U;;.2,... is such that /oo U;,+24 is an open cover of
"1([!/2", 1/2"']) and for each k if U+ 24, U;,,u.zk € U;,+2x then:

(i) if Ujjean # Uljazie Ugjra N Ujjo2e =8,

(ii') diam U jiv2k < Ej+2ke

(') Ujjex 0 X, 21 #0,

(V) Ujeae e (1727 -1/27%2, 17277 4+ 17272,

Then for each i, let U ={Jj-, U, Obviously ¥ ={Ji<, %; is an open cover of
X =!_Jf%1 71 ([1/2°, 1/2'7')). Then property (i) tollows from (i') and (iv'); properties
), (iii) and (iv) follow from (ii"), (iii') and (iv') respectively.]

Let ¥ be a countable star finite refinement of % and b: X > N(7) be the
canonical barycentric map to the nerve cf the cover 7. For each V € ¥ pick an
element U of ¥ that contains V. Set u((V))= U and, by extending linearly, define
a map u:N(?7)>N(¥). Let Q denote the (not necessarilv locally finite) poly-
hedroa u(.N(¥)). We wish to define g: Q- y so that d(gub(x), ¢ (x))<i(r) for all
xeX.

For each vertex U; € U; of N(%), pick xy, € U n X, and y, € o{(xy,). We define g
from the 0-skeiton of ¥/ (¥)into Y by g({U;)) = yu. Since xy € X; we can defire the
map

Yu,: Nag{e(xu,)) X I -» N;,_ (¢ (xv,)),

with ¥y.(w, 0)=w and ¥y, (w, 1)=yy, for all w e Nag (¢(x0,)). (It is criticai for the
folivwing that such a map Wy, be fixed at this point.)

We need now some specialized terminology. With the convertion that U,, € U,
for each s, let

Ki={o<Qlo=(Um, ..., Un) withm,<; forl=s=ry},

nk, ={o <Kjlo ={Umy, Unmy» ..., Um, withm.=n forl=ss=<y}

We first define g,: K=Y by g,((U))=g(Uy) for all U,eK;. Assume
inductively that we have defined g K, > Y for all j<i such that g ertends
gi-ilKjand if o =(U,,,,..., Uy )< K, with m; < -<Im, and w is a p~int of o
with w = s{Un,,) +{1 —s)w’, where w' is a point of (Unm,, ..., Um,, then giw)=
Vi (8i(W'), 5).
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We wﬂ! now deﬁne m K;-» Y satnsfymg the mdu:uve hypothesis. Assume
{su bim!ucnvely) that we have defined 'g;: 'K, » Y for ell j with is)/>n, such that
for i>j>n g cxtends ’“g‘ and tor :B]>n, ‘g, extends g1 | Ki-1 'K, and if
o=a(Un,.. U...,)eK with m;<<«--<m, and w is a pomz of o m‘sh W=
s(Un)+(1 -s)w (where w' is a point of (Upmy...,Us)) then ‘g(w)=
&u_,,(‘g,(w'), s). For the following note that this cond:tion impiies that ‘g.(o)<
N, ..(o(xv, ) and recall that we are now subinducting downward.

We now wish to define "g;:"K;-» Y satisfying the subinductive hypothesis (we
start triviaily by lettmg ‘(U =g(L)) for each simplex (U) of 'K,). Let o=
(Ungr -+ o2 U be an clement of "K; with my <m,<- - - <m, (Of course the entire
lrsument relies ¢ on the strict inequality of the integers my, m,, ..., m) It m;>n,
o <""'K, and we let g;lo="""ﬁ. lo. If mi=n we note by the subinductive

hypothesis that

'Mm((Umz. ey Um.»c Ny, (e(xv, )= Ny, (exu., )
We note that U, n U, # ¢ and hence that

d(xy, , X0, ) <diam Uy, - diam Upn, < £, + Em; < 26m,
end hence that ¢{xyu,, )< N, (¢{xy, ). Therefore

" 8(Unss - - - Un )< Naa, (@cua, )
We can therefore define ' g;]a as desired: If w is a point 0 ¢ with w=
s(U.)+(1 -s)w’ {where w' is a point of (Umy...,Un)) ‘et "g(w)=
Yu. *'g(w"), S). Obviously "g | & extends "*'g. | (Unm,. . . . , Us,); it also extends
81 Ia-nKH since in both cases we made use o1 the map &u_ We repeat *he
argument for eas:h a< "K; to obtain "g;:"K; » Y. This completes ‘the subinductive
argument. Let g; =g 'K, =K, > Y.

Finally let g: Q - Y be defined by g = lim;.» g:; gu is obviously well-defined and

continuous. We need only check that for each xe X, d(gubd(x), @(x))<:(x).
Suppose ub(x)e <U,,,..., Un,) with m, <: - - <m, Now there is a non-negatire

integer j with 1/2/*' < a(x)ﬁ 1/2'. We note that since x € Un,, condition (iv) implies
that m; >/ and hence that 1/2™ " < ((x). But

sub(x)e N, _, (0(xu, < Naw _, Vs, (@) Naa, _, (0(x)).
Henre

1 1
d(gub(x), 0()< 2m-1 <2 grmres) = T o (a)

2. An application

Selection theorems have been particularly effective 1n dealing with finite dimen-
sional spaces of homeomorphisms [5, 10, 16]. In [8] Geoghegan showed that the
space of piecewise linear homeomorphisms, PLH{M), on a compact piecewise
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linear manifold, M, is the countable union of finite dimensional compacta. It is
therefore not surprising that the near-selection theorzm is useful i1 dealing witih
PLH(M). We give here a-.oiher proof of the fact that PLH(M) is locally contract-
ible. This was firs: shown vy R. Edwards ([11}, see siso [7]). These proofs involve
refining the arguments of Chernavskii [3] or Edwards-Kirby [6], while the present
proof demonstrates that the local contractibility of PLH(M) follows from general
principles and information concerning H(M'), the space of all topological homeo-
morphisms on M. Our proof is valid for piecewise linear manifolds M of dimension
not equal to 4.

Let H (M) denote the subspace of all homeomorphisims which egual the identity
on the boundar: of M and PLH,(M)=H;(M)~PLH{(M). The various function
spaces on compict manifolds will be assumed to have the supremum metric, p, i.c.,
if f,geH(M), with d the metric on M, then p(f. 2)=sup.ear (d(f(x), g(x)}. If
AeX let 1, denote the inclusion of A in X for - sitive 8 let Ny(lyi=
{he H(M)| p(h, 15)< 8}.

To begin we state two lemmas. The first is from Edwards-Kirby [6, p. 79}, and

Leamma 2.1 (Edwards-Kirby). Let M” be a compact n-manifold (not necessarily
p-1.) and {B,,...,B,} be an open cover of M" with B; a closed n-bali for each i.
Then there exists a 8 >0 and a map ¢ Ns(1,.)~» Ha(B1) % - - - xHg(B,,) such that for
each h e Ng(la), h={m(e(R) o- - > mi(eh)) and [m(e(In))) =1um for i=
Lo o.p

Here for each i, [mie(h))] : M -+ M is the homeomorphism defined by

mi(e(h))x). x€B.

[mie(R))(x)= < x£B,

Lemma 2.2. Let X be the counntable union of com pact C-spaces. Given continuous
A X-(0,1) end p:X +Hy(B") there exists a map f:X ->PLH,(B") with
p(f(x). u(x)<A(x) forall x s X.

Prool. For ke Hy(B") and a >0, let Si. ={ge PLHs(B")|p(g h)<a} end let
& ={Sy. | h € Hy(5") and a >0}. Then define ¢:.{ = F by @(x)= S, for all
x € X. An application of the triangle inequality shows thxt ¢ is a continuous carrier,
s0 to apply Theorem 1 we need only show that for /- € Hs(B")and @ >C, Si.a is CE.
Suppose € >0 is given. Let 8 = min(a/4, e/4) and let 4’ PLH4(B") be such that
p(k', k)< 8. Such an k' exists since PLHs(B") i¢ dense in Hs(B"), n 4. (See
{9, 14). This is the only place the requirement tua: n # 4 is necessary.) Then note
that $y-q.+25 is coniractible within itself by the siecewise linear Alexander isotopy
(cf. [17]). But

Ni(Sha)=Sha+s S Shas28CShare = Ne($12):

s0 N;(8ia) is contractible in No(Sn. ).
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We are now in a position to prove that PLH(M) is locally contractibie. In the
following if B is homeomorphic to the standard n-ball, B", let pA:Hs(F)xI »
H,(B) be the induce! Alexander isotopy (cf. [6,16]) on B where pA(h,0)=
8Aolh)=h and gA(h, 1)=pA.(h)= 15 for all H e Hs(B).

Thfe‘vqsremr 23, Let M" be a campact piecewise linear manifold, n#4. Then
PLH(M") is locally contractible.

Prool. Since H(M ")is a topological group, it suffices to show loca! contractibility at
1ar. Let {By,..., B,} be an open cover of M" with B; a closed piecewise linear
n-ball for each i. Then by Lemma 2.1 there exists a 5 >0 and a map

@:N3s(1ae)+~Hs(B1)X - - - xHa(Bp),

such that for each h € Ny(lpe), b = [mo@B)) o+ - o [mi(@(h)) and [m(@(La)) =
iy fori=1,...,p. = :
To show that PLH(M) is locally contractible at 1,4, it suffices to define a map

¥: [Ns(1ar)NPLH(M)) x [0, 1]> PLH(M),

with ¢(h,0)=h and Y(h, 1)=1) for all he Ns(1p) rnd (1a )= 1\ for each
t €0, 1}. To obtain this map we will make p applications of Lemma 2.2. First recall
that PLH(M) is the countable union of finite dimensional compacta [8] and hence
that Lemma 2.2 is applicable with X = PLH(M)x(0, 1). Let A;:PLH(M)Xx (0, 1)~
(0, 1] be given by A.(h, £)=min(1, 1--t) and u;: PLHM)X (0, 1)~ H;(8;) be given
by wi(h, t)= g A(mp(h). t). Then by Lemma 2.2 there exists a map f;: PLH(M)x
(0, 1) PLH(B;) with p(fi(h, 1), pi (2, 1))<min(z, 1 —r). Define

W: [Ns(1p) nPLH(M)] X I -» PLH, (5;)
oy

fith, D)o (fillas 1)), 1€(0, 1),
idl(hs t)= #l‘P(h)! t=0:
13;‘, t=1,

We note tat 4% canonically assigns to each he Ns(1p)~PLH(M) a path in
PLH;(B;) taking me(h) to 15 [of course me(h)e Hs(B;) may not itself be in
PLH;(B))].

Finally define  ¢:[Ns(lp)~nPLH(M)]X[0, 1]-PLH(M) by ¢ 0=
[k, O o« - -o[1(h, 1)}, where [w(h, t)]' is the extension to all of M by the
identity of 4 (h, ). '

For 1€ (0, 1], w(h, t)e PLH(M) since for each i, [#(h, 1)] ¢ PLH(M). For ¢ =0,
¢(h, C)=h e PLH(M). It is trivial to check that ¢ is continuous and that ¢ (1 2) =
1a for t€ 0, 1].
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3. Remarks

One reason for studying the relationship between PLH(A ") and H(M ) is to gain
insight into the question of whether H(M) is an ANR or, equivalently, an /-
manifold. (Hare /> denotes the ifilbert space of square summable sequences and /5
the subspace of sequences having only finitely many non-zero eatries.) Using the
fact that PLH(M) is locally contractible anc the countable union of compact
C-spaces it follows that PLH(M) is an ANR [11] and hence an I§-manifold
113, 18],

It is known that for any compact 2-manifold, M, H(M?)is an ANR [15, 16] and
hence an /;-manifold [18]; however, for n = 3 the question is unresolved. Jsing the
lemma from Edwards-Kirby we make the following observation:

Proposition 3.1. For a given integer n, if Hy(B") is an ANR, then for any n-
manifold M*, H(M") is an ANR.

Proof. Let M" be an n-manifold. As in the proof of Theorem 2.3, let {B,, ..., B,}
be an open cover of M" with B; a closed n-ball for each i. Agai~ by Lemma 2.1,
there exists a 3 >0 and a map

@:Ns(1p) > Ha(B)) % - - - xHy(B,),

with & = [m,{@(h))] o - - - o |mi(@(h))] for all h € Ns(15). Define ®:Hs(B1)X- - - x
Hs(B,)->H(M)by ®(fy,....f,)=fpo- - of1. Then @ | @7 {Nailar)): @™ (Na(1n))
- N3(1a¢) is an r-map; i.c., there exists 2 ..1ep

@: Ns(1x)» & (Na(1a0)),

such that [@)|@ '(Ns(1a)))°@:Na(lp)» Ns(1:.4) is equal to 1y, But
@~ (N..(1a)) is an open subset of Hg(H,)x - - - X Hs(B,) and hence, by assumption,
is an ANR. Therefore, being the r-image of an ANR [2], Ns(iy)<cH(M™) is an
ANR. But then since H(M) is a topological grcup, each point has an open ANR
neighborhood and hence H(M™) is an ANR.

Finaiiy we note that since PLH;(B") is an ANR, an immediate consequencz of
the preceding observation is that an affirmative answer to the following ncar-
selection question would show that for every n-manifold n, H(M ") is an ANR (and
hence an {;-manifold):

Question 3.2. Given ¢:Hs(B")-(0,1], does there exist a map ¢:Hs;(B")-»
PLH(B") with p{e(h), h)<e(h) for all he Hs(B")?
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