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Abstract 

Let Sd be the vector space of monomials of degree d in the variables XI,. , xx. For a subspace 
V C & which is in general coordinates, consider the subspace gin(V) C Sd generated by initial 
monomials of polynomials in V for the revlex order. We address the question of what properties 
of V may be deduced from gin(V). 

This is an approach for understanding what algebraic or geometric properties of a homogeneous 
ideal I C k[xt, ,xs] that may be deduced from its generic initial ideal gin(Z). @ 1999 Elsevier 
Science B.V. All rights reserved. 

AMS Clusszfication: 13PlO 

0. Introduction 

During the recent years the generic initial ideal of a homogeneous ideal has attracted 

some attention as an invariant. An intriguing problem is what algebraic or geometric 

properties of the original ideal can be deduced from the generic initial ideal. 

In this paper we take perhaps the most elementary approach possible. Let S = 

k[xr,. . . ,.x7] and let > be the reverse lexicographic order of the monomials in S. 

Denote by & the graded piece of degree d in S. Suppose V cl Sd is a subspace. 

Denote by gin(V) the subspace of sd generated by initial monomials of polynomials 

of the subspace of & obtained from V by performing a general change of coordinates. 

Then one may ask what properties of V may be deduced from gin(V)? The following 

result gives an insight in this direction. 

Let W = (xl,. ,xr) C: S1 which is a linear space. Suppose that s > Y > 3. 
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Main Theorem. Let V C S&,,, be a linear space such that 

gin(V) = W”x;l C Sn+m. 

Then there exists a polynomial p E S,,, and a linear subspace W, C: S, such that 
v = w,p. 

Note that ifs = Y then W’x;l are the largest monomials in Sri+++ for the lexicographic 

order. Thus, if > had been the lexicographic order and gin(V) = W”x~ then we could 

deduce virtually nothing about V. 

The general idea of the proof is inspired by Green [4] and worth attention because 

of its seeming naturality in dealing with problems of this kind. 

The idea in its vaguest and most generally applicable form is the following. Suppose 

gin(V) has a given form, and suppose V is in general coordinates so in(V) = gin(V). 

The given form of in(V) implies some algebraic or geometric property of V. Let now 

g : Si + Si be a general change of coordinates. Then in(g-‘. V) = gin(V) also. Thus, 

9 -‘. V will also have this property. Then this property may be translated back to a 

property of V. This gives a continuous set of properties that V will satisfy. From this 

one may proceed making deductions about what V may look like. 

In this paper this is applied concretely as follows. In the case r = s the given form 

of in(V) = gin(V) implies that there is a p1 in S, such that x,?.pl E V. The fact that 

in(g-‘.V)=gin(V) 1 a so implies that there is a ps-l in S,,, such that x,“.p,-I E g-‘. V. 

Translating this property back to V, we get 

(g.x,)“.g.ps-I E K (1) 

Now, for the family of linear forms h = c tixi one may choose a general family of 

g’s depending on h such that g.x, = h. Then Eq. (1) may be written as 

h”pE V, (2) 

where p is a form of degree m depending on h. 
The second technique, specifically suggested by Green [4], is to dlrerentiate this 

equation with respect to the ti’s. All the derivatives will still be in V. (This is just 

the fact that when a vector varies in a vector space its derivative is also in the vector 

space.) Letting Vlh = 0 be the image by the composition V + S + S/(h) this enables us 

to show that the forms in VlhzO have a common factor of degree m. 
The third basic ingredient is now Proposition 3.4 which says that if VI,,=~ have a 

common factor of degree m, then V has a common factor of degree m. 
Having proven the case s = r, the case s > r may now be proven by an induction 

process. 

The organization of the paper is as follows. In the first three sections we develop 

general theory which does not presuppose anything about what gin(V) actually is. 
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In Section 1 we give some basic definitions and notions. In Section 2 we define the 

generical initial space of a subspace V of S by using a generic coordinate change on V. 

We also give some basic theory for this setting which will be used in Sections 4 and 5. 

Section 3 presents the framework in which we will work. Instead of considering a 

continuously varying form h = C:=, tlXi in k[xl , . . ,xs], we consider h as a linear form 

in K[xl,...,x,] where K=k(t,, . . . , t,), the field of rational functions of the t,‘s. 

If now Vck[x,,..., xs]d is a subspace let VK = V@kKC K[xl,. . . ,x,1. The main 

result here, Proposition 3.4, says that if the forms in VK~h=O have a common factor 

of degree m then the forms in V have a common factor of degree m. This is proven 

using differentiation of forms with respect to the ti. 

Only from now on do we assume that gin(V) has the special form given in the 

main theorem. In Section 4 we prove the case s =Y in the main theorem. Section 5 

proves the case S>Y of the main theorem. In Section 6 we give an application of 

the main theorem. The example originated in discussions with Green and was what 

triggered this paper. Consider the complete intersection of three quadratic forms in P3. 

Let I C ~[x~,x~,x~,xJ] be its homogeneous ideal. By standard theory one may deduce 

that there are two candidates for gin(l): 

J(‘) = (x2 x,x1,x: x,x: x,X; x;) 13 > , 2 , 

Jc2) = (X:,X1X2,XIX3,X:,X~X3,X2X~,X~). 

By the main theorem, if gin(Z) = J c2) then the quadratic forms in Z2 C_ S2 would have 

to have a common factor. Impossible. Thus, gin(l) = J(l). 

Throughout the article all fields have characteristic zero. 

1. Basic definitions and notions 

1.1. Let S=k[xl,...,x,]. The graded piece of degree d is denoted by sd. If I = 

(ii, i2,. , i,) we use the notation 

XI =Xf$. .xf\, 

It has degree 111 = C ii. 

Suppose now we have given a total order on the monomials. For a homogeneous 

polynomial f= C alx’ in S (henceforth often referred to as a form) let the initial 

monomial be 

in(f) = max{x’ 1 aI #O}. 

For a homogeneous vector subspace V c S let the initial subspace be 

in(v)=({in(f)IfE V>) 

the homogeneous vector subspace of S generated by the initial monomials of forms 

in V. 
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Sometimes we wish to consider another polynomial ring R[xl, . . . ,x,1, where R is 

a commutative ring. Denote this by SR. The initial monomials in(f) for f E V may 

equally well be considered as elements of S ,+ We may thus speak of in( I’) over R 
(when V s S) which is the free R-module in S, generated by {in(f) 1 f E V}. 

1.2. The monomial order we shall be concerned with in Sections 4 and 5 is the reverse 

lexicographic order. Then the monomials of a given degree is ordered by x’ > xJ if 

i, <j, where Y is the greatest number with i, #j,. Intuitively xJ is “dragged down” 

by having a large “weight in the rear”. 

1.3. For a linear form I E St denote by V/l=0 the image of the composition 

The following basic fact for the revlex order, [2, Proposition 15.12a], will be used 

several times 

in( Vjxs=O) = 4 V)lxJzo. 

2. The generic initial space 

The following section contains the definition of the generic initial space and some 

general theory related to it. The things presented here are certainly in the background 

knowledge of people but due to a lack of suitable references for a proper algebraic 

treatment we develop the theory here. The most important things are Proposition 2.9 

and Paragraph 2.11. 

2.1. We identify S = k[xt , . . . ,x,] as the affine coordinate ring of As. Let G = GL(S,V). 

There is a natural action 

given by (a, g) ++ g-‘.a. This gives a k-algebra homomorphism 

Y : kbl , . . . ,A + &l , . . . ,-d 6% k[Gl. 

If R is a k[G]-algebra, we also by composition obtain a k-algebra homomorphism 

yR:k[w ,..., xs]+k[q ,..., x,l~,kk[Gl-,R[xl,...,xsl. 

Note that if R = k(g) for a point g E G, then YQ) is just the action of g on k[xl, . . . ,x,1. 

Let KG be the function field of G. The image of a homogeneous subspace V &S by 

YK~ generates a homogeneous subspace (y~~( V)) of the same dimension as V. Suppose 

now a total monomial order is given. The initial monomials of (y~~( V)) generate 

a linear subspace over k (or over KG), which is called the generic initial subspace 
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of V over k (or over KG) and is denoted gin(V). Henceforth, we shall drop the outer 

parentheses of (YK~( V)) and write this as yKJ V). 

2.2. Let gin(V)=(ml,. . . , m,) for some monomials mi. Let b, E y~<;( V) be such that 

bj = m;+bia, 

where bia consists of monomials less than mi for the given order. Now there is an 

open subset U C G such that all the bi lift to elements of O( U)[xt , . . . ,xS]. Now we 

immediately get. 

Proposition 2.3. There is an open subset U & G (take the one above) such that for 
g E U, then 

in(ykcy)(V)) = gin(V) (over k(g)). 

(The original reference for this is [3].) 

2.4. Now, choose a go E G such that k(go) = k. There is then a diagram 

.YO 
ASxG------tASxG. 

The lower horizontal map is the natural action. The middle map is given by (a, g) ++ 

(a, ggo) and the lower vertical maps are just the action of G. The upper horizontal map 

is the map induced by the middle map. From the commutativity of the diagram we 

see that 

YKc(g0.V) = +YK,(v)>: 

where c$ is the automorphism of &[xt , . . ,x,] induced by a,,. Note that azO comes 

from an automorphism of KG. So it does not affect the variables xi. 

Thus, we see that the a,*o(bi)=mi + MzO(bio) are a basis for yKG(gO. V), where the 

monomials in aiO(bio) are less than mi for the given order. Also note that the $(bi) 
lift to the open subset U. go1 C G. Thus, we have proven the following. 
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Lemma 2.5. Given g E G, by replacing the subspace V by go. V and the open subset 
U by U.g;’ for a suitable go, we may assume that g is in the open subset from 
Proposition 2.3. 

2.6. Now, let C$ :X --) G be a morphism. We get a morphism 

and, thus, a k-algebra morphism 

where KX is the function field of X. We get a homogeneous subspace (y~~( V)) and 

also here we shall henceforth drop the outer parenthesis. By performing a suitable 

coordinate change of V we may assume (by Lemma 2.5) that &X)n U f0. The 

following is now immediate from the results above. 

Lemma 2.7. (1) For x in the open subset 4-‘(U) CX we have 

in(ykcx)( V)) = gin( V) (over k(x)). 

(2) in(yKx(V))=gin(V)(over Kx). 
(3) Given x EX then we may assume that 4(x) E U 

2.8. By 1.3 we have 

in( VlxS=O) = in( Q=o. 

We would like to have a suitable version of this for generic subspaces. The version 

we need is (2) in the following proposition. It is used most importantly in the proof 

of Lemma 5.2. 

Proposition 2.9. (1) gin(yx;, (V)) = gin(V) (over Kx). 

(2) gW~x(V)~x.T=~) = gin(Vlxs=~ (over KY). 

Proof. We prove (2). The proof of (1) is analogous and easier. Besides we will not 

need (1). We just state it for completeness. 

(a) Let Sp=(x,,..., x,-t) and G” = GL(Sp”). Let k + K be a homomorphism of 

fields and let GE = GL(Sp” @.k K). Due to the naturally split inclusion Sp C St, there 

is a diagram 
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where the upper action is given by (a,g)~ ~-‘.a. The lower map gives a K-algebra 

homomorphism 

-,” : IQ,, . ,x,] --f K[G;] gKK[x,, . ,x,]. i 

The upper map gives a K-algebra homomorphism 

I/;~$=~ :K[xI,. ,x,-l] +K[G;I@‘K K[xI,. . ,xs-11. 

For a homogeneous subspace W C K[XI , . . . ,xs] we now see that 

The initial space of the former 

latter initial space we then get 

is by definition gin( Wlx,=,,). By applying 1.3 to the 

gin( W~x,=~) = in(y”( W)),,y=O. 

(b) NOW, there is a diagram 

(3) 

KxG"xG -A”xG 

A” x G - A’. 

The upper horizontal map is given by (a,h,g) ++ (/?‘.a, g). The lower horizontal 

map and the right vertical map are the actions. Lastly, the left vertical map is given 

by (a, h, g) H (a, hg). It induces a diagram 

A”xG”xX -A’xX 

(4) 

Apply Lemma 2.7. Then yap has initial space gin(Y). Also applying Lemma 2.7 

to the composition A” x G” xX ---f A” x G + As (from the diagram), gives that yKGO *h ( V ) 

has initial ideal gin(V) over KG~ x~. 

Now go back to part (a) of this proof and put K = KX and W = y~~( V). By the 

commutativity of the diagram (4) we see that 

Thus, 

in(y”( WI> = in(yK,, xx (V)) = gin(V) (over KG~ x~). 
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Putting this together with (3) we get 

2.10. Now, there is of course also a natural action 

given by 

(9, a) k+ C7.a. 

The morphism 

p:GxA”+A”xG 

given by 

(9, a) H (WY $7) 

is an isomorphism and its inverse p-’ is given by 

(b, 9) ++ (9, g-*.0 

The morphism p induces a k[G]-algebra isomorphism 

I,:k[xr,..., xs] @k NGI --) QGI @k kh,. . . ,&I. 

Note that r-l is the k[G]-algebra isomorphism induced by p-l. For any k[G]-algebra 

R we get an R-algebra isomorphism 

&:R[xl,..., xJ-R[xl,..., x,]. 

The homogeneous subspace V &S induces an R-submodule 

V,=V@RCR[x,,...,x,] 

and so we get a free R-module 

T,-‘Wi’R)CIRh...,x,l, 

which is in fact just ~/R(V). 

2.11. For a morphism 4 :X --) G with 4(X) n U # 0 we now see that 

in(TK;‘( Vjx)) = in(yk;( V)) = gin( V) (0verK). 

Now consider G = GL(S,V) to be an open subset of AS2 with coordinate functions uu 

for i,j= I,..., r. Let the uu take general values of k for i <r and let z+ = tj. Let D 

be the determinant of the matrix thus obtained and let T = k[tl,. . . , t,]o. The situation 

to which we will apply the above is to the situation where X = SpecT. For the rest 

of the paper let K = KX = k(tl,. . . , t,), the field of rational functions in the ti. 

Finally, if we let h = xi=, tixi, note the following which will be used repeatedly in 

Sections 4 and 5: r~(x,)=h. 
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3. Derivatives of forms 

Given a form p in SK = K[xi,. . . , x,]. One may then differentiate it with respect 

to the ti and obtain partial derivatives dl’lp/dt’ where I = (ii,. . , i,). More generally, 

for a homogeneous form s(t) = C art’ of degree d we get the directional derivative 

adpjas(t) = c crli?platI. 
For a form f in SK let 7 be its image in SK/(~). Now consider a specific form p. 

- 
Let l(t) = C ziti be such that I(x) = C ai% is not a factor of j?. 

Lemma 3.1. Suppose akplalk =&p for k 2 0. If f is a form such that akf/alk has 

p as a factor for all k > 0, then f has p as a factor. 

Proof. We have 

f =ulp+hq (5) 

for some ~1 and ai. Differentiating this gives 

aflal=au,lai.p+u,aplal+ MU, + haa,/dl. 

Thus, p divides a7. So ai = ulp + ha2 for some q and ~2. Inserting this in (5) gives 

f = u2p + h2a2, 

where ~2 = ui + hvl. Now differentiate twice with respect to 1. We may conclude that 

a2 = v2p + ha3 

for some u2 and a3. Continuing we get in the end that f = up. 0 

The following result is [ 1, Proposition lo] and is due to Green. It is assumed there 

that the field k = C but the proof is readily seen to work for any field of characteristic 

zero. Given a form j?j in SK/(h) it gives a criterion for it to lift to a form in SK which 

is essentially a form in S. 

Proposition 3.2. Let PE SK be a form such that 

- - 
x$p/atj E xjapj& (mod p) 

for all i and j. Then p = crpo + hR, where P,-,ES and UEK. 

Consider now a form f E S C SK. It gives a hypersurface in PS-‘. The following says 

that if all hyperplane sections of this hypersurface are reducible with a component of 

a given degree then the same is true for the hypersurface defined by ,f. 

Corollary 3.3. Suppose f = ii. p in SK/(h), where ii and p do not have a common 
factor. Then @ lifts to a form ~ppo where POE S. Furthermore, po is a factor off: 
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Proof. Let u and p in SK be liftings of ii and j?. We get 

f =up+hR. 

Differentiating with respect to a/hi gives 

0 = au/&. p + udp/dti + xiR + haR/at,. 

Thus, we get 

- _ 
ti(x$p/dti - x$p/atj) E 0 (mod p). 

Then by Proposition 3.2 we conclude that p has a lifting ccpo where po E S. 
By Lemma 3.1 we conclude that po is a factor of f since the akf/dlk = 0 for 

k21. 0 

Now, suppose V C Sn+,, is a subspace so we get a subspace V, = V@k K C SK,~+, 

and VKI~=O C W(h). 

Proposition 3.4. Suppose the forms of VKlhzo have a common factor p, where p is a 
common factor of maximal degree m. Then V has a common factor po of degree m 
such that ji = up0 for some c( E K. 

Proof. We may choose an fo E V such that 

- 
fo = UOP, 

where tia and p are relatively prime. This is seen as follows. Let j7 = a:’ . . . ui be a 

factorization where the rZi are distinct irreducible factors. It is easily seen that the set 

of f in V where f has a?+’ as a factor, is a linear subspace I$ of V. On the other 

hand, if f varies all over V the restrictions 7 generate VKlhzO. Thus, we cannot have 

E = V for any i. But since char k = 0 the field k is infinite, so there must be an fo in 

V-UK. 

By Corollary 3.3, j?j lifts to crpo where po ES. Choose now any f in V C VK. Then 

_ 
f =u.olpo. 

By Lemma 3.1 we may conclude that po is a factor of f and, thus, a common factor 

ofv. q 

4. The case when s = Y 

Now, we are ready for the specific work in proving the Main theorem. Consider 

S=k[xl,... ,x,.1. Let W=(xi ,..., x,)=Si which is a linear space. Use the notation 

W” =S,. (This will make our statements more unified in form.) Let the monomial 
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order be the revlex order. In this section we prove the following (which is the case 

s = Y of the Main theorem). 

Theorem 4.1. Let V C S,,+,, be a linear space such that 

gin(V) = Wnx;Z 2 Sn+. 

Then there exists a polynomial p E S,,, such that V = W”p. 

We assume V to be in general coordinates so Lemma 2.7 applies. 

Lemma 4.2. There is a form p in S,, such that 

h”p E VK. 

Proof. From 2.11 we have in(&‘( VK)) = gin(V) over K. Thus, there exists a go in 

rL’(I+) such that 

q. =x;x;” + terms with smaller monomials. 

By the property of the revlex order, x,” will divide all terms of qo so there exists a 

p0ESK.m such that 

40 =xr” PO. 

Let p = &(po). Then, we get 

From V, C SK we obtain the subspace 

%Ih=O csK/(h>. 

Let p be the image of p in VKl,=o. 

Lemma 4.3. The elements in VKlh=o have ji as a common factor. Furthermore, it is 
a common factor of maximal degree. 

PrOOf. We first find the dimension of the space v&O. The map & gives an isomor- 

phism 

rK:K[x,,... ,-~ll(xr> +Kh,. .,x,1/(h). 

Thus, FK-‘( VKIJ,=O) = ri’( VK)~~,=O. Since r<‘( VK) has initial space 

(Xl,. ..,Xl)n .x;“, 

we get by 1.3 that &‘( VK)lX, =. has initial space 

(Xl )...) x,_,y .x;“. 

Hence, the dimension of VKlhzO is equal to the dimension of this space. 
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Now differentiate the equation 

with respect to dlri/LJtr where I = (il , . . . , &_I) and 111 = n. The derivative will also 

be in VK. This is essentially the fact that when a vector varies in a vector space the 

derivatives will also be in that vector space. We thus get 

x’p + hRI E VK 

for some RI. Thus, 

(6) 

But when I varies, all these forms are linearly independent since h does not divide 

any linear combination of the x*. By our statement about the dimension of V+,,, the 

forms (6) must generate VK~h=o, thus proving the lemma. 0 

By Corollary 3.4 we may now conclude that V has a maximal common factor po 

of degree m. Thus proving Theorem 4.1. 

5. The case when s > Y 

Now, we assume S = k[xl, . . . ,xs]. As before FV = (xl , . . . , xr ) C S,, a linear subspace 

and assume s > r. The monomial order is revlex. In this section we prove the following 

by induction on s. 

Theorem 5.1. Let V C S,,+,,, be a linear space such that 

gin(V) = Wnx;l C Sn+m. 

Then there exists a polynomial p E S,,, and a linear subspace W, &S,, such that 

v= w,p. 

Assume V to be in general coordinates. Let g : S1 -271 be a general coordinate 

change. Since in(g-‘.V) = (xl,. . _ ,_x,.)~ . x;“, by 1.3 it follows that in(g-l.&=o) = 

(Xl ,...,x,)” . xr also. By induction g-l.Vls=o has a common factor. By translating 

back, VI~.~,=O also has a common factor (depending on g). The following expresses 

this in the algebraic language we use. 

Lemma 5.2. There is a form p in SK,~ such that j? in S,l,=o is a common factor of 
V&o. Furthermore, it is a common factor of maximal degree. 

Proof. By 2.9.2 the generic initial ideal of I;E-l(VK)lX$c,,o =~K(V),,_o is gin(V)lxs=o 

(overK). The latter is, by 1.3, seen to be 

(Xl,...,X,y .x;“. 
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By induction there is a form pt in SK,+,=0 which is a common factor of &‘( V’)~r,=O. 

Now x;” is a common factor of in(&‘( VK)lx,_o) of maximal degree. Then p, must 

also have maximal degree as a common factor of r;’ ( VK)/,~,=~. Lift this to a form p, 

in SK,,. Then p = ZK( ~1) is the required form. 0 

By Corollary 3.4 we may now conclude that V has a maximal common factor pa 

of degree m. Thus proving Theorem 5.1. 

6. An example 

Consider the complete intersection of three quadratic forms in P3. Let I 2 /C[X,,X~, 

x3,x4] be its homogeneous ideal. We have the following facts. 

(1) Z and gin(Z) have the same Hilbert functions. 

(2) gin(Z) is Borel-fixed. (See [2, Proposition 15.201.) 

(3) Since I is saturated, by [4, Proposition 2.211 we have gin(Z) :x4 = gin(Z). This is 

really just the fact that in(Z :x4) = in(Z) :x4 for the revlex order ([2, Proposi- 

tion 15.12b]), and that if Z is in general coordinates and saturated then Z :x4 = I. 

These three facts imply that there are two possible candidates for gin(Z): 

J(*) = (x:,x~x~,x,x3,x~,x~x3,x~x~,x~). 

However, by the theorem above if gin(Z) =J (*I then the quadratic forms in 1, C: S2 

would have to have a common factor. Impossible. Thus, gin(Z) ==J(‘). On the other 

hand, if Z is an ideal with gin(Z) =.Z (*) then since the quadratic forms in 12 would 

have a common factor it must be the ideal of seven points in a plane plus one extra 

point not in the plane. 

Note also the following. Let >1 be the ordering of the monomials which is lexi- 

cographic in the three first variables, and then refined with the reverse lexicographic 

order with respect to the last variable, i.e. 

al 02 a3 a4 bl bz h h 
x1 x* x3 x4 >x, x2 x3 x4 , 

if a4 < b4, or a4 = b4 and 

h bz h Xf’XTXf >x, x2 x3 

for the lexicographic order. Then, if the three forms are general it is easily seen that 

gin(Z) = J(*! In fact, it is not difficult to argue that one will always have gin(Z) = J(*) 

if you have a complete intersection of three forms and this order. Thus, both .Z(‘) and 

J(*) are in fact specialisations of I. 

Furthermore, it is not difficult to give an example of a complete intersection of three 

forms such that in (I) = J (2) for the reverse lexicographic order. Thus, the fact that 
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one can read some interesting algebraic or geometric information from the initial ideal 

depends on the fact that you are looking at the generic initial ideal. 
To sum up, Jc2) 1s a specialisation of the ideal I of a complete intersection of three 

quadratic forms in general coordinates through the order >I given above. It is also 

the specialisation of an ideal I of a complete intersection of three quadratic forms 

through the revlex order, but it is never a specialisation of the ideal I of a complete 

intersection of three quadratic forms through the revlex order when the forms are in 

general coordinates. 
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