A property deducible from the generic initial ideal

Gunnar Fløystad *
Matematisk Institutt, Allegaten 55, 5007 Bergen, Norway

Communicated by L. Robbiano; received 28 January 1996; received in revised form 28 April 1997

Abstract

Let S_{d} be the vector space of monomials of degree d in the variables x_{1}, \ldots, x_{s}. For a subspace $V \subseteq S_{d}$ which is in general coordinates, consider the subspace $\operatorname{gin}(V) \subseteq S_{d}$ generated by initial monomials of polynomials in V for the revlex order. We address the question of what properties of V may be deduced from $\operatorname{gin}(V)$.

This is an approach for understanding what algebraic or geometric properties of a homogeneous ideal $I \subseteq k\left[x_{1}, \ldots, x_{s}\right]$ that may be deduced from its generic initial ideal gin(I). (C) 1999 Elsevier Science B.V. All rights reserved.

AMS Classification: 13P10

0. Introduction

During the recent years the generic initial ideal of a homogeneous ideal has attracted some attention as an invariant. An intriguing problem is what algebraic or geometric properties of the original ideal can be deduced from the generic initial ideal.

In this paper we take perhaps the most elementary approach possible. Let $S=$ $k\left[x_{1}, \ldots, x_{s}\right]$ and let $>$ be the reverse lexicographic order of the monomials in S. Denote by S_{d} the graded piece of degree d in S. Suppose $V \subseteq S_{d}$ is a subspace. Denote by $\operatorname{gin}(V)$ the subspace of S_{d} generated by initial monomials of polynomials of the subspace of S_{d} obtained from V by performing a general change of coordinates. Then one may ask what properties of V may he deduced from $\operatorname{gin}(V)$? The following result gives an insight in this direction.

Let $W=\left(x_{1}, \ldots, x_{r}\right) \subseteq S_{1}$ which is a linear space. Suppose that $s \geq r \geq 3$.

[^0]Main Theorem. Let $V \subseteq S_{n+m}$ be a linear space such that

$$
\operatorname{gin}(V)=W^{n} x_{1}^{m} \subseteq S_{n+m}
$$

Then there exists a polynomial $p \in S_{m}$ and a linear subspace $W_{n} \subseteq S_{n}$ such that $V=W_{n} p$.

Note that if $s=r$ then $W^{n} x_{1}^{m}$ are the largest monomials in S_{n+m} for the lexicographic order. Thus, if $>$ had been the lexicographic order and $\operatorname{gin}(V)=W^{n} x_{1}^{m}$ then we could deduce virtually nothing about V.

The general idea of the proof is inspired by Green [4] and worth attention because of its seeming naturality in dealing with problems of this kind.

The idea in its vaguest and most generally applicable form is the following. Suppose $\operatorname{gin}(V)$ has a given form, and suppose V is in general coordinates so in $(V)=\operatorname{gin}(V)$. The given form of in (V) implies some algebraic or geometric property of V. Let now $g: S_{1} \rightarrow S_{1}$ be a general change of coordinates. Then $\operatorname{in}\left(g^{-1} . V\right)=\operatorname{gin}(V)$ also. Thus, $g^{-1} . V$ will also have this property. Then this property may be translated back to a property of V. This gives a continuous set of properties that V will satisfy. From this one may proceed making deductions about what V may look like.

In this paper this is applied concretely as follows. In the case $r=s$ the given form of $\operatorname{in}(V)=\operatorname{gin}(V)$ implies that there is a p_{1} in S_{m} such that $x_{r}^{n} . p_{1} \in V$. The fact that $\operatorname{in}\left(g^{-1} \cdot V\right)=\operatorname{gin}(V)$ also implies that there is a $p_{g^{-1}}$ in S_{m} such that $x_{r}^{n} \cdot p_{g^{-1}} \in g^{-1} . V$. Translating this property back to V, we get

$$
\begin{equation*}
\left(g \cdot x_{r}\right)^{n} \cdot g \cdot p_{g^{-1}} \in V . \tag{1}
\end{equation*}
$$

Now, for the family of linear forms $h=\sum t_{i} x_{i}$ one may choose a general family of g 's depending on h such that $g . x_{r}=h$. Then Eq. (1) may be written as

$$
\begin{equation*}
h^{n} p \in V \tag{2}
\end{equation*}
$$

where p is a form of degree m depending on h.
The second technique, specifically suggested by Green [4], is to differentiate this equation with respect to the t_{i} 's. All the derivatives will still be in V. (This is just the fact that when a vector varies in a vector space its derivative is also in the vector space.) Letting $V_{\mid h=0}$ be the image by the composition $V \rightarrow S \rightarrow S /(h)$ this enables us to show that the forms in $V_{\mid h=0}$ have a common factor of degree m.

The third basic ingredient is now Proposition 3.4 which says that if $V_{\mid h=0}$ have a common factor of degree m, then V has a common factor of degree m.

Having proven the case $s=r$, the case $s>r$ may now be proven by an induction process.

The organization of the paper is as follows. In the first three sections we develop general theory which does not presuppose anything about what $\operatorname{gin}(V)$ actually is.

In Section 1 we give some basic definitions and notions. In Section 2 we define the generical initial space of a subspace V of S by using a generic coordinate change on V. We also give some basic theory for this setting which will be used in Sections 4 and 5 .

Section 3 presents the framework in which we will work. Instead of considering a continuously varying form $h=\sum_{i=1}^{s} t_{i} x_{i}$ in $k\left[x_{1}, \ldots, x_{s}\right]$, we consider h as a linear form in $K\left[x_{1}, \ldots, x_{s}\right]$ where $K=k\left(t_{1}, \ldots, t_{s}\right)$, the field of rational functions of the t_{i} 's.

If now $V \subseteq k\left[x_{1}, \ldots, x_{s}\right]_{d}$ is a subspace let $V_{K}=V \otimes_{k} K \subseteq K\left[x_{1}, \ldots, x_{s}\right]$. The main result here, Proposition 3.4, says that if the forms in $V_{K \mid h=0}$ have a common factor of degree m then the forms in V have a common factor of degree m. This is proven using differentiation of forms with respect to the t_{i}.

Only from now on do we assume that $\operatorname{gin}(V)$ has the special form given in the main theorem. In Section 4 we prove the case $s=r$ in the main theorem. Section 5 proves the case $s>r$ of the main theorem. In Section 6 we give an application of the main theorem. The example originated in discussions with Green and was what triggered this paper. Consider the complete intersection of three quadratic forms in \mathbf{P}^{3}. Let $I \subseteq k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be its homogeneous ideal. By standard theory one may deduce that there are two candidates for $\operatorname{gin}(l)$:

$$
\begin{aligned}
J^{(1)} & =\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}^{2}, x_{2} x_{3}^{2}, x_{3}^{4}\right), \\
J^{(2)} & =\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{4}\right) .
\end{aligned}
$$

By the main theorem, if gin $(I)=J^{(2)}$ then the quadratic forms in $I_{2} \subseteq S_{2}$ would have to have a common factor. Impossible. Thus, $\operatorname{gin}(I)=J^{(1)}$.

Throughout the article all fields have characteristic zero.

1. Basic definitions and notions

1.1. Let $S=k\left[x_{1}, \ldots, x_{s}\right]$. The graded piece of degree d is denoted by S_{d}. If $I=$ $\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ we use the notation

$$
\boldsymbol{x}^{I}=x_{1}^{i_{1}} \cdots x_{s}^{i_{s}}
$$

It has degree $|I|=\sum i_{j}$.
Suppose now we have given a total order on the monomials. For a homogeneous polynomial $f=\sum a_{I} \boldsymbol{x}^{I}$ in S (henceforth often referred to as a form) let the initial monomial be

$$
\operatorname{in}(f)=\max \left\{\boldsymbol{x}^{I} \mid a_{I} \neq 0\right\}
$$

For a homogeneous vector subspace $V \subseteq S$ let the initial subspace be

$$
\operatorname{in}(V)=(\{\operatorname{in}(f) \mid f \in V\})
$$

the homogeneous vector subspace of S generated by the initial monomials of forms in V.

Sometimes we wish to consider another polynomial ring $R\left[x_{1}, \ldots, x_{r}\right]$, where R is a commutative ring. Denote this by S_{R}. The initial monomials in (f) for $f \in V$ may equally well be considered as elements of S_{R}. We may thus speak of in (V) over R (when $V \subseteq S$) which is the free R-module in S_{R} generated by $\{\operatorname{in}(f) \mid f \in V\}$.
1.2. The monomial order we shall be concerned with in Sections 4 and 5 is the reverse lexicographic order. Then the monomials of a given degree is ordered by $\boldsymbol{x}^{I}>\boldsymbol{x}^{J}$ if $i_{r}<j_{r}$ where r is the greatest number with $i_{r} \neq j_{r}$. Intuitively \boldsymbol{x}^{J} is "dragged down" by having a large "weight in the rear".
1.3. For a linear form $l \in S_{1}$ denote by $\left.V\right|_{l=0}$ the image of the composition

$$
V \rightarrow S \rightarrow S /(l)
$$

The following basic fact for the revlex order, [2, Proposition 15.12a], will be used several times

$$
\operatorname{in}\left(V_{\mid x_{s}=0}\right)=\operatorname{in}(V)_{\mid x_{s}=0} .
$$

2. The generic initial space

The following section contains the definition of the generic initial space and some general theory related to it. The things presented here are certainly in the background knowledge of people but due to a lack of suitable references for a proper algebraic treatment we develop the theory here. The most important things are Proposition 2.9 and Paragraph 2.11.
2.1. We identify $S=k\left[x_{1}, \ldots, x_{s}\right]$ as the affine coordinate ring of \mathbf{A}^{s}. Let $G=G L\left(S_{1}^{\vee}\right)$. There is a natural action

$$
\mathbf{A}^{s} \times G \rightarrow \mathbf{A}^{s}
$$

given by $(a, g) \mapsto g^{-1} \cdot a$. This gives a k-algebra homomorphism

$$
\gamma: k\left[x_{1}, \ldots, x_{s}\right] \rightarrow k\left[x_{1}, \ldots, x_{s}\right] \otimes_{k} k[G]
$$

If R is a $k[G]$-algebra, we also by composition obtain a k-algebra homomorphism

$$
\gamma_{R}: k\left[x_{1}, \ldots, x_{s}\right] \rightarrow k\left[x_{1}, \ldots, x_{s}\right] \otimes_{k} k[G] \rightarrow R\left[x_{1}, \ldots, x_{s}\right]
$$

Note that if $R-k(g)$ for a point $g \in G$, then $\gamma_{k(g)}$ is just the action of g on $k\left[x_{1}, \ldots, x_{s}\right]$.
Let K_{G} be the function field of G. The image of a homogeneous subspace $V \subseteq S$ by $\gamma_{K_{G}}$ generates a homogeneous subspace ($\gamma_{K_{G}}(V)$) of the same dimension as V. Suppose now a total monomial order is given. The initial monomials of ($\gamma_{K_{G}}(V)$) generate a linear subspace over k (or over K_{G}), which is called the generic initial subspace
of V over k (or over K_{G}) and is denoted $\operatorname{gin}(V)$. Henceforth, we shall drop the outer parentheses of $\left(\gamma_{K_{G}}(V)\right)$ and write this as $\gamma_{K_{G}}(V)$.
2.2. Let $\operatorname{gin}(V)=\left(m_{1}, \ldots, m_{t}\right)$ for some monomials m_{i}. Let $b_{i} \in \gamma_{K_{G}}(V)$ be such that

$$
b_{i}=m_{i}+b_{i 0},
$$

where $b_{i 0}$ consists of monomials less than m_{i} for the given order. Now there is an open subset $U \subseteq G$ such that all the b_{i} lift to elements of $\mathcal{O}(U)\left[x_{1}, \ldots, x_{s}\right]$. Now we immediately get.

Proposition 2.3. There is an open subset $U \subseteq G$ (take the one above) such that for $g \in U$, then

$$
\operatorname{in}\left(\gamma_{k(g)}(V)\right)=\operatorname{gin}(V)(\text { over } k(g)) .
$$

(The original reference for this is [3].)
2.4. Now, choose a $g_{0} \in G$ such that $k\left(g_{0}\right)=k$. There is then a diagram

The lower horizontal map is the natural action. The middle map is given by $(a, g) \mapsto$ ($a, g g_{0}$) and the lower vertical maps are just the action of G. The upper horizontal map is the map induced by the middle map. From the commutativity of the diagram we see that

$$
\gamma_{K_{G}}\left(g_{0} . V\right)=\alpha_{g_{0}}^{*}\left(\gamma_{K_{G}}(V)\right),
$$

where $\alpha_{g_{0}}^{*}$ is the automorphism of $K_{G}\left[x_{1}, \ldots, x_{s}\right]$ induced by $\alpha_{g_{0}}$. Note that $\alpha_{g_{0}}^{*}$ comes from an automorphism of K_{G}. So it does not affect the variables x_{i}.

Thus, we see that the $\alpha_{g_{0}}^{*}\left(b_{i}\right)=m_{i}+\alpha_{g_{0}}^{*}\left(b_{i 0}\right)$ are a basis for $\gamma_{K_{G}}\left(g_{0} . V\right)$, where the monomials in $\alpha_{g_{0}}^{*}\left(b_{i 0}\right)$ are less than m_{i} for the given order. Also note that the $\alpha_{g_{0}}^{*}\left(b_{i}\right)$ lift to the open subset $U . g_{0}^{-1} \subseteq G$. Thus, we have proven the following.

Lemma 2.5. Given $g \in G$, by replacing the subspace V by $g_{0} . V$ and the open subset U by U. g_{0}^{-1} for a suitable g_{0}, we may assume that g is in the open subset from Proposition 2.3.
2.6. Now, let $\phi: X \rightarrow G$ be a morphism. We get a morphism

$$
\mathbf{A}^{s} \times X \rightarrow \mathbf{A}^{s}
$$

and, thus, a k-algebra morphism

$$
\gamma_{K_{X}}: k\left[x_{1}, \ldots, x_{s}\right] \rightarrow K_{X}\left[x_{1}, \ldots, x_{s}\right],
$$

where K_{X} is the function field of X. We get a homogeneous subspace ($\gamma_{K_{X}}(V)$) and also here we shall henceforth drop the outer parenthesis. By performing a suitable coordinate change of V we may assume (by Lemma 2.5) that $\phi(X) \cap U \neq \emptyset$. The following is now immediate from the results above.

Lemma 2.7. (1) For x in the open subset $\phi^{-1}(U) \subseteq X$ we have

$$
\operatorname{in}\left(\gamma_{k(x)}(V)\right)=\operatorname{gin}(V)(\operatorname{over} k(x))
$$

(2) $\operatorname{in}\left(\gamma_{K_{X}}(V)\right)=\operatorname{gin}(V)\left(\right.$ over $\left.K_{X}\right)$.
(3) Given $x \in X$ then we may assume that $\phi(x) \in U$.
2.8. By 1.3 we have

$$
\operatorname{in}\left(V_{\mid x_{s}=0}\right)=\operatorname{in}(V)_{\left.\right|_{s}=0} .
$$

We would like to have a suitable version of this for generic subspaces. The version we need is (2) in the following proposition. It is used most importantly in the proof of Lemma 5.2.

Proposition 2.9. (1) $\operatorname{gin}\left(\gamma_{K_{X}}(V)\right)=\operatorname{gin}(V)\left(\right.$ over $\left.K_{X}\right)$.
(2) $\operatorname{gin}\left(\gamma_{K_{X}}(V)_{\mid x_{s}=0}\right)=\operatorname{gin}(V)_{\mid x_{s}=0}\left(\right.$ over $\left.K_{X}\right)$.

Proof. We prove (2). The proof of (1) is analogous and easier. Besides we will not need (1). We just state it for completeness.
(a) Let $S_{1}^{\circ}=\left(x_{1}, \ldots, x_{s-1}\right)$ and $G^{\circ}=G L\left(S_{1}^{\circ \vee}\right)$. Let $k \rightarrow K$ be a homomorphism of fields and let $G_{K}^{\circ}=G L\left(S_{1}^{\circ \vee} \otimes_{k} K\right)$. Due to the naturally split inclusion $S_{1}^{\circ} \subseteq S_{1}$, there is a diagram

where the upper action is given by $(a, g) \mapsto g^{-1} \cdot a$. The lower map gives a K-algebra homomorphism

$$
\gamma^{\circ}: K\left[x_{1}, \ldots, x_{s}\right] \rightarrow K\left[G_{K}^{\circ}\right] \otimes_{K} K\left[x_{1}, \ldots, x_{s}\right] .
$$

The upper map gives a K-algebra homomorphism

$$
\gamma_{x_{s}=0}^{\circ}: K\left[x_{1}, \ldots, x_{s-1}\right] \rightarrow K\left[G_{K}^{\circ}\right] \otimes_{K} K\left[x_{1}, \ldots, x_{s-1}\right] .
$$

For a homogeneous subspace $W \subseteq K\left[x_{1}, \ldots, x_{s}\right]$ we now see that

$$
\gamma_{\mid x_{s}=0}^{\circ}\left(W_{\mid x_{s}=0}\right)=\gamma^{\circ}(W)_{\mid x_{s}=0} .
$$

The initial space of the former is by definition gin $\left(W_{\mid x_{s}=0}\right)$. By applying 1.3 to the latter initial space we then get

$$
\begin{equation*}
\operatorname{gin}\left(W_{\mid x_{s}=0}\right)=\operatorname{in}\left(\gamma^{\circ}(W)\right)_{\mid x_{s}=0} . \tag{3}
\end{equation*}
$$

(b) Now, there is a diagram

The upper horizontal map is given by $(a, h, g) \mapsto\left(h^{-1} \cdot a, g\right)$. The lower horizontal map and the right vertical map are the actions. Lastly, the left vertical map is given by $(a, h, g) \mapsto(a, h g)$. It induces a diagram

Apply Lemma 2.7. Then $\gamma_{K_{X}}(V)$ has initial space gin (V). Also applying Lemma 2.7 to the composition $\mathbf{A}^{s} \times G^{\circ} \times X \rightarrow \mathbf{A}^{s} \times G \rightarrow \mathbf{A}^{S}$ (from the diagram), gives that $\gamma_{K_{G}{ }^{\circ} \times X}(V)$ has initial ideal $\operatorname{gin}(V)$ over $K_{G^{\circ} \times X}$.

Now go back to part (a) of this proof and put $K=K_{X}$ and $W=\gamma_{K_{X}}(V)$. By the commutativity of the diagram (4) we see that

$$
\gamma^{\circ}(W)=\gamma_{G_{G^{\circ} \times X}}(V)
$$

Thus,

$$
\operatorname{in}\left(\gamma^{\circ}(W)\right)=\operatorname{in}\left(\gamma_{K_{G^{\circ} \times X}}(V)\right)=\operatorname{gin}(V)\left(\text { over } K_{G^{\circ} \times X}\right) .
$$

Putting this together with (3) we get

$$
\operatorname{gin}\left(\gamma_{K_{X}}(V)_{\left.\right|_{s}=0}\right)=\operatorname{gin}(V)_{\left.\right|_{x_{s}}=0}\left(\operatorname{over} K_{X}\right)
$$

2.10. Now, there is of course also a natural action

$$
G \times \mathbf{A}^{s} \rightarrow \mathbf{A}^{s}
$$

given by

$$
(g, a) \mapsto g . a .
$$

The morphism

$$
\rho: G \times \mathbf{A}^{s} \rightarrow \mathbf{A}^{s} \times G
$$

given by

$$
(g, a) \mapsto(g \cdot a, g)
$$

is an isomorphism and its inverse ρ^{-1} is given by

$$
(b, g) \mapsto\left(g, g^{-1} \cdot b\right)
$$

The morphism ρ induces a $k[G]$-algebra isomorphism

$$
\Gamma: k\left[x_{1}, \ldots, x_{s}\right] \otimes_{k} k[G] \rightarrow k[G] \otimes_{k} k\left[x_{1}, \ldots, x_{s}\right] .
$$

Note that Γ^{-1} is the $k[G]$-algebra isomorphism induced by ρ^{-1}. For any $k[G]$-algebra R we get an R-algebra isomorphism

$$
I_{R}: R\left[x_{1}, \ldots, x_{s}\right] \rightarrow R\left[x_{1}, \ldots, x_{s}\right]
$$

The homogeneous subspace $V \subseteq S$ induces an R-submodule

$$
V_{R}=V \otimes_{k} R \subseteq R\left[x_{1}, \ldots, x_{s}\right]
$$

and so we get a free R-module

$$
\Gamma_{R}^{-1}\left(V_{R}\right) \subseteq R\left[x_{1}, \ldots, x_{s}\right]
$$

which is in fact just $\gamma_{R}(V)$.

2.11. For a morphism $\phi: X \rightarrow G$ with $\phi(X) \cap U \neq 0$ we now see that

$$
\operatorname{in}\left(\Gamma_{K_{X}}^{-1}\left(V_{K_{X}}\right)\right)=\operatorname{in}\left(\gamma_{K_{X}}(V)\right)=\operatorname{gin}(V)(\operatorname{over} K) .
$$

Now consider $G=G L\left(S_{1}^{\vee}\right)$ to be an open subset of $\mathbf{A}^{s^{2}}$ with coordinate functions $u_{i j}$ for $i, j=1, \ldots, r$. Let the $u_{i j}$ take general values of k for $i<r$ and let $u_{r j}=t_{j}$. Let D be the determinant of the matrix thus obtained and let $T=k\left[t_{1}, \ldots, t_{s}\right]_{n}$. The situation to which we will apply the above is to the situation where $X=\operatorname{Spec} T$. For the rest of the paper let $K=K_{X}=k\left(t_{1}, \ldots, t_{s}\right)$, the field of rational functions in the t_{i}.

Finally, if we let $h=\sum_{i=1}^{s} t_{i} x_{i}$, note the following which will be used repeatedly in Sections 4 and 5: $\Gamma_{K}\left(x_{s}\right)=h$.

3. Derivatives of forms

Given a form p in $S_{K}=K\left[x_{1}, \ldots, x_{s}\right]$. One may then differentiate it with respect to the t_{i} and obtain partial derivatives $\partial^{|I|} p / \partial t^{I}$ where $I=\left(i_{1}, \ldots, i_{s}\right)$. More generally, for a homogeneous form $s(t)=\sum \alpha_{1} t^{I}$ of degree d we get the directional derivative $\partial^{d} p / \partial s(t)=\sum \alpha_{I} \delta^{d} p / \partial t^{I}$.

For a form f in S_{K} let \bar{f} be its image in $S_{K} /(h)$. Now consider a specific form p. Let $l(\boldsymbol{t})=\sum \alpha_{i} t_{i}$ be such that $\overline{l(\boldsymbol{x})}=\sum \alpha_{i} \overline{x_{i}}$ is not a factor of \bar{p}.

Lemma 3.1. Suppose $\partial^{k} p / \partial l^{k}=\alpha_{k} p$ for $k \geq 0$. If f is a form such that $\overline{\partial^{k} f / \partial l^{k}}$ has \bar{p} as a factor for all $k \geq 0$, then f has p as a factor.

Proof. We have

$$
\begin{equation*}
f=u_{1} p+h a_{1} \tag{5}
\end{equation*}
$$

for some u_{1} and a_{1}. Differentiating this gives

$$
\partial f / \partial l=\partial u_{1} / \partial l \cdot p+u_{1} \partial p / \partial l+l(\boldsymbol{x}) a_{1}+h \partial a_{1} / \partial l .
$$

Thus, \bar{p} divides $\overline{a_{1}}$. So $a_{1}=v_{1} p+h a_{2}$ for some v_{1} and a_{2}. Inserting this in (5) gives

$$
f=u_{2} p+h^{2} a_{2}
$$

where $u_{2}=u_{1}+h v_{1}$. Now differentiate twice with respect to l. We may conclude that

$$
a_{2}=v_{2} p+h a_{3}
$$

for some v_{2} and a_{3}. Continuing we get in the end that $f=u p$.
The following result is [1, Proposition 10] and is due to Green. It is assumed there that the field $k=\mathbf{C}$ but the proof is readily seen to work for any field of characteristic zero. Given a form \bar{p} in $S_{K} /(h)$ it gives a criterion for it to lift to a form in S_{K} which is essentially a form in S.

Proposition 3.2. Let $p \in S_{K}$ be a form such that

$$
x_{i} \overline{\partial p / \partial t_{j}} \equiv x_{j} \overline{\partial p / \partial t_{i}} \quad(\bmod \bar{p})
$$

for all i and j. Then $p=\alpha p_{0}+h R$, where $p_{0} \in S$ and $\alpha \in K$.
Consider now a form $f \in S \subseteq S_{K}$. It gives a hypersurface in \mathbf{P}^{s-1}. The following says that if all hyperplanc sections of this hypersurface are reducible with a component of a given degree then the same is true for the hypersurface defined by f.

Corollary 3.3. Suppose $\bar{f}=\bar{u} \cdot \bar{p}$ in $S_{K} /(h)$, where \bar{u} and \bar{p} do not have a common factor. Then \bar{p} lifts to a form αp_{0} where $p_{0} \in S$. Furthermore, p_{0} is a factor of f.

Proof. Let u and p in S_{K} be liftings of \bar{u} and \bar{p}. We get

$$
f=u p+h R .
$$

Differentiating with respect to $\partial / \partial t_{i}$ gives

$$
0=\partial u / \partial t_{i} . p+u \partial p / \partial t_{i}+x_{i} R+h \partial R / \partial t_{i} .
$$

Thus, we get

$$
\bar{u}\left(x_{j} \overline{\partial p / \partial t_{i}}-x_{i} \overline{\partial p / \partial t_{j}}\right) \equiv 0 \quad(\bmod \bar{p})
$$

Then by Proposition 3.2 we conclude that \bar{p} has a lifting αp_{0} where $p_{0} \in S$. By Lemma 3.1 we conclude that p_{0} is a factor of f since the $\partial^{k} f / \partial l^{k}=0$ for $k \geq 1$.

Now, suppose $V \subseteq S_{n+m}$ is a subspace so we get a subspace $V_{K}=V \otimes_{k} K \subseteq S_{K, n+m}$ and $V_{K \mid h=0} \subseteq S_{K} /(h)$.

Proposition 3.4. Suppose the forms of $V_{K \mid h=0}$ have a common factor \bar{p}, where \bar{p} is a common factor of maximal degree m. Then V has a common factor p_{0} of degree m such that $\bar{p}=\alpha \overline{p_{0}}$ for some $\alpha \in K$.

Proof. We may choose an $f_{0} \in V$ such that

$$
\bar{f}_{0}=\bar{u}_{0} \bar{p}
$$

where \bar{u}_{0} and \bar{p} are relatively prime. This is seen as follows. Let $\bar{p}=\bar{a}_{1}^{e_{1}} \cdots \bar{a}_{r}^{e_{r}}$ be a factorization where the \bar{a}_{i} are distinct irreducible factors. It is easily seen that the set of f in V where \bar{f} has $\bar{a}_{i}^{e_{i}+1}$ as a factor, is a linear subspace V_{i} of V. On the other hand, if f varies all over V the restrictions \bar{f} generate $V_{K \mid h=0}$. Thus, we cannot have $V_{i}=V$ for any i. But since char $k=0$ the field k is infinite, so there must be an f_{0} in $V-\bigcup V_{i}$.

By Corollary 3.3, \bar{p} lifts to αp_{0} where $p_{0} \in S$. Choose now any f in $V \subseteq V_{K}$. Then

$$
\bar{f}=\bar{u} \cdot \overline{\alpha p_{0}} .
$$

By Lemma 3.1 we may conclude that p_{0} is a factor of f and, thus, a common factor of V.

4. The case when $s=r$

Now, we are ready for the specific work in proving the Main theorem. Consider $S=k\left[x_{1}, \ldots, x_{r}\right]$. Let $W=\left(x_{1}, \ldots, x_{r}\right)=S_{1}$ which is a linear space. Use the notation $W^{n}=S_{n}$. (This will make our statements more unified in form.) Let the monomial
order be the revlex order. In this section we prove the following (which is the case $s-r$ of the Main theorem).

Theorem 4.1. Let $V \subseteq S_{n+m}$ be a linear space such that

$$
\operatorname{gin}(V)=W^{n} x_{1}^{m} \subseteq S_{n+m}
$$

Then there exists a polynomial $p \in S_{m}$ such that $V=W^{n} p$.
We assume V to be in general coordinates so Lemma 2.7 applies.
Lemma 4.2. There is a form p in $S_{K, m}$ such that

$$
h^{n} p \in V_{K} .
$$

Proof. From 2.11 we have $\operatorname{in}\left(\Gamma_{K}^{-1}\left(V_{K}\right)\right)=\operatorname{gin}(V)$ over K. Thus, there exists a g_{0} in $\Gamma_{K}^{-1}\left(V_{K}\right)$ such that
$q_{0}=x_{r}^{n} x_{1}^{m}+$ terms with smaller monomials.
By the property of the revlex order, x_{r}^{n} will divide all terms of q_{0} so there exists a $p_{0} \in S_{K, m}$ such that

$$
q_{0}=x_{r}^{n} p_{0}
$$

Let $p=\Gamma_{K}\left(p_{0}\right)$. Then, we get

$$
h^{n} p=\Gamma_{K}\left(x_{r}\right)^{n} \Gamma_{K}\left(p_{0}\right)=\Gamma_{K}\left(q_{0}\right) \in V_{K}
$$

From $V_{K} \subseteq S_{K}$ we obtain the subspace

$$
V_{K \mid h=0} \subseteq S_{K} /(h)
$$

Let \bar{p} be the image of p in $V_{K \mid h=0}$.
Lemma 4.3. The elements in $V_{K \mid h=0}$ have \bar{p} as a common factor. Furthermore, it is a common factor of maximal degree.

Proof. We first find the dimension of the space $V_{K \mid h=0}$. The map Γ_{K} gives an isomorphism

$$
\bar{\Gamma}_{K}: K\left[x_{1}, \ldots, x_{r}\right] /\left(x_{r}\right) \rightarrow K\left[x_{1}, \ldots, x_{r}\right] /(h) .
$$

Thus, $\bar{\Gamma}_{K}^{-1}\left(V_{K \mid h=0}\right)=\Gamma_{K}^{-1}\left(V_{K}\right)_{\mid x_{r}=0}$. Since $\Gamma_{K}^{-1}\left(V_{K}\right)$ has initial space

$$
\left(x_{1}, \ldots, x_{r}\right)^{n} \cdot x_{1}^{m}
$$

we get by 1.3 that $\Gamma_{K}^{-1}\left(V_{K}\right)_{\mid x_{r}=0}$ has initial space

$$
\left(x_{1}, \ldots, x_{r-1}\right)^{n} \cdot x_{1}^{m}
$$

Hence, the dimension of $V_{K \mid h=0}$ is equal to the dimension of this space.

Now differentiate the equation

$$
h^{n} p \in V_{K}
$$

with respect to $\partial^{|I|} / \partial t^{I}$ where $I=\left(i_{1}, \ldots, i_{r-1}\right)$ and $|I|=n$. The derivative will also be in V_{K}. This is essentially the fact that when a vector varies in a vector space the derivatives will also be in that vector space. We thus get

$$
\boldsymbol{x}^{I} p+h R_{I} \in V_{K}
$$

for some R_{I}. Thus,

$$
\begin{equation*}
\boldsymbol{x}^{I} \bar{p} \in V_{K \mid h=0} \tag{6}
\end{equation*}
$$

But when I varies, all these forms are linearly independent since h does not divide any linear combination of the \boldsymbol{x}^{I}. By our statement about the dimension of $V_{K \mid h=0}$, the forms (6) must generate $V_{K \mid h=0}$, thus proving the lemma.

By Corollary 3.4 we may now conclude that V has a maximal common factor p_{0} of degree m. Thus proving Theorem 4.1.

5. The case when $s>r$

Now, we assume $S=k\left[x_{1}, \ldots, x_{s}\right]$. As before $W=\left(x_{1}, \ldots, x_{r}\right) \subseteq S_{1}$, a linear subspace and assume $s>r$. The monomial order is revlex. In this section we prove the following by induction on s.

Theorem 5.1. Let $V \subseteq S_{n+m}$ be a linear space such that

$$
\operatorname{gin}(V)=W^{n} x_{1}^{m} \subseteq S_{n+m}
$$

Then there exists a polynomial $p \in S_{m}$ and a linear subspace $W_{n} \subseteq S_{n}$ such that $V=W_{n} p$.

Assume V to be in general coordinates. Let $g: S_{1} \rightarrow S_{1}$ be a general coordinate change. Since $\operatorname{in}\left(g^{-1} \cdot V\right)=\left(x_{1}, \ldots, x_{r}\right)^{n} \cdot x_{1}^{m}$, by 1.3 it follows that $\operatorname{in}\left(g^{-1} \cdot V_{\mid x_{s}=0}\right)=$ $\left(x_{1}, \ldots, x_{r}\right)^{n} \cdot x_{1}^{m}$ also. By induction $g^{-1} \cdot V_{\mid x_{s}=0}$ has a common factor. By translating back, $V_{l g . x_{s}=0}$ also has a common factor (depending on g). The following expresses this in the algebraic language we use.

Lemma 5.2. There is a form p in $S_{K, m}$ such that \bar{p} in $S_{K \mid h=0}$ is a common factor of $V_{K \mid h=0}$. Furthermore, it is a common factor of maximal degree.

Proof. By 2.9.2 the generic initial ideal of $\Gamma_{K}^{-1}\left(V_{K}\right)_{\mid x_{s}=0}=\gamma_{K}(V)_{\mid x_{s}=0}$ is $\operatorname{gin}(V)_{\mid x_{s}=0}$ (over K). The latter is, by 1.3, seen to be

$$
\left(x_{1}, \ldots, x_{r}\right)^{n} \cdot x_{1}^{m}
$$

By induction there is a form \bar{p}_{1} in $S_{K, m \mid x_{s}=0}$ which is a common factor of $I_{K}^{-1}\left(V_{K}\right)_{\left.\right|_{s}=0}$. Now x_{1}^{m} is a common factor of $\operatorname{in}\left(\Gamma_{K}^{-1}\left(V_{K}\right)_{\left.\right|_{s}=0}\right)$ of maximal degree. Then \bar{p}_{1} must also have maximal degree as a common factor of $\Gamma_{K}^{-1}\left(V_{K}\right)_{\mid x_{s}=0}$. Lift this to a form p_{\mid} in $S_{K, m}$. Then $p=\Gamma_{K}\left(p_{1}\right)$ is the required form.

By Corollary 3.4 we may now conclude that V has a maximal common factor p_{0} of degree m. Thus proving Theorem 5.1.

6. An example

Consider the complete intersection of three quadratic forms in \mathbf{P}^{3}. Let $I \subseteq k\left[x_{1}, x_{2}\right.$, $\left.x_{3}, x_{4}\right]$ be its homogeneous ideal. We have the following facts.
(1) I and $\operatorname{gin}(I)$ have the same Hilbert functions.
(2) $\operatorname{gin}(I)$ is Borel-fixed. (See [2, Proposition 15.20].)
(3) Since I is saturated, by [4, Proposition 2.21] we have $\operatorname{gin}(I): x_{4}=\operatorname{gin}(I)$. This is really just the fact that $\operatorname{in}\left(I: x_{4}\right)=\operatorname{in}(I): x_{4}$ for the revlex order ($[2$, Proposition 15.12 b$]$), and that if I is in general coordinates and saturated then $I: x_{4}=I$.

These three facts imply that there are two possible candidates for $\operatorname{gin}(I)$:

$$
\begin{aligned}
& J^{(1)}=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}^{2}, x_{2} x_{3}^{2}, x_{3}^{4}\right), \\
& J^{(2)}=\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{4}\right)
\end{aligned}
$$

However, by the theorem above if $\operatorname{gin}(I)=J^{(2)}$ then the quadratic forms in $I_{2} \subseteq S_{2}$ would have to have a common factor. Impossible. Thus, $\operatorname{gin}(I)=J^{(1)}$. On the other hand, if I is an ideal with $\operatorname{gin}(I)=J^{(2)}$ then since the quadratic forms in I_{2} would have a common factor it must be the ideal of seven points in a plane plus one extra point not in the plane.

Note also the following. Let $>_{1}$ be the ordering of the monomials which is lexicographic in the three first variables, and then refined with the reverse lexicographic order with respect to the last variable, i.e.

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}}>x_{1}^{b_{1}} x_{2}^{b_{2}} x_{3}^{b_{3}} x_{4}^{b_{4}}
$$

if $a_{4}<b_{4}$, or $a_{4}=b_{4}$ and

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}}>x_{1}^{b_{1}} x_{2}^{b_{2}} x_{3}^{b_{3}}
$$

for the lexicographic order. Then, if the three forms are general it is easily seen that $\operatorname{gin}(I)=J^{(2)}$. In fact, it is not difficult to argue that one will always have $\operatorname{gin}(I)=J^{(2)}$ if you have a complete intersection of three forms and this order. Thus, both $J^{(1)}$ and $J^{(2)}$ are in fact specialisations of I.

Furthermore, it is not difficult to give an example of a complete intersection of three forms such that $\operatorname{in}(I)=J^{(2)}$ for the reverse lexicographic order. Thus, the fact that
one can read some interesting algebraic or geometric information from the initial ideal depends on the fact that you are looking at the generic initial ideal.

To sum up, $J^{(2)}$ is a specialisation of the ideal I of a complete intersection of three quadratic forms in general coordinates through the order $>_{1}$ given above. It is also the specialisation of an ideal I of a complete intersection of three quadratic forms through the revlex order, but it is never a specialisation of the ideal I of a complete intersection of three quadratic forms through the revlex order when the forms are in general coordinates.

References

[1] M. Cook, The connectedness of space curve invariants, Compositio Math., to appear.
[2] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Springer, Berlin, 1995.
[3] A. Galligo, A propos du théorème de préparation de Weierstrass, in: Fonctions de Plusieurs Variables Complexes, Lecture Notes in Mathematics, Springer, Berlin, 1974, pp. 543-579.
[4] M. Green, Generic Initial Ideals, Notes from Summer School on Commutative Algebra, Barcelona, July 1996.

[^0]: * E-mail: gunnar@mi.uib.no.

