European Journal of Combinatorics 33 (2012) 1303–1312

On the orientable regular embeddings of complete multipartite graphs

Jun-Yang Zhang^{a,b}, Shao-Fei Du^a

^a School of Mathematical Sciences, Capital Normal University, Beijing 100048, PR China ^b Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, PR China

ARTICLE INFO

Article history: Received 3 November 2011 Received in revised form 14 March 2012 Accepted 14 March 2012 Available online 12 April 2012

ABSTRACT

Let $K_{m[n]}$ be the complete multipartite graph with *m* parts, while each part contains *n* vertices. The regular embeddings of complete graphs $K_{m[1]}$ have been determined by Biggs (1971) [1], James and Jones (1985) [12] and Wilson (1989) [23]. During the past twenty years, several papers such as Du et al. (2007, 2010) [6,7], Jones et al. (2007, 2008) [14,15], Kwak and Kwon (2005, 2008) [16,17] and Nedela et al. (2002) [20] contributed to the regular embeddings of complete bipartite graphs $K_{2[n]}$ and the final classification was given by Jones [13] in 2010. Since then, the classification for general cases $m \ge 3$ and $n \ge 2$ has become an attractive topic in this area. In this paper, we deal with the orientable regular embeddings of $K_{m[n]}$ for $m \geq 3$. We in fact give a reduction theorem for the general classification, namely, we show that if $K_{m[n]}$ has an orientable regular embedding \mathcal{M} , then either m = p and $n = p^e$ for some prime $p \ge 5$ or m = 3 and the normal subgroup Aut⁺₀(\mathcal{M}) of Aut⁺(\mathcal{M}) preserving each part setwise is a direct product of a 3-subgroup Q and an abelian 3'-subgroup, where Q may be trivial. Moreover, we classify all the embeddings when m = 3 and $\operatorname{Aut}_{0}^{+}(\mathcal{M})$ is abelian. We hope that our reduction theorem might be the first necessary approach leading to the general classification.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A map is a 2-cell embedding of a connected graph into a closed surface. The embedded graph is called the underlying graph of the map. An automorphism of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. It is

E-mail addresses: zhjy106@126.com (J.-Y. Zhang), dushf@mail.cnu.edu.cn (S.-F. Du).

^{0195-6698/\$ -} see front matter © 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2012.03.030

well known that the automorphism group of a map acts freely on the set of flags (that is, triples of mutually incident *i*-cells, $0 \le i \le 2$). If it acts regularly, then the map is called *regular*.

For an embedding \mathcal{M} on orientable surface, we use Aut⁺(\mathcal{M}) to denote the group of all orientationpreserving automorphisms of \mathcal{M} . If Aut⁺(\mathcal{M}) acts regularly on the arcs, then we call \mathcal{M} an *orientable regular* map. Such maps fall into two classes: those that admit also orientation-reversing automorphisms, called *reflexible*, and those that do not, called *chiral*.

One of the central problems in topological graph theory is to classify all regular or orientable regular embeddings of a given class of graphs. In a general setting, the classification problem was treated by Gardiner et al. in [10]. However, for particular classes of graphs, it has been solved only in a few cases. Let $K_{m[n]}$ be the complete multipartite graph with m parts, while each part contains n vertices and two vertices are adjacent if and only if they belong to the different parts. All the regular embeddings of complete graphs $K_{m[1]}$ have been determined by Biggs, James and Jones [1,12] for orientable case and by Wilson [23] for nonorientable case. As for the complete bipartite graphs $K_{2[n]}$, the nonorientable regular embeddings of these graphs have recently been classified by Kwak and Kwon [18]; during the past twenty years, several papers [6,7,14–17,20] contributed to the orientable case, and the final classification was given by Jones [13] in 2010. Since then, the classification for general case $m \ge 3$ and $n \ge 2$ was started. The only known result is the determination of orientable regular embeddings of the graphs $K_{m[p]}$ (where p is a prime) given by Du et al. in [8].

In this paper, we shall focus on the orientable regular embeddings, which are simply called regular embeddings. In general, to classify the regular embeddings \mathcal{M} of a given graph, one has to first analyze the possible group structure of $\operatorname{Aut}^+(\mathcal{M})$. We have noted that in the classification of regular embeddings of $K_{2[n]}$, the key point is a determination of the so called isobicyclic groups $H = \langle x \rangle \langle y \rangle$, where |x| = |y| = n, $\langle x \rangle \cap \langle y \rangle = 1$ and $x^{\alpha} = y$ for an involution $\alpha \in \operatorname{Aut}(H)$. Therefore, to classify the regular embeddings of $K_{m[n]}$ for $m \geq 3$ and $n \geq 2$, one should first analyze the structure of $\operatorname{Aut}^+(\mathcal{M})$ and then obtain a reduction theorem. Basing on the reduction, one may eventually give the final classification. Our following main theorem might be the first necessary approach leading to the general classification.

Theorem 1.1. Let \mathcal{M} be an orientable regular embedding of $K_{m[n]}$ where $m \geq 3$ and $n \geq 2$, and let $\operatorname{Aut}_0^+(\mathcal{M})$ be the normal subgroup of $\operatorname{Aut}^+(\mathcal{M})$ consisting of automorphisms preserving each part setwise. Then $\operatorname{Aut}_0^+(\mathcal{M})$ is an isobicyclic group. Moreover, we have

- (1) if $m \ge 4$, then m = p and $n = p^e$ for some prime p; or
- (2) if m = 3, then $\operatorname{Aut}_0^+(\mathcal{M}) = Q \times K$, where Q is a 3-subgroup (may be trivial) and K is an abelian 3'-subgroup. In particular, when $\operatorname{Aut}_0^+(\mathcal{M})$ is abelian, there is only one such map if $3 \nmid n$ and there are three if $3 \mid n$.

The paper is organized as follows. After this introduction section, some notations, terminologies and preliminary results will be given in Section 2; some group theoretical results used later will be proved in Section 3; the cases $m \ge 4$ and m = 3 will be discussed in Sections 4 and 5, separately. Finally, the proof of Theorem 1.1 can be summarized immediately from Sections 4 and 5.

2. Preliminaries

Throughout this paper, all graphs are finite, simple and undirected. For a graph Γ , we use $V(\Gamma)$ and $E(\Gamma)$ to denote the vertex set and the edge set of Γ respectively. For any positive integer n, let $[n] = \{1, ..., n\}$. For two integers s and t, we use $gcd\{s, t\}$ to denote the great common divisor of them. For a finite group G and a positive integer s, let $G^s = \langle g^s | g \in G \rangle$. For a ring S, we use S^* to denote the multiplicative group of S. The center of a group G will be denoted by Z(G). The dihedral group of order n will be denoted by \mathbb{D}_n , and the cyclic group of order n as well as the integer residue ring modulo n will be denoted by \mathbb{Z}_n . When we denote the quotient group G/N by \overline{G} , we use the standard 'bar' convention, in which the overbar denotes the canonical homomorphism from G onto \overline{G} (thus $\overline{g} = gN$ and $\overline{H} = H/N$ for every element $g \in G$ and every subgroup H with $N \leq H \leq G$). For the notions not defined here, please refer [2,11,5].

It is well known that the automorphism group $G = \operatorname{Aut}^+(\mathcal{M})$ of a regular map is generated by a generator *a* of the stabilizer (which is necessarily cyclic) of a vertex, say γ and by an involution *b* inverting the direction of an edge incident with γ , see [10]. Moreover, the embedding is determined by the group *G* and the choice of generators *a* and *b* [19,9]. A regular map given by $G = \langle a, b \rangle$, with $b^2 = 1$, is called an *algebraic map* $\mathcal{M}(G; a, b)$. Two algebraic maps $\mathcal{M}(G; a, b)$ and $\mathcal{M}(G; a', b')$ are isomorphic if and only if there is a group automorphism in Aut(*G*) taking $a \mapsto a'$ and $b \mapsto b'$. If the order of *ab* and *a* are *s* and *t* respectively, then $\mathcal{M}(G; a, b)$ has type {*s*, *t*} in the notation of Coxeter and Moser [3], meaning that the faces are all *s*-gons and the vertices all have valency *t*.

Now we introduce some Propositions and Lemmas which will be used later.

Proposition 2.1 ([11, I.4.5]). Let G be a group and $H \leq G$. Then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).

Proposition 2.2 ([4]). Let p be an odd prime. Then

- (1) the maximal subgroups of the projective special linear group PSL(2, p) are: one class of subgroups isomorphic to $\mathbb{Z}_p \rtimes \mathbb{Z}_{\frac{p-1}{2}}$; one class isomorphic to \mathbb{D}_{p-1} , when $p \ge 13$; one class isomorphic to \mathbb{D}_{p+1} , when $p \ne 7$; two classes isomorphic to A_5 when $p \equiv \pm 1 \pmod{10}$; two classes isomorphic to S_4 , when $p \equiv \pm 1 \pmod{8}$; and one class isomorphic to A_4 , when p = 5 or $p \equiv 3$, 13, 27, 37 (mod 40) and $p \ge 5$.
- (2) the maximal subgroups of the projective general linear group PGL(2, p) are: one class of subgroups isomorphic to Z_p ⋊ Z_{p-1}; one class isomorphic to D_{2(p-1)}, when p ≥ 7; one class isomorphic to D_{2(p+1)}; one class isomorphic to S₄, when p = 5 or p ≡ 3, 13, 27, 37(mod 40) and p ≥ 5; and one subgroup PSL(2, p).

Lemma 2.3. Let p be a prime. Then we have the following conclusions:

- (1) If AGL(1, m) is isomorphic to a subgroup of GL(2, p) for a prime power $m \ge 3$, then either m = 3 or m = p;
- (2) If $N \leq H \leq GL(2, p)$ and $H/N \cong AGL(1, q)$ for some prime q, then p = q and N = Z(H).

Proof. Set Z = Z(GL(2, p)). Then GL(2, p)/Z = PGL(2, p)

(1) Let *K* be a subgroup of GL(2, *p*) isomorphic to AGL(1, *m*). Then *Z*(*K*) = 1 and hence $K \cap Z = 1$. It follows that $K \cong KZ/Z \leq G/Z$ and then AGL(1, *m*) \leq PGL(2, *p*). By checking Proposition 2.2, we have m = 3, 4, or *p*. Now we only need to show that $m \neq 4$. Suppose to the contrary that m = 4, then $K \cong A_4$. Clearly, *K* contains three elements of order 2, one of which is contained in SL(2, *p*). However, SL(2, *p*) contains only one involution, which is the center involution, a contradiction.

(2) Clearly,

 $NZ/Z \trianglelefteq HZ/Z \le PGL(2, p)$

and

 $(HZ/Z)/(NZ/Z) \cong H/N \cong AGL(1, q).$

Then by checking Proposition 2.2 again, we get $AGL(1, q) \cong HZ/Z \cong AGL(1, p)$. Therefore, q = p and Z(H) = N. \Box

Lemma 2.4. Let $G \cong \mathbb{Z}_{p^e} \times \mathbb{Z}_{p^d}$ where *p* is a prime and e > d. Then,

(1) Aut(G) is a 2-group when p = 2;

(2) every p'-subgroup of Aut(G) is abelian when p is odd.

Proof. Suppose that $G = \langle a \rangle \times \langle b \rangle$ where $|\langle a \rangle| = p^e$ and $|\langle b \rangle| = p^d$. One can check that the mapping defined by $a \mapsto a^i b^j$ and $b \mapsto a^k b^l$ for some $i, k \in \mathbb{Z}_{p^e}$ and $j, l \in \mathbb{Z}_{p^d}$ is an automorphism of G if and only if $gcd\{i, p\} = gcd\{l, p\} = 1$ and $p^{e-d} \mid k$. Then by the choices of i, j, k and l, we have $|Aut(G)| = p^{3d+e-2}(p-1)^2$.

Clearly, if p = 2, then Aut(*G*) is a 2-group. If *p* is odd, then Aut(*G*) has an abelian Hall *p*'-subgroup *F* which is contained in

 $\langle \alpha \in \operatorname{Aut}(G) \mid \alpha(a) = a^i, \alpha(b) = a^l, \operatorname{gcd}\{i, p\} = \operatorname{gcd}\{l, p\} = 1 \rangle.$

The theorem in [21, 9.1.10] tells us that every p'-subgroup of Aut(G) is contained in a conjugate of F and so it is abelian. \Box

3. Isobicycle groups

As mentioned before, if *H* is a group with cyclic subgroups $X = \langle x \rangle$ and $Y = \langle y \rangle$ of order *n* such that $H = XY, X \bigcap Y = 1$ and there is an automorphism α of *H* transposing *x* and *y*, then the group *H* or the triple (H, x, y) is said to be *n*-isobicyclic (or isobicyclic for brevity). In this section, by using some known results we shall deduce some properties of isobicyclic groups.

Lemma 3.1. Let (H, x, y) be a n-isobicyclic triple. Then H has a characteristic series

$$1 = H_0 < H_1 < \cdots < H_l = H$$

of subgroups $H_i = H^{s_i} = \langle x^{s_i} \rangle \langle y^{s_i} \rangle$ with $H_i/H_{i-1} \cong \mathbb{Z}_{p_i} \times \mathbb{Z}_{p_i}$ for all $i \in [l]$, where $p_1 \ge \cdots \ge p_l$ are the prime divisors of n and $s_i = n/(p_1 \cdots p_i)$.

Proof. We proceed the proof by induction on the order of *H*.

Suppose that *p* is the maximal prime divisor of *n* and *P* is a Sylow *p*-subgroup of *H*. A result of Wielandt [22] on products of nilpotent groups shows that $P \leq H$ and hence *P* is a characteristic subgroup of *H*. Since *P* is the unique Sylow *p*-subgroup of *H*, we have $P = H^{n/p^d}$ where p^d is the highest power of *p* dividing *n*. Noting that $\langle x^{n/p^d} \rangle \bigcap \langle y^{n/p^d} \rangle = 1$ and $|\langle x^{n/p^d} \rangle \langle y^{n/p^d} \rangle| = p^{2d} = |P|$, we have $P = H^{n/p^d} = \langle x^{n/p^d} \rangle \langle y^{n/p^d} \rangle$. Clearly, $(P, x^{n/p^d}, y^{n/p^d})$ is a p^d -isobicyclic triple. By Lemma 3 in [14], *P* has a central series $1 = Z_0 < Z_1 < Z_{d-1} < Z_d = P$ of subgroups $Z_i = \langle (x^{n/p^d})^{p^{d-i}} \rangle \langle (y^{n/p^d})^{p^{d-i}} \rangle = P^{p^{d-i}}$ with $Z_i/Z_{i-1} \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Now we consider the quotient group $\overline{H} = H/P$. By induction hypothesis, \overline{H} has a characteristic series

$$\overline{1} = \overline{N_0} < \overline{N_1} < \cdots < \overline{N_j} = \overline{H}$$

of subgroups $\overline{N_i} = \overline{H}^{t_i} = \langle \overline{x}^{t_i} \rangle \langle \overline{y}^{t_i} \rangle$ with $\overline{H_i} / \overline{H_{i-1}} \cong \mathbb{Z}_{q_i} \times \mathbb{Z}_{q_i}$ for all $i \in [j]$, where $q_1 \ge \cdots \ge q_j$ are the prime divisors of n/p^d and $t_i = n/p^d(q_1 \cdots q_i)$. Set

$$p_{i} = \begin{cases} p, & 0 \le i \le d; \\ q_{i-d}, & d < i \le d+j \end{cases} \text{ and } H_{i} = \begin{cases} Z_{i}, & 0 \le i \le d; \\ N_{i-d}, & d < i \le d+j \end{cases}$$

Then $p_1 \ge \cdots \ge p_{d+j}$ are the prime divisors of n. Write $s_i = n/(p_1 \cdots p_i)$. Then $H_i = H^{s_i} = \langle x^{s_i} \rangle \langle y^{s_i} \rangle$ and $1 = H_0 < H_1 < \cdots < H_{d+j} = H$ is a characteristic series of H with $H_i/H_{i-1} \cong \mathbb{Z}_{p_i} \times \mathbb{Z}_{p_i}$ for all $i \in [d+j]$. \Box

Lemma 3.2. Suppose that (H, x, y) is a n-isobicyclic triple and p is the maximal prime divisor of n. Let $L = H^{n/p}$. Then $H/C_H(L)$ is an isobicyclic group.

Proof. By Lemma 3.1, $L = \langle x^{n/p} \rangle \langle y^{n/p} \rangle = \langle x^{n/p} \rangle \times \langle y^{n/p} \rangle$. Let *t* be the minimal positive integer such that $x^t y^{n/p} = y^{n/p} x^t$. Since there is an automorphism α of *H* transposing *x* and *y*, we also have $y^t x^{n/p} = x^{n/p} y^t$. Hence $\langle x^t, y^t \rangle \leq C_H(L)$. On the other hand, taking any $x^i y^j \in C_H(L)$, from $x^i y^j x^{n/p} = x^{n/p} x^i y^j$, we obtain $y^j x^{n/p} = x^{n/p} y^j$. Let $d = \gcd\{t, j\}$. Then there exist two integers *m* and *k* such that d = mt + kj. Therefore

$$y^d x^{n/p} = y^{mt+kj} x^{n/p} = x^{n/p} y^{mt+kj} = x^{n/p} y^d.$$

By the minimality of *t*, we get t = d and then t|j. Symmetrically, t|i and hence $x^i y^j \in \langle x^t, y^t \rangle$. It follows that $C_H(L) = \langle x^t, y^t \rangle$.

1306

Set $\overline{H} = H/C_H(L)$. Noting that

$$|C_H(L)| = |\langle x^t, y^t \rangle| \ge |\langle x^t \rangle| |\langle y^t \rangle| = (n/t)^2,$$

we have

$$|\overline{H}| = |H|/|C_H(L)| \le t^2.$$

If $\overline{x}^i = \overline{y}^j$, then $x^i y^{-j} \in C_H(L) = \langle x^t, y^t \rangle$. It follows that t | i and t | j. Hence $\overline{x}^i = \overline{y}^j = \overline{1}$ and then $\langle \overline{x} \rangle \bigcap \langle \overline{y} \rangle = \overline{1}$. Since $|\langle \overline{x} \rangle| = |\langle \overline{y} \rangle| = t$, we have

$$|\overline{H}| \ge |\langle \overline{x} \rangle || \langle \overline{y} \rangle| = t^2.$$

Thus $|\overline{H}| = t^2$ and $\overline{H} = \langle \overline{x} \rangle \langle \overline{y} \rangle$. Since

$$\alpha(C_H(L)) = \alpha(\langle x^t, y^t \rangle) = \langle y^t, x^t \rangle = C_H(L),$$

we have that α induces an automorphism of \overline{H} transporting \overline{x} and \overline{y} . Therefore, \overline{H} is an isobicyclic group. \Box

Lemma 3.3. GL(2, p) does not contain any subgroup M which is an extension of a nontrivial isobicyclic group by S_3 and has trivial center.

Proof. The Lemma is clear for p = 2. Now we assume p is an odd prime. Suppose to the contrary that GL(2, p) contains such a subgroup M. Since Z(M) = 1, we have $M \leq PGL(2, p)$. By checking Proposition 2.2, $M \cong S_4$. However, GL(2, p) does not contain any subgroup isomorphic to S_4 , a contradiction. \Box

An abelian group is said to be *homogeneous* if it is a direct product of some isomorphic cyclic groups, otherwise it is called *inhomogeneous*. The following result can be extracted from [14,6,7].

Proposition 3.4. Let (H, x, y) be a non-abelian p^e -isobicyclic triple. Then H/H' is an inhomogeneous abelian group of rank 2.

4. Case $m \ge 4$

The main result of this section is the following theorem.

Theorem 4.1. Let \mathcal{M} be a regular embedding of $K_{m[n]}$, where $m \ge 4$ and $n \ge 2$, and let $\operatorname{Aut}_0^+(\mathcal{M})$ be the kernel of $\operatorname{Aut}^+(\mathcal{M})$ on the set of m parts. Then m = p and $n = p^e$ for some prime $p \ge 5$. Moreover, $Z(\operatorname{Aut}^+(\mathcal{M})) = 1$ and $\operatorname{Aut}_0^+(\mathcal{M})$ is a n-isobicyclic group.

Proof. To prove the theorem, set $\Gamma = K_{m[n]}$, with the vertex set.

$$V(\Gamma) = \bigcup_{i=1}^{m} \Delta_i$$
, where $\Delta_i = \{\gamma_{i1}, \gamma_{i2}, \dots, \gamma_{in}\}$

and the edges are all pairs $\{\gamma_{ij}, \gamma_{kl}\}$ of vertices with $i \neq k$. Then $Aut(\Gamma) = S_n \wr S_m$, which has blocks Δ_i for $1 \leq i \leq m$.

Set $\overline{H} = \operatorname{Aut}_0^+(\mathcal{M})$ and $G = \operatorname{Aut}^+(\mathcal{M}) = \langle a, b \rangle$, where $\langle a \rangle = G_{\gamma_{11}}$ and *b* reverses the arc $(\gamma_{11}, \gamma_{21})$. Let $x = a^{m-1}$ and $y = x^b$. Then $H = \langle x, y \rangle$. Write $\overline{G} = G/H$ and we use $\overline{\Gamma}$ to denote the quotient (block) graph of Γ induced by *H*. Clearly, $\overline{\Gamma} \cong K_m$.

Then we prove the theorem by the following four steps:

Step 1. Show that *m* is a prime power, $\overline{G} \cong AGL(1, m)$ and *H* is a *n*-isobicyclic group.

By considering the order of *G*, we know that $|H| = n^2$ and \overline{G} acts arc-regularly on $\overline{\Gamma}$. From the classification of regular embeddings of K_m , *m* is a prime power and $\overline{G} \cong AGL(1, m)$ (see [1,12]).

Since $\langle x \rangle \leq H_{\gamma_{11}}$ and $\langle y \rangle \leq H_{\gamma_{21}}$, we have $\langle x \rangle \bigcap \langle y \rangle = H_{(\gamma_{11},\gamma_{21})} = 1$. Noting that $x^b = y, y^b = x$ and $|\langle x \rangle || \langle y \rangle| = n^2 = |H|$, we have $H = \langle x \rangle \langle y \rangle$ is a *n*-isobicyclic group.

Step 2. Show that $C_G(H_i) = C_H(H_i)$ and $C_{G/H_i}(H/H_i) = Z(H/H_i)$, where $H_i = H^{s_i}$ for $s_i = n/(p_1 \cdots p_i)$ and $n = p_1 \cdots p_l$ where $p_1 \ge \cdots \ge p_l$ are primes.

Taking any $g \in G \setminus H$, there exists $k \in [m]$ such that $\Delta_k^g \neq \Delta_k$. Write $H_{\gamma_{k1}} = \langle z \rangle$. Clearly, (H, z, z^g) is a *n*-isobicyclic triple. By Lemma 3.1,

$$1 = H_0 < H_1 < \cdots < H_l = H$$

is a series of characteristic subgroups of H and $H_i = \langle z^{s_i} \rangle \langle (z^g)^{s_i} \rangle$ with $H_i/H_{i-1} \cong \mathbb{Z}_{p_i} \times \mathbb{Z}_{p_i}$ for all $i \in [l]$. Therefore $z^{s_i} \neq (z^{s_i})^g$ and $zH_i \neq z^gH_i$ for all $i \in [l]$. It follows that $g \notin C_G(H_i)$ and $gH_i \notin C_{G/H_i}(H/H_i)$, from which we have $C_G(H_i) = C_H(H_i)$ and $C_{G/H_i}(H/H_i) = Z(H/H_i)$.

Step 3. Show that m = p and Z(G) = 1 where p is the minimal prime divisor of n.

Let *p* is the minimal prime divisor of *n*. Set $N = H^p$. By Lemma 3.1, $N = \langle x^p \rangle \langle y^p \rangle$ is a characteristic subgroup of *H* with $H/N \cong \mathbb{Z}_p \times \mathbb{Z}_p$ and so $N \trianglelefteq G$. As shown in *Step* 2, $C_{G/N}(H/N) = Z(H/N) = H/N$. Then from Proposition 2.1, we have

$$\operatorname{AGL}(1, m) \cong G \cong (G/N)/(H/N) \lesssim \operatorname{Aut}(H/N) \cong \operatorname{GL}(2, p).$$

Now by Lemma 2.3.(1), we get m = p and then $\overline{G} \cong AGL(1, p)$.

Since $Z(\bar{G}) \cong Z(AGL(1, p)) = 1$, we have $Z(G) \leq H$. Suppose that $x^i y^j \in Z(G)$ for some $i, j \in [n]$. From $x = a^{m-1}$, we have $[y^j, a] = [x^i y^j, a] = 1$ and hence $(y^a)^j = (y^j)^a = y^j$. Noting that $\langle y \rangle \bigcap \langle y^a \rangle = 1$, we get j = n and then $x^i = x^i y^j \in Z(G)$. Since $x^{-i} y^i = [x^i, b] = 1$, we get $x^i = y^i \in \langle x \rangle \bigcap \langle y \rangle = 1$ and then i = n. Therefore Z(G) = 1.

Step 4. Show that $n = p^e$ for some *e*.

By Step 3, m = p is the minimal prime divisor of n. Let q be the maximal prime divisor of n and set $J = H^{n/q}$. By Lemma 3.1, $J \cong \mathbb{Z}_q \times \mathbb{Z}_q$ is a characteristic subgroup of H and then $J \trianglelefteq G$. Set $L = C_G(J)$. Then the Step 2 implies that $L = C_H(J)$. By Proposition 2.1, $G/L \lesssim \text{Aut}(J) \cong \text{GL}(2, q)$. On the other hand, $(G/L)/(H/L) \cong G/H \cong \text{AGL}(1, p)$. By Lemma 2.3.(2), we have q = p, that is, $n = p^e$ for some integer e. \Box

Remark 4.2. It is easy to see from the proof that the conclusions in Steps 1–3 of Theorem 4.1 hold for m = 3 as well.

Proposition 4.3. For each pair of admissible parameters (p, p^e) , there exists at least one regular embedding of $K_{p[p^e]}$.

Proof. We prove the proposition by constructing a family of regular embeddings of $K_{p[p^e]}$ as follows. Suppose that $p \ge 5$ is a prime. We identify $\mathbb{Z}_{p^{e+1}}$ with the set

$$\{0, 1, 2, \ldots, p^{e+1} - 1\}.$$

Let

$$\Delta_i = \{ jp + i | j = 0, 1, 2, \dots, p^e - 1 \} \text{ for } i = 0, 1, \dots, p - 1.$$

Then we have $\mathbb{Z}_{p^{e+1}} = \Delta_0 \bigcup \Delta_1 \bigcup \cdots \bigcup \Delta_{p-1}$. Now we identify the vertex set of $K_{p[p^e]}$ with $\mathbb{Z}_{p^{e+1}}$ and its edge set with $\mathbb{E} = \{\{\alpha, \beta\} \mid \alpha, \beta \in \mathbb{Z}_{p^{e+1}}, p \nmid \alpha - \beta\}$. Clearly, $\Delta_0, \Delta_1, \ldots, \Delta_{p-1}$ are the *p* parts of $K_{p[p^e]}$.

Let

$$G = \mathbb{Z}_{p^{e+1}} \rtimes \mathbb{Z}_{p^{e+1}}^* = \{ (\pi, \tau) \mid \pi \in \mathbb{Z}_{p^{e+1}}, \tau \in \mathbb{Z}_{p^{e+1}}^* \},\$$

and $(\pi, \tau)(\mu, \nu) = (\pi \nu + \mu, \tau \nu)$, for all $(\pi, \tau), (\mu, \nu) \in G$. Then define an action of G on $\mathbb{Z}_{p^{e+1}}$ by $\alpha^{(\pi,\tau)} = \alpha \tau + \pi$ for all $\alpha \in \mathbb{Z}_{p^{e+1}}$ and $(\pi, \tau) \in G$. It is easy to verify that this is indeed an faithful action of G on $\mathbb{Z}_{p^{e+1}}$. Noting that

 $p \nmid \alpha - \beta \Leftrightarrow p \nmid (\alpha \tau + \pi) - (\beta \tau + \pi) \Leftrightarrow p \nmid \alpha^{(\pi, \tau)} - \beta^{(\pi, \tau)}$

for all $(\pi, \tau) \in G$, we have

$$\{\alpha,\beta\}\in \mathsf{E}\Leftrightarrow\{\alpha^{(\pi,\tau)},\beta^{(\pi,\tau)}\}\in\mathsf{E},$$

and hence G is a subgroup of $Aut(K_{p[p^e]})$.

1308

It is well known that $\mathbb{Z}_{p^{e+1}}^*$ is a cyclic group of order $p^e(p-1)$. Set $\mathbb{Z}_{p^{e+1}}^* = \langle \theta \rangle$ for some $\theta \in \mathbb{Z}_{p^{e+1}}^*$. Let $a = (0, \theta)$, b = (1, -1). Clearly $0^a = 0$, $0^b = 1$ and $1^b = 0$, moreover $\langle a \rangle$ cyclically permutes the elements of $\mathbb{Z}_{n^{e+1}}^*$. Noting that $\{0, 1\} \in E$ and $\mathbb{Z}_{n^{e+1}}^*$ is the neighborhood of 0, we have $\langle a, b \rangle$ is an arc-transitive subgroup of Aut($K_{p[p^e]}$). Since the number of arcs of $K_{p[p^e]}$ is $p^{2e+1}(p-1)$, we have $|\langle a, b \rangle| \ge p^{2e+1}(p-1)$. Clearly $|G| = p^{2e+1}(p-1)$, and hence we have $G = \langle a, b \rangle$ is an arc-regular subgroup of Aut($K_{p[p^e]}$) with cyclic vertex stabilizer $G_0 = \langle a \rangle$. Set $\mathcal{M}_{\theta} = \mathcal{M}(G; a, b)$. Then \mathcal{M}_{θ} is a regular embedding of $K_{p[p^e]}$.

Proposition 4.4. The genus of \mathcal{M}_{θ} in Proposition 4.3 is

$$g(\mathcal{M}_{\theta}) = \begin{cases} 1 + \frac{p^{e+1}(p^{e+1} - p^e - 4)}{4}, & p \equiv 1 \pmod{4}; \\ 1 + \frac{p^{e+1}(p^{e+1} - p^e - 6)}{4}, & p \equiv 3 \pmod{4}. \end{cases}$$

Proof. Since $ab = (0, \theta)(1, -1) = (1, -\theta)$ and the identity of *G* is (0, 1), we get

$$(ab)^{n} = (1, -\theta)^{n} = (1 - \theta + \dots + (-\theta)^{n-1}, (-\theta)^{n}) = \left(\frac{1 - (-\theta)^{n}}{1 + \theta}, (-\theta)^{n}\right).$$

Therefore, $(ab)^n = (0, 1) \Leftrightarrow (-\theta)^n = 1$, which implies that *ab* and $-\theta$ have the same order. Noting that

$$(-\theta)^{\frac{p^{e}(p-1)}{2}} = (-1)^{\frac{p^{e}(p-1)}{2}} \theta^{\frac{p^{e}(p-1)}{2}} = -(-1)^{\frac{p^{e}(p-1)}{2}}$$

the order of *ab* is $p^e(p-1)$ for $p \equiv 1 \pmod{2}$ for $p \equiv 3 \pmod{4}$. It follows that the number of faces of \mathcal{M} is p^{e+1} for $p \equiv 1 \pmod{4}$; and $2p^{e+1}$ for $p \equiv 3 \pmod{4}$. Thus we get the desired formula for $g(\mathcal{M}_{\theta})$. \Box

5. Case m = 3

In this section we study the regular embeddings of $K_{3[n]}$. As before, set $\Gamma = K_{3[n]}$, with the vertex set $V(\Gamma) = \Delta_1 \bigcup \Delta_2 \bigcup \Delta_3$ where $\Delta_i = \{\gamma_{i1}, \gamma_{i2}, \dots, \gamma_{in}\}$ for $1 \le i \le 3$ and the edges are all pairs $\{\gamma_{ii}, \gamma_{kl}\}$ of vertices with $i \neq k$.

Suppose that \mathcal{M} is a regular embedding of $K_{3[n]}$, where $n \geq 2$. Let $\operatorname{Aut}_0^+(\mathcal{M})$ be the kernel of Aut⁺(\mathcal{M}) on the set of three parts. As before, write $G = \text{Aut}^+(\mathcal{M})$ and $H = \text{Aut}^+_0(\mathcal{M})$. Let $G = \langle a, b \rangle$, where $\langle a \rangle = G_{\gamma_{11}}$ and b reverses the arc $(\gamma_{11}, \gamma_{21})$. Set $x = a^2$ and $y = x^b$. Then by Remark 4.2, $H = \langle x, y \rangle$ is an *n*-isobicyclic group. Moreover, we have the following theorem.

Theorem 5.1. If $n = 3^e k$ with e > 0 and $3 \nmid k$, then $H = Q \times K$, where Q is a 3^e -isobicyclic group and *K* is an abelian *k*-isobicyclic group.

Proof. We prove the theorem by the following two steps:

Step 1. Show that H is nilpotent.

Set $n = p_1 \cdots p_l$ where $p_1 \ge \cdots \ge p_l$ are the prime divisors of *n*. Let H_i and s_i be defined as in Lemma 3.1. Then $1 = H_0 < H_1 < \cdots < H_{l-1} < H_l = H$ is a series of characteristic subgroups of H and hence $H_i \leq G$ for all $i \in [l]$. Consider the quotient graphs $(K_{3[n]})_{H_{i-1}}$ as well as the quotient maps $\mathcal{M}_{H_{i-1}}$ induced by the normal subgroups H_{i-1} for all $i \in [l]$. Then $(K_{3[n]})_{H_{i-1}} \cong K_{3[s_{i-1}]}$ (here we set $s_0 = n$) and Aut $(\mathcal{M}_{H_{i-1}}) \cong G/H_{i-1}$. From Remark 4.2, we know

$$Z(G/H_{i-1}) = 1$$
 and $C_{G/H_{i-1}}(H_i/H_{i-1}) = C_{H/H_{i-1}}(H_i/H_{i-1}).$

Then by Proposition 2.1, we have

$$(G/H_{i-1})/C_{H/H_{i-1}}(H_i/H_{i-1}) = (G/H_{i-1})/C_{G/H_{i-1}}(H_i/H_{i-1}) \lesssim \operatorname{Aut}(H_i/H_{i-1}) \cong \operatorname{GL}(2, p_i).$$

If $C_{H/H_{i-1}}(H_i/H_{i-1}) < H/H_{i-1}$, then by Lemma 3.2, $(H/H_{i-1})/C_{H/H_{i-1}}(H_i/H_{i-1})$ is a nontrivial isobicyclic group. Since $(G/H_{i-1})/(H_i/H_{i-1}) \cong G/H \cong S_3$, we have $(G/H_{i-1})/C_{H/H_{i-1}}(H_i/H_{i-1})$ is an extension of a nontrivial isobicyclic group by S_3 , which contradicts to Lemma 3.3. Therefore, $C_{H/H_{i-1}}(H_i/H_{i-1}) = H/H_{i-1}$ and then we get a central series of H, namely the series

$$1 = H_0 < H_1 < \cdots < H_{l-1} < H_l = H.$$

It follows that *H* is a nilpotent group.

Step 2. Show that the Hall 3'-subgroup of H is abelian.

Write $H = Q \times K$ where Q and K are the Sylow 3-subgroup and Hall 3'-subgroup of H respectively. Suppose to the contrary that K is nonabelian. Then there exists a prime divisor p of n such that the Sylow p-subgroup P of H is nonabelian. Clearly, both P and P' are normal subgroups of G. Consider the quotient group $\overline{G} = G/P'$. Since H is a nilpotent group and \overline{P} is an abelian Sylow p-subgroup of \overline{H} , we get $\overline{H} \leq C_{\overline{G}}(\overline{P})$. Taking any element $c \in G \setminus H$, there exists $1 \leq i \leq 3$ such that $\Delta_i^c \neq \Delta_i$. Set $H_{i1} = \langle z \rangle$, we have (H, z, z^c) is a n-isobicyclic triple. Let $n = sp^d$ where $gcd\{s, p\} = 1$. Then $P = \langle z^s, (z^s)^c \rangle$ is a p^d -isobicyclic group. By Lemma 3.3, \overline{P} is an inhomogeneous abelian group generated by two elements. Hence we have $\overline{z}^s \neq (\overline{z}^s)^{\overline{c}}$, which implies that $\overline{c} \notin C_{\overline{G}}(\overline{P})$. It follows that $C_{\overline{G}}(\overline{P}) \leq \overline{H}$ and hence $\overline{H} = C_{\overline{C}}(\overline{P})$. By Proposition 2.1, we have

 $S_3 \cong G/H \cong (\overline{G})/(\overline{H}) \lesssim \operatorname{Aut}(\overline{P}),$

which contradicts to Lemma 2.4.

If *H* is abelian, then we have the following lemma.

Lemma 5.2. Suppose that H is abelian. Then G has one of the following presentations

$$\begin{aligned} G &= G(n,k) = \langle a,b \mid a^{2n} = b^2 = 1, a^2 = x, x^b = y, [x,y] = 1, \\ y^a &= x^{-1}y^{-1}, (ab)^3 = x^{\frac{kn}{3}}y^{-\frac{kn}{3}} \rangle, \end{aligned}$$

where k = 0 if $3 \nmid n$ and k = 0 or 1 if $3 \mid n$, and \mathcal{M} is isomorphic to one of the maps

$$\mathcal{M}(n, k, j) = \mathcal{M}(G(n, k); a^{j}, b),$$

where (k, j) = (0, 1) for $3 \nmid n$ and (k, j) = (0, 1), (1, 1) or (1, -1) for $3 \mid n$. Moreover, $\mathcal{M}(n, k, j)$ has the type $\{3, 2n\}$ if k = 0 and $\{9, 2n\}$ if k = 1.

Proof. We prove the lemma by the following two steps:

Step 1. Determine the presentation of G.

Write c = ab. Since $H \leq G$ and $c^3 \in H$, we can set

 $y^a = x^s y^t$ and $c^3 = x^u y^v$

where s, t, u and v are integers to be determined. Since

$$x^{c} = x^{ab} = x^{b} = y$$
 and $y^{c} = y^{ab} = (x^{s}y^{t})^{b} = x^{t}y^{s}$,

we have

$$x^{c^3} = y^{c^2} = (x^t y^s)^c = y^t (x^t y^s)^s = x^{st} y^{t+s^2}.$$

On the other hand, $c^3 = x^u y^v$ implies that $x^{c^3} = x^{x^u y^v} = x$. Therefore,

 $st \equiv 1 \pmod{n}$ and $t + s^2 \equiv 0 \pmod{n}$.

Then from

$$x^{t}y^{s} = y^{c} = x^{c^{-1}x^{u}y^{v}} = x^{c^{-1}} = x^{ba^{-1}} = y^{a^{-1}} = y^{a^{-1}} = y^{a} = x^{s}y^{t},$$

we have $s \equiv t \equiv -1 \pmod{n}$ and hence $y^a = x^{-1}y^{-1}$. Noting that $x^u y^v = (x^u y^v)^c = y^u (x^{-1}y^{-1})^v = x^{-v}y^{u-v}$, we get

 $u \equiv -v \pmod{n}$ and $v \equiv u - v \pmod{n}$.

Then $3u \equiv -3v \equiv 0 \pmod{n}$, that is, $u \equiv v \equiv 0 \pmod{n}$ if $3 \nmid n$ and $u \equiv -v \equiv \frac{kn}{3} \pmod{n}$ where k = 0, 1, 2 if $3 \mid n$.

Now we set

$$G(n,k) = \langle a, b \mid a^{2n} = b^2 = 1, a^2 = x, x^b = y, [x, y] = 1, y^a = x^{-1}y^{-1}, (ab)^3 = x^{\frac{kn}{3}}y^{-\frac{kn}{3}} \rangle,$$

where k = 0 if $3 \nmid n$ and k = 0, 1, 2 if $3 \mid n$. Then $G(n, k) \leq G$. It is straightforward to check that $|G(n, k)| = 6n^2 = |G|$. Thus we have G = G(n, k).

If 3 | n and $(ab)^3 = x^{\frac{2n}{3}}y^{-\frac{2n}{3}}$, then

$$(a^{-1}b)^3 = b(ab)^{-3}b = b(x^{\frac{2n}{3}}y^{-\frac{2n}{3}})^{-1}b = x^{\frac{2n}{3}}y^{-\frac{2n}{3}} = (x^{-1})^{\frac{n}{3}}(y^{-1})^{-\frac{n}{3}}.$$

It follows that

$$G(n, 2) = \langle a^{-1}, b \mid (a^{-1})^{2n} = b^2 = 1, (a^{-1})^2 = x^{-1}, (x^{-1})^b = y^{-1}, [x^{-1}, y^{-1}] = 1,$$

$$(y^{-1})^a = (x^{-1})^{-1} (y^{-1})^{-1}, (a^{-1}b)^3 = (x^{-1})^{\frac{n}{3}} (y^{-1})^{-\frac{n}{3}} \rangle,$$

from which we have $G(n, 2) \cong G(n, 1)$. Therefore, we get the desired presentation of *G*. *Step* 2. Determine \mathcal{M} .

Recalling that $G_{\gamma_{11}} = \langle a \rangle$ and *b* reverses the arc $(\gamma_{11}, \gamma_{21})$, we know $\mathcal{M} = \mathcal{M}(G, a^i, b)$ for some $j \in [2n]$ with gcd $\{j, 2n\} = 1$. Write i = (j - 1)/2. Then $a^j = (a^2)^{(j-1)/2}a = x^i a$. It follows that

$$(y^j)^{a^j} = (y^{a^j})^j = (y^{x^i a})^j = (y^a)^j = (x^j)^{-1} (y^j)^{-1}$$

and

$$(a^{j}b)^{3} = (x^{i}c)^{3} = c(x^{i})^{c}x^{i}cx^{i}c = cy^{i}x^{i}cx^{i}c = c^{2}(y^{i}x^{i})^{c}x^{i}c = c^{2}x^{-i}y^{-i}y^{i}x^{i}c = c^{3}.$$

If 3|n, then the equality $gcd\{j, 2n\} = 1$ implies that $j \equiv 1$ or 5 (mod 6). It follows that

$$n/3 \equiv jn/3 \pmod{n}$$
 or $n/3 \equiv -jn/3 \pmod{n}$.

Therefore we have

$$\begin{cases} (a^{j}b)^{3} = 0, & k = 0; \\ (a^{j}b)^{3} = (x^{j})^{n/3}(y^{j})^{-n/3}, & k = 1 \text{ and } j \equiv 1 \pmod{6}; \\ (a^{j}b)^{3} = (x^{j})^{-n/3}(y^{j})^{n/3}, & k = 1 \text{ and } j \equiv 5 \pmod{6}. \end{cases}$$

Basing on the above paragraph, one may check that the following two arguments hold.

- 1. The mapping $a^j \mapsto a, b \mapsto b$ can be extended to an automorphism of *G* when G = G(n, 0) or G = G(n, 1) and $j \equiv 1 \pmod{6}$;
- 2. The mapping $a^j \mapsto a^{-1}$, $b \mapsto b$ can be extended to an automorphism of *G* when G = G(n, 1) and $j \equiv 5 \pmod{6}$.

Therefore \mathcal{M} is isomorphic to one of the maps

$$\mathcal{M}(n, k, j) = \mathcal{M}(G(n, k); a^{j}, b),$$

where (k, j) = (0, 1) for $3 \nmid n$ and (k, j) = (0, 1), (1, 1) or (1, -1) for $3 \mid n$. Clearly, the type of $\mathcal{M}(n, k, j)$ is $\{3, 2n\}$ if k = 0 and $\{9, 2n\}$ if k = 1. Thus the map $\mathcal{M}(n, 0, 1)$ is different from $\mathcal{M}(n, 1, 1)$ and $\mathcal{M}(n, 1, -1)$ up to map isomorphism. Now we prove that $\mathcal{M}(n, 1, 1)$ is not isomorphic to $\mathcal{M}(n, 1, -1)$. Suppose to the contrary that $\mathcal{M}(n, 1, 1) \cong \mathcal{M}(n, 1, -1)$. Then there exists $\phi \in Aut(G(n, 1))$ such that $\phi(a) = a^{-1}$ and $\phi(b) = b$ and hence

$$\phi(c^3) = [\phi(c)]^3 = [\phi(a)\phi(b)]^3 = (a^{-1}b)^3 = c^3 = x^{n/3}y^{-n/3}$$

On the other hand, since

$$\phi(x) = \phi(a^2) = a^{-2} = x^{-1}$$
 and $\phi(y) = \phi(x^b) = (x^{-1})^b = y^{-1}$,

we have

1

$$\phi(c^3) = \phi(x^{n/3}y^{-n/3}) = x^{-n/3}y^{n/3}.$$

Therefore, $x^{n/3}y^{-n/3} = x^{-n/3}y^{n/3}$. It follows that $n/3 \equiv -n/3 \pmod{n}$, a contradiction. Thus we have $\mathcal{M}(n, 1, 1)$ is not isomorphic to $\mathcal{M}(n, 1, -1)$.

Acknowledgments

The authors thank the referees for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China and Natural Science Foundation of Beijing.

References

- [1] N.L. Biggs, Classification of complete maps on orientable surfaces, Rend. Math. 4 (6) (1971) 132-138.
- [2] N.L. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993.
- [3] H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, fourth ed., Springer, Berlin, 1984.
- [4] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Dover Publ., Leipzig, 1901, 1958.
- [5] J.D. Dixon, B. Mortimer, Permutation Groups, in: Graduate Texts in Mathematics, vol. 163, Springer, New York, 1996. [6] S.F. Du, G.A. Jones, J.H. Kwak, R. Nedela, M. Škoviera, Regular embeddings of $K_{n,n}$ where n is a power of 2. I: metacyclic case, European J. Combin. 28 (2007) 1595-1609.
- [7] S.F. Du, G.A. Jones, J.H. Kwak, R. Nedela, M. Škoviera, Regular embeddings of $K_{n,n}$ where n is a power of 2. II: the nonmetacyclic case, European J. Combin. 31 (2010) 1946-1956.
- [8] S.F. Du, J.H. Kwak, R. Nedela, Regular embeddings of complete multipartite graphs, European J. Combin. 26 (2005) 505-519.
- [9] S.F. Du, J.H. Kwak, R. Nedela, Regular maps with pq vertices, J. Algebraic Combin. 19 (2004) 123-141.
- [10] A. Gardiner, R. Nedela, J. Širán, M. Škoviera, Characterization of graphs which underlie regular maps on closed surfaces, I. Lond. Math. Soc. 59 (1999) 100-108.
- [11] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- [12] L.D. James, G.A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory Ser. B 39 (1985) 353-367.
- [13] G.A. Jones, Regular embeddings of complete bipartite graphs: classification and enumeration, Proc. Lond. Math. Soc. 101 (2010) 427-453.
- [14] G.A. Jones, R. Nedela, M. Škoviera, Regular embeddings of $K_{n,n}$ where n is an odd prime power, European J. Combin. 28 (2007) 1863-1875.
- [15] G.A. Jones, R. Nedela, M. Škoviera, Complete bipartite graphs with a unique regular embedding, J. Combin. Theory Ser. B 98 (2008) 241-248.
- [16] J.H. Kwak, Y.S. Kwon, Regular orientable embeddings of complete bipartite graphs, J. Graph Theory 50 (2005) 105-122.
- [17] J.H. Kwak, Y.S. Kwon, Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs, Discrete Math. 308 (2008) 2156-2166.
- [18] J.H. Kwak, Y.S. Kwon, Classification of nonorientable regular embeddings of complete bipartite graphs, J. Combin. Theory Ser. B 101 (2011) 191–205.
- [19] R. Nedela, M. Škoviera, Exponents of orientable maps, Proc. London Math. Soc. 75 (1997) 1-31.
- [20] R. Nedela, M. Škoviera, A. Zlatoš, Regular embeddings of complete bipartite graphs, Discrete Math. 258 (2002) 379–381.
- [21] D.J.S. Robinson, A course in the theory of group, second ed., in: Graduate Texts in Mathematics, vol. 80, Springer, New York, 2003.
- [22] H. Wielandt, Uber das produkt von paarweise abelschen gruppen, Math. Z. 62 (1955) 1-7.
- [23] S.E. Wilson, Cantankerous maps and rotary embeddings of K_n, J. Combin. Theory Ser. B 47 (1989) 262–273.

1312