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a b s t r a c t

Let Km[n] be the complete multipartite graph with m parts, while
each part contains n vertices. The regular embeddings of complete
graphs Km[1] have been determined by Biggs (1971) [1], James and
Jones (1985) [12] and Wilson (1989) [23]. During the past twenty
years, several papers such as Du et al. (2007, 2010) [6,7], Jones et al.
(2007, 2008) [14,15], Kwak and Kwon (2005, 2008) [16,17] and
Nedela et al. (2002) [20] contributed to the regular embeddings
of complete bipartite graphs K2[n] and the final classification was
given by Jones [13] in 2010. Since then, the classification for general
cases m ≥ 3 and n ≥ 2 has become an attractive topic in this
area. In this paper, we deal with the orientable regular embeddings
of Km[n] for m ≥ 3. We in fact give a reduction theorem for
the general classification, namely, we show that if Km[n] has an
orientable regular embeddingM, then eitherm = p and n = pe for
some prime p ≥ 5 or m = 3 and the normal subgroup Aut+0 (M)
of Aut+(M) preserving each part setwise is a direct product of
a 3-subgroup Q and an abelian 3′-subgroup, where Q may be
trivial. Moreover, we classify all the embeddings when m = 3 and
Aut+0 (M) is abelian. We hope that our reduction theoremmight be
the first necessary approach leading to the general classification.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A map is a 2-cell embedding of a connected graph into a closed surface. The embedded graph
is called the underlying graph of the map. An automorphism of a map is an automorphism of the
underlying graph which can be extended to a self-homeomorphism of the supporting surface. It is
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well known that the automorphism group of a map acts freely on the set of flags (that is, triples of
mutually incident i-cells, 0 ≤ i ≤ 2). If it acts regularly, then the map is called regular.

For an embeddingM on orientable surface, we use Aut+(M) to denote the group of all orientation-
preserving automorphisms of M. If Aut+(M) acts regularly on the arcs, then we call M an
orientable regular map. Such maps fall into two classes: those that admit also orientation-reversing
automorphisms, called reflexible, and those that do not, called chiral.

One of the central problems in topological graph theory is to classify all regular or orientable regular
embeddings of a given class of graphs. In a general setting, the classification problem was treated by
Gardiner et al. in [10]. However, for particular classes of graphs, it has been solved only in a few cases.
Let Km[n] be the completemultipartite graphwithm parts, while each part contains n vertices and two
vertices are adjacent if and only if they belong to the different parts. All the regular embeddings of
complete graphs Km[1] have been determined by Biggs, James and Jones [1,12] for orientable case and
by Wilson [23] for nonorientable case. As for the complete bipartite graphs K2[n], the nonorientable
regular embeddings of these graphs have recently been classified by Kwak and Kwon [18]; during
the past twenty years, several papers [6,7,14–17,20] contributed to the orientable case, and the final
classification was given by Jones [13] in 2010. Since then, the classification for general case m ≥ 3
and n ≥ 2 was started. The only known result is the determination of orientable regular embeddings
of the graphs Km[p] (where p is a prime) given by Du et al. in [8].

In this paper, we shall focus on the orientable regular embeddings, which are simply called regular
embeddings. In general, to classify the regular embeddings M of a given graph, one has to first
analyze the possible group structure of Aut+(M). We have noted that in the classification of regular
embeddings of K2[n], the key point is a determination of the so called isobicyclic groups H = ⟨x⟩⟨y⟩,
where |x| = |y| = n, ⟨x⟩ ∩ ⟨y⟩ = 1 and xα

= y for an involution α ∈ Aut(H). Therefore, to classify
the regular embeddings of Km[n] for m ≥ 3 and n ≥ 2, one should first analyze the structure of
Aut+(M) and then obtain a reduction theorem. Basing on the reduction, one may eventually give the
final classification. Our following main theorem might be the first necessary approach leading to the
general classification.

Theorem 1.1. Let M be an orientable regular embedding of Km[n] where m ≥ 3 and n ≥ 2, and let
Aut+0 (M) be the normal subgroup of Aut+(M) consisting of automorphisms preserving each part setwise.
Then Aut+0 (M) is an isobicyclic group. Moreover, we have

(1) if m ≥ 4, then m = p and n = pe for some prime p; or
(2) if m = 3, then Aut+0 (M) = Q × K , where Q is a 3-subgroup (may be trivial) and K is an abelian

3′-subgroup. In particular, when Aut+0 (M) is abelian, there is only one such map if 3 - n and there are
three if 3 | n.

The paper is organized as follows. After this introduction section, some notations, terminologies
and preliminary results will be given in Section 2; some group theoretical results used later will be
proved in Section 3; the cases m ≥ 4 and m = 3 will be discussed in Sections 4 and 5, separately.
Finally, the proof of Theorem 1.1 can be summarized immediately from Sections 4 and 5.

2. Preliminaries

Throughout this paper, all graphs are finite, simple and undirected. For a graph Γ , we use V(Γ )
and E(Γ ) to denote the vertex set and the edge set of Γ respectively. For any positive integer n, let
[n] = {1, . . . , n}. For two integers s and t , we use gcd{s, t} to denote the great common divisor of
them. For a finite group G and a positive integer s, let Gs

= ⟨g s
|g ∈ G⟩. For a ring S, we use S∗ to

denote the multiplicative group of S. The center of a group G will be denoted by Z(G). The dihedral
group of order n will be denoted by Dn, and the cyclic group of order n as well as the integer residue
ring modulo n will be denoted by Zn. When we denote the quotient group G/N by G, we use the
standard ‘bar’ convention, in which the overbar denotes the canonical homomorphism from G onto G
(thus g = gN and H = H/N for every element g ∈ G and every subgroup H with N ≤ H ≤ G). For the
notions not defined here, please refer [2,11,5].
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It is well known that the automorphism group G = Aut+(M) of a regular map is generated by
a generator a of the stabilizer (which is necessarily cyclic) of a vertex, say γ and by an involution b
inverting the direction of an edge incident with γ , see [10]. Moreover, the embedding is determined
by the group G and the choice of generators a and b [19,9]. A regular map given by G = ⟨a, b⟩, with
b2 = 1, is called an algebraic map M(G; a, b). Two algebraic maps M(G; a, b) and M(G; a′, b′) are
isomorphic if and only if there is a group automorphism in Aut(G) taking a → a′ and b → b′. If the
order of ab and a are s and t respectively, then M(G; a, b) has type {s, t} in the notation of Coxeter and
Moser [3], meaning that the faces are all s-gons and the vertices all have valency t .

Now we introduce some Propositions and Lemmas which will be used later.

Proposition 2.1 ([11, I.4.5]). Let G be a group and H ≤ G. Then NG(H)/CG(H) is isomorphic to a subgroup
of Aut(H).

Proposition 2.2 ([4]). Let p be an odd prime. Then

(1) the maximal subgroups of the projective special linear group PSL(2, p) are: one class of subgroups
isomorphic to Zp o Z p−1

2
; one class isomorphic to Dp−1, when p ≥ 13; one class isomorphic to Dp+1,

when p ≠ 7; two classes isomorphic to A5 when p ≡ ±1(mod 10); two classes isomorphic to S4,
when p ≡ ±1(mod 8); and one class isomorphic to A4, when p = 5 or p ≡ 3, 13, 27, 37(mod 40)
and p ≥ 5.

(2) the maximal subgroups of the projective general linear group PGL(2, p) are: one class of subgroups
isomorphic toZpoZp−1; one class isomorphic toD2(p−1), when p ≥ 7; one class isomorphic toD2(p+1);
one class isomorphic to S4, when p = 5 or p ≡ 3, 13, 27, 37(mod 40) and p ≥ 5; and one subgroup
PSL(2, p).

Lemma 2.3. Let p be a prime. Then we have the following conclusions:

(1) If AGL(1,m) is isomorphic to a subgroup of GL(2, p) for a prime power m ≥ 3, then either m = 3 or
m = p;

(2) If N E H E GL(2, p) and H/N ∼= AGL(1, q) for some prime q, then p = q and N = Z(H).

Proof. Set Z = Z(GL(2, p)). Then GL(2, p)/Z = PGL(2, p)
(1) Let K be a subgroup of GL(2, p) isomorphic to AGL(1,m). Then Z(K) = 1 and hence K


Z = 1. It

follows that K ∼= KZ/Z ≤ G/Z and then AGL(1,m) . PGL(2, p). By checking Proposition 2.2, we have
m = 3, 4, or p. Now we only need to show that m ≠ 4. Suppose to the contrary that m = 4, then
K ∼= A4. Clearly, K contains three elements of order 2, one of which is contained in SL(2, p). However,
SL(2, p) contains only one involution, which is the center involution, a contradiction.
(2) Clearly,

NZ/Z E HZ/Z ≤ PGL(2, p)

and

(HZ/Z)/(NZ/Z) ∼= H/N ∼= AGL(1, q).

Then by checking Proposition 2.2 again, we get AGL(1, q) ∼= HZ/Z ∼= AGL(1, p). Therefore, q = p and
Z(H) = N . �

Lemma 2.4. Let G ∼= Zpe × Zpd where p is a prime and e > d. Then,

(1) Aut(G) is a 2-group when p = 2;
(2) every p′-subgroup of Aut(G) is abelian when p is odd.

Proof. Suppose that G = ⟨a⟩ × ⟨b⟩ where |⟨a⟩| = pe and |⟨b⟩| = pd. One can check that the mapping
defined by a → aibj and b → akbl for some i, k ∈ Zpe and j, l ∈ Zpd is an automorphism of G
if and only if gcd{i, p} = gcd{l, p} = 1 and pe−d

| k. Then by the choices of i, j, k and l, we have
|Aut(G)| = p3d+e−2(p − 1)2.
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Clearly, if p = 2, then Aut(G) is a 2-group. If p is odd, then Aut(G) has an abelian Hall p′-subgroup
F which is contained in

⟨α ∈ Aut(G) | α(a) = ai, α(b) = al, gcd{i, p} = gcd{l, p} = 1⟩.

The theorem in [21, 9.1.10] tells us that every p′-subgroup of Aut(G) is contained in a conjugate of F
and so it is abelian. �

3. Isobicycle groups

As mentioned before, if H is a group with cyclic subgroups X = ⟨x⟩ and Y = ⟨y⟩ of order n such
that H = XY , X


Y = 1 and there is an automorphism α of H transposing x and y, then the group

H or the triple (H, x, y) is said to be n-isobicyclic (or isobicyclic for brevity). In this section, by using
some known results we shall deduce some properties of isobicyclic groups.

Lemma 3.1. Let (H, x, y) be a n-isobicyclic triple. Then H has a characteristic series

1 = H0 < H1 < · · · < Hl = H

of subgroups Hi = Hsi = ⟨xsi⟩⟨ysi⟩ with Hi/Hi−1 ∼= Zpi × Zpi for all i ∈ [l], where p1 ≥ · · · ≥ pl are the
prime divisors of n and si = n/(p1 · · · pi).

Proof. We proceed the proof by induction on the order of H .
Suppose that p is the maximal prime divisor of n and P is a Sylow p-subgroup of H . A result of

Wielandt [22] on products of nilpotent groups shows that P E H and hence P is a characteristic
subgroup of H . Since P is the unique Sylow p-subgroup of H , we have P = Hn/pd where pd is the
highest power of p dividing n. Noting that ⟨xn/p

d
⟩


⟨yn/p
d
⟩ = 1 and |⟨xn/p

d
⟩⟨yn/p

d
⟩| = p2d = |P|, we

have P = Hn/pd
= ⟨xn/p

d
⟩⟨yn/p

d
⟩. Clearly, (P, xn/p

d
, yn/p

d
) is a pd-isobicyclic triple. By Lemma3 in [14], P

has a central series 1 = Z0 < Z1 < Zd−1 < Zd = P of subgroups Zi = ⟨(xn/p
d
)p

d−i
⟩⟨(yn/p

d
)p

d−i
⟩ = Ppd−i

with Zi/Zi−1 ∼= Zp × Zp.
Now we consider the quotient group H = H/P . By induction hypothesis, H has a characteristic

series

1 = N0 < N1 < · · · < Nj = H

of subgroups Ni = H
ti

= ⟨xti⟩⟨yti⟩ with Hi/Hi−1 ∼= Zqi × Zqi for all i ∈ [j], where q1 ≥ · · · ≥ qj are the
prime divisors of n/pd and ti = n/pd(q1 · · · qi). Set

pi =


p, 0 ≤ i ≤ d;
qi−d, d < i ≤ d + j and Hi =


Zi, 0 ≤ i ≤ d;
Ni−d, d < i ≤ d + j.

Then p1 ≥ · · · ≥ pd+j are the prime divisors of n. Write si = n/(p1 · · · pi). Then Hi = Hsi = ⟨xsi⟩⟨ysi⟩
and 1 = H0 < H1 < · · · < Hd+j = H is a characteristic series of H with Hi/Hi−1 ∼= Zpi × Zpi for all
i ∈ [d + j]. �

Lemma 3.2. Suppose that (H, x, y) is a n-isobicyclic triple and p is the maximal prime divisor of n. Let
L = Hn/p. Then H/CH(L) is an isobicyclic group.

Proof. By Lemma 3.1, L = ⟨xn/p⟩⟨yn/p⟩ = ⟨xn/p⟩ × ⟨yn/p⟩. Let t be the minimal positive integer
such that xtyn/p = yn/pxt . Since there is an automorphism α of H transposing x and y, we also
have ytxn/p = xn/pyt . Hence ⟨xt , yt⟩ ≤ CH(L). On the other hand, taking any xiyj ∈ CH(L), from
xiyjxn/p = xn/pxiyj, we obtain yjxn/p = xn/pyj. Let d = gcd{t, j}. Then there exist two integers m
and k such that d = mt + kj. Therefore

ydxn/p = ymt+kjxn/p = xn/pymt+kj
= xn/pyd.

By theminimality of t , we get t = d and then t|j. Symmetrically, t|i and hence xiyj ∈ ⟨xt , yt⟩. It follows
that CH(L) = ⟨xt , yt⟩.
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Set H = H/CH(L). Noting that

|CH(L)| = |⟨xt , yt⟩| ≥ |⟨xt⟩∥⟨yt⟩| = (n/t)2,

we have

|H| = |H|/|CH(L)| ≤ t2.

If xi = yj, then xiy−j
∈ CH(L) = ⟨xt , yt⟩. It follows that t|i and t|j. Hence xi = yj = 1 and then

⟨x⟩


⟨y⟩ = 1. Since |⟨x⟩| = |⟨y⟩| = t , we have

|H| ≥ |⟨x⟩∥⟨y⟩| = t2.

Thus |H| = t2 and H = ⟨x⟩⟨y⟩. Since

α(CH(L)) = α(⟨xt , yt⟩) = ⟨yt , xt⟩ = CH(L),

we have that α induces an automorphism of H transporting x and y. Therefore, H is an isobicyclic
group. �

Lemma 3.3. GL(2, p) does not contain any subgroup M which is an extension of a nontrivial isobicyclic
group by S3 and has trivial center.

Proof. The Lemma is clear for p = 2. Now we assume p is an odd prime. Suppose to the contrary
that GL(2, p) contains such a subgroup M . Since Z(M) = 1, we have M . PGL(2, p). By checking
Proposition 2.2, M ∼= S4. However, GL(2, p) does not contain any subgroup isomorphic to S4,
a contradiction. �

An abelian group is said to be homogeneous if it is a direct product of some isomorphic cyclic groups,
otherwise it is called inhomogeneous. The following result can be extracted from [14,6,7].

Proposition 3.4. Let (H, x, y) be a non-abelian pe-isobicyclic triple. Then H/H ′ is an inhomogeneous
abelian group of rank 2.

4. Casem ≥ 4

The main result of this section is the following theorem.

Theorem 4.1. Let M be a regular embedding of Km[n], where m ≥ 4 and n ≥ 2, and let Aut+0 (M) be
the kernel of Aut+(M) on the set of m parts. Then m = p and n = pe for some prime p ≥ 5. Moreover,
Z(Aut+(M)) = 1 and Aut+0 (M) is a n-isobicyclic group.

Proof. To prove the theorem, set Γ = Km[n], with the vertex set.

V (Γ ) =

m
i=1

∆i, where ∆i = {γi1, γi2, . . . , γin}

and the edges are all pairs {γij, γkl} of vertices with i ≠ k. Then Aut(Γ ) = Sn ≀ Sm, which has blocks ∆i
for 1 ≤ i ≤ m.

Set H = Aut+0 (M) and G = Aut+(M) = ⟨a, b⟩, where ⟨a⟩ = Gγ11 and b reverses the arc (γ11, γ21).
Let x = am−1 and y = xb. Then H = ⟨x, y⟩. Write G = G/H and we use Γ to denote the quotient
(block) graph of Γ induced by H . Clearly, Γ ∼= Km.

Then we prove the theorem by the following four steps:
Step 1. Show thatm is a prime power, G ∼= AGL(1,m) and H is a n-isobicyclic group.

By considering the order of G, we know that |H| = n2 and G acts arc-regularly on Γ . From the
classification of regular embeddings of Km,m is a prime power and G ∼= AGL(1,m) (see [1,12]).

Since ⟨x⟩ ≤ Hγ11 and ⟨y⟩ ≤ Hγ21 , we have ⟨x⟩


⟨y⟩ = H(γ11,γ21) = 1. Noting that xb = y, yb = x
and |⟨x⟩∥⟨y⟩| = n2

= |H|, we have H = ⟨x⟩⟨y⟩ is a n-isobicyclic group.
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Step 2. Show that CG(Hi) = CH(Hi) and CG/Hi(H/Hi) = Z(H/Hi), where Hi = Hsi for si = n/(p1 · · · pi)
and n = p1 · · · pl where p1 ≥ · · · ≥ pl are primes.

Taking any g ∈ G \H , there exists k ∈ [m] such that ∆
g
k ≠ ∆k. Write Hγk1 = ⟨z⟩. Clearly, (H, z, zg)

is a n-isobicyclic triple. By Lemma 3.1,

1 = H0 < H1 < · · · < Hl = H

is a series of characteristic subgroups ofH andHi = ⟨zsi⟩⟨(zg)si⟩withHi/Hi−1 ∼= Zpi ×Zpi for all i ∈ [l].
Therefore zsi ≠ (zsi)g and zHi ≠ zgHi for all i ∈ [l]. It follows that g ∉ CG(Hi) and gHi ∉ CG/Hi(H/Hi),
from which we have CG(Hi) = CH(Hi) and CG/Hi(H/Hi) = Z(H/Hi).
Step 3. Show thatm = p and Z(G) = 1 where p is the minimal prime divisor of n.

Let p is the minimal prime divisor of n. Set N = Hp. By Lemma 3.1, N = ⟨xp⟩⟨yp⟩ is a characteristic
subgroup of H with H/N ∼= Zp × Zp and so N E G. As shown in Step 2, CG/N(H/N) = Z(H/N) = H/N .
Then from Proposition 2.1, we have

AGL(1,m) ∼= G ∼= (G/N)/(H/N) . Aut(H/N) ∼= GL(2, p).

Now by Lemma 2.3.(1), we getm = p and then G ∼= AGL(1, p).
Since Z(Ḡ) ∼= Z(AGL(1, p)) = 1, we have Z(G) ≤ H . Suppose that xiyj ∈ Z(G) for some

i, j ∈ [n]. From x = am−1, we have [yj, a] = [xiyj, a] = 1 and hence (ya)j = (yj)a = yj. Noting
that ⟨y⟩


⟨ya⟩ = 1, we get j = n and then xi = xiyj ∈ Z(G). Since x−iyi = [xi, b] = 1, we get

xi = yi ∈ ⟨x⟩


⟨y⟩ = 1 and then i = n. Therefore Z(G) = 1.
Step 4. Show that n = pe for some e.

By Step 3,m = p is the minimal prime divisor of n. Let q be the maximal prime divisor of n and set
J = Hn/q. By Lemma 3.1, J ∼= Zq × Zq is a characteristic subgroup of H and then J E G. Set L = CG(J).
Then the Step 2 implies that L = CH(J). By Proposition 2.1, G/L . Aut(J) ∼= GL(2, q). On the other
hand, (G/L)/(H/L) ∼= G/H ∼= AGL(1, p). By Lemma 2.3.(2), we have q = p, that is, n = pe for some
integer e. �

Remark 4.2. It is easy to see from the proof that the conclusions in Steps 1–3 of Theorem 4.1 hold for
m = 3 as well.

Proposition 4.3. For each pair of admissible parameters (p, pe), there exists at least one regular
embedding of Kp[pe].
Proof. We prove the proposition by constructing a family of regular embeddings of Kp[pe] as follows.

Suppose that p ≥ 5 is a prime. We identify Zpe+1 with the set

{0, 1, 2, . . . , pe+1
− 1}.

Let

∆i = {jp + i|j = 0, 1, 2, . . . , pe − 1} for i = 0, 1, . . . , p − 1.

Thenwe have Zpe+1 = ∆0


∆1


· · ·


∆p−1. Nowwe identify the vertex set of Kp[pe] with Zpe+1 and
its edge set with E = {{α, β} | α, β ∈ Zpe+1 , p - α − β}. Clearly, ∆0, ∆1, . . . , ∆p−1 are the p parts
of Kp[pe].

Let

G = Zpe+1 o Z∗

pe+1 = {(π, τ ) | π ∈ Zpe+1 , τ ∈ Z∗

pe+1},

and (π, τ )(µ, ν) = (πν + µ, τν), for all (π, τ ), (µ, ν) ∈ G. Then define an action of G on Zpe+1 by
α(π,τ )

= ατ + π for all α ∈ Zpe+1 and (π, τ ) ∈ G. It is easy to verify that this is indeed an faithful
action of G on Zpe+1 . Noting that

p - α − β ⇔ p - (ατ + π) − (βτ + π) ⇔ p - α(π,τ )
− β(π,τ )

for all (π, τ ) ∈ G, we have

{α, β} ∈ E ⇔ {α(π,τ ), β(π,τ )
} ∈ E,

and hence G is a subgroup of Aut(Kp[pe]).
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It is well known that Z∗

pe+1 is a cyclic group of order pe(p − 1). Set Z∗

pe+1 = ⟨θ⟩ for some θ ∈ Z∗

pe+1 .
Let a = (0, θ), b = (1, −1). Clearly 0a

= 0, 0b
= 1 and 1b

= 0, moreover ⟨a⟩ cyclically permutes
the elements of Z∗

pe+1 . Noting that {0, 1} ∈ E and Z∗

pe+1 is the neighborhood of 0, we have ⟨a, b⟩ is
an arc-transitive subgroup of Aut(Kp[pe]). Since the number of arcs of Kp[pe] is p2e+1(p − 1), we have
|⟨a, b⟩| ≥ p2e+1(p − 1). Clearly |G| = p2e+1(p − 1), and hence we have G = ⟨a, b⟩ is an arc-regular
subgroup of Aut(Kp[pe]) with cyclic vertex stabilizer G0 = ⟨a⟩.

Set Mθ = M(G; a, b). Then Mθ is a regular embedding of Kp[pe]. �

Proposition 4.4. The genus of Mθ in Proposition 4.3 is

g(Mθ ) =


1 +

pe+1(pe+1
− pe − 4)
4

, p ≡ 1 (mod4);

1 +
pe+1(pe+1

− pe − 6)
4

, p ≡ 3 (mod4).

Proof. Since ab = (0, θ)(1, −1) = (1, −θ) and the identity of G is (0, 1), we get

(ab)n = (1, −θ)n = (1 − θ + · · · + (−θ)n−1, (−θ)n) =


1 − (−θ)n

1 + θ
, (−θ)n


.

Therefore, (ab)n = (0, 1) ⇔ (−θ)n = 1, which implies that ab and −θ have the same order. Noting
that

(−θ)
pe(p−1)

2 = (−1)
pe(p−1)

2 θ
pe(p−1)

2 = −(−1)
pe(p−1)

2 ,

the order of ab is pe(p−1) for p ≡ 1 (mod4); and pe(p−1)
2 for p ≡ 3 (mod4). It follows that the number

of faces of M is pe+1 for p ≡ 1 (mod4); and 2pe+1 for p ≡ 3 (mod4). Thus we get the desired formula
for g(Mθ ). �

5. Casem = 3

In this section we study the regular embeddings of K3[n]. As before, set Γ = K3[n], with the vertex
set V (Γ ) = ∆1


∆2


∆3 where∆i = {γi1, γi2, . . . , γin} for 1 ≤ i ≤ 3 and the edges are all pairs

{γij, γkl} of vertices with i ≠ k.
Suppose that M is a regular embedding of K3[n], where n ≥ 2. Let Aut+0 (M) be the kernel of

Aut+(M) on the set of three parts. As before, write G = Aut+(M) and H = Aut+0 (M). Let G = ⟨a, b⟩,
where ⟨a⟩ = Gγ11 and b reverses the arc (γ11, γ21). Set x = a2 and y = xb. Then by Remark 4.2,
H = ⟨x, y⟩ is an n-isobicyclic group. Moreover, we have the following theorem.

Theorem 5.1. If n = 3ek with e ≥ 0 and 3 - k, then H = Q × K, where Q is a 3e-isobicyclic group and
K is an abelian k-isobicyclic group.

Proof. We prove the theorem by the following two steps:
Step 1. Show that H is nilpotent.

Set n = p1 · · · pl where p1 ≥ · · · ≥ pl are the prime divisors of n. Let Hi and si be defined as in
Lemma 3.1. Then 1 = H0 < H1 < · · · < Hl−1 < Hl = H is a series of characteristic subgroups of H
and hence Hi E G for all i ∈ [l]. Consider the quotient graphs (K3[n])Hi−1 as well as the quotient maps
MHi−1 induced by the normal subgroups Hi−1 for all i ∈ [l]. Then (K3[n])Hi−1

∼= K3[si−1] (here we set
s0 = n) and Aut(MHi−1)

∼= G/Hi−1. From Remark 4.2, we know

Z(G/Hi−1) = 1 and CG/Hi−1(Hi/Hi−1) = CH/Hi−1(Hi/Hi−1).

Then by Proposition 2.1, we have

(G/Hi−1)/CH/Hi−1(Hi/Hi−1) = (G/Hi−1)/CG/Hi−1(Hi/Hi−1)

. Aut(Hi/Hi−1) ∼= GL(2, pi).
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If CH/Hi−1(Hi/Hi−1) < H/Hi−1, then by Lemma 3.2, (H/Hi−1)/CH/Hi−1(Hi/Hi−1) is a nontrivial
isobicyclic group. Since (G/Hi−1)/(Hi/Hi−1) ∼= G/H ∼= S3, we have (G/Hi−1)/CH/Hi−1(Hi/Hi−1) is
an extension of a nontrivial isobicyclic group by S3, which contradicts to Lemma 3.3. Therefore,
CH/Hi−1(Hi/Hi−1) = H/Hi−1 and then we get a central series of H , namely the series

1 = H0 < H1 < · · · < Hl−1 < Hl = H.

It follows that H is a nilpotent group.
Step 2. Show that the Hall 3′-subgroup of H is abelian.

WriteH = Q ×K whereQ and K are the Sylow 3-subgroup and Hall 3′-subgroup ofH respectively.
Suppose to the contrary that K is nonabelian. Then there exists a prime divisor p of n such that the
Sylow p-subgroup P of H is nonabelian. Clearly, both P and P ′ are normal subgroups of G. Consider
the quotient group G = G/P ′. Since H is a nilpotent group and P is an abelian Sylow p-subgroup of
H , we get H ≤ CG(P). Taking any element c ∈ G \ H , there exists 1 ≤ i ≤ 3 such that ∆c

i ≠ ∆i.
Set Hi1 = ⟨z⟩, we have (H, z, zc) is a n-isobicyclic triple. Let n = spd where gcd{s, p} = 1. Then
P = ⟨zs, (zs)c⟩ is a pd-isobicyclic group. By Lemma3.3, P is an inhomogeneous abelian group generated
by two elements. Hence we have zs ≠ (zs)c , which implies that c ∉ CG(P). It follows that CG(P) ≤ H
and hence H = CG(P). By Proposition 2.1, we have

S3 ∼= G/H ∼= (G)/(H) . Aut(P),

which contradicts to Lemma 2.4. �

If H is abelian, then we have the following lemma.

Lemma 5.2. Suppose that H is abelian. Then G has one of the following presentations

G = G(n, k) = ⟨a, b | a2n = b2 = 1, a2 = x, xb = y, [x, y] = 1,

ya = x−1y−1, (ab)3 = x
kn
3 y−

kn
3 ⟩,

where k = 0 if 3 - n and k = 0 or 1 if 3 | n, and M is isomorphic to one of the maps

M(n, k, j) = M(G(n, k); aj, b),

where (k, j) = (0, 1) for 3 - n and (k, j) = (0, 1), (1, 1) or (1, −1) for 3 | n. Moreover, M(n, k, j) has
the type {3, 2n} if k = 0 and {9, 2n} if k = 1.

Proof. We prove the lemma by the following two steps:
Step 1. Determine the presentation of G.

Write c = ab. Since H E G and c3 ∈ H , we can set

ya = xsyt and c3 = xuyv

where s, t , u and v are integers to be determined. Since

xc = xab = xb = y and yc = yab = (xsyt)b = xtys,

we have

xc
3

= yc
2

= (xtys)c = yt(xtys)s = xstyt+s2 .

On the other hand, c3 = xuyv implies that xc
3

= xx
uyv

= x. Therefore,

st ≡ 1 (mod n) and t + s2 ≡ 0 (mod n).

Then from

xtys = yc = xc
2

= xc
−1xuyv

= xc
−1

= xba
−1

= ya
−1

= yx
−1a

= ya = xsyt ,

we have s ≡ t ≡ −1 (mod n) and hence ya = x−1y−1.
Noting that xuyv

= (xuyv)c = yu(x−1y−1)v = x−vyu−v , we get

u ≡ −v (mod n) and v ≡ u − v (mod n).



J.-Y. Zhang, S.-F. Du / European Journal of Combinatorics 33 (2012) 1303–1312 1311

Then 3u ≡ −3v ≡ 0 (mod n), that is, u ≡ v ≡ 0 (mod n) if 3 - n and u ≡ −v ≡
kn
3 (mod n) where

k = 0, 1, 2 if 3 | n.
Now we set

G(n, k) = ⟨a, b | a2n = b2 = 1, a2 = x, xb = y, [x, y] = 1, ya = x−1y−1, (ab)3 = x
kn
3 y−

kn
3 ⟩,

where k = 0 if 3 - n and k = 0, 1, 2 if 3 | n. Then G(n, k) ≤ G. It is straightforward to check that
|G(n, k)| = 6n2

= |G|. Thus we have G = G(n, k).
If 3 | n and (ab)3 = x

2n
3 y−

2n
3 , then

(a−1b)3 = b(ab)−3b = b(x
2n
3 y−

2n
3 )−1b = x

2n
3 y−

2n
3 = (x−1)

n
3 (y−1)−

n
3 .

It follows that

G(n, 2) = ⟨a−1, b | (a−1)2n = b2 = 1, (a−1)2 = x−1, (x−1)b = y−1, [x−1, y−1
] = 1,

(y−1)a = (x−1)−1(y−1)−1, (a−1b)3 = (x−1)
n
3 (y−1)−

n
3 ⟩,

from which we have G(n, 2) ∼= G(n, 1). Therefore, we get the desired presentation of G.
Step 2. Determine M.

Recalling that Gγ11 = ⟨a⟩ and b reverses the arc (γ11, γ21), we know M = M(G, aj, b) for some
j ∈ [2n] with gcd{j, 2n} = 1. Write i = (j − 1)/2. Then aj = (a2)(j−1)/2a = xia. It follows that

(yj)a
j
= (ya

j
)j = (yx

ia)j = (ya)j = (xj)−1(yj)−1

and

(ajb)3 = (xic)3 = c(xi)cxicxic = cyixicxic = c2(yixi)cxic = c2x−iy−iyixic = c3.

If 3|n, then the equality gcd{j, 2n} = 1 implies that j ≡ 1 or 5 (mod 6). It follows that

n/3 ≡ jn/3 (mod n) or n/3 ≡ −jn/3 (mod n).

Therefore we have
(ajb)3 = 0, k = 0;

(ajb)3 = (xj)n/3(yj)−n/3, k = 1 and j ≡ 1 (mod 6);

(ajb)3 = (xj)−n/3(yj)n/3, k = 1 and j ≡ 5 (mod 6).

Basing on the above paragraph, one may check that the following two arguments hold.

1. The mapping aj → a, b → b can be extended to an automorphism of G when G = G(n, 0) or
G = G(n, 1) and j ≡ 1 (mod 6);

2. The mapping aj → a−1, b → b can be extended to an automorphism of G when G = G(n, 1) and
j ≡ 5 (mod 6).

Therefore M is isomorphic to one of the maps

M(n, k, j) = M(G(n, k); aj, b),

where (k, j) = (0, 1) for 3 - n and (k, j) = (0, 1), (1, 1) or (1, −1) for 3 | n. Clearly, the type
of M(n, k, j) is {3, 2n} if k = 0 and {9, 2n} if k = 1. Thus the map M(n, 0, 1) is different from
M(n, 1, 1) andM(n, 1, −1) up tomap isomorphism. Nowwe prove thatM(n, 1, 1) is not isomorphic
to M(n, 1, −1). Suppose to the contrary that M(n, 1, 1) ∼= M(n, 1, −1). Then there exists φ ∈

Aut(G(n, 1)) such that φ(a) = a−1 and φ(b) = b and hence

φ(c3) = [φ(c)]3 = [φ(a)φ(b)]3 = (a−1b)3 = c3 = xn/3y−n/3.

On the other hand, since

φ(x) = φ(a2) = a−2
= x−1 and φ(y) = φ(xb) = (x−1)b = y−1,
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we have

φ(c3) = φ(xn/3y−n/3) = x−n/3yn/3.

Therefore, xn/3y−n/3
= x−n/3yn/3. It follows that n/3 ≡ −n/3 (mod n), a contradiction. Thus we have

M(n, 1, 1) is not isomorphic to M(n, 1, −1). �
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