Description of extended eigenvalues and extended eigenvectors of integration operators on the Wiener algebra

M. Gürdal
Department of Mathematics, Suleyman Demirel University, 32260 Isparta, Turkey

Received 2 February 2008; received in revised form 17 September 2008

Abstract

In the present paper we consider the Volterra integration operator V on the Wiener algebra $W(D)$ of analytic functions on the unit disc D of the complex plane \mathbb{C}. A complex number λ is called an extended eigenvalue of V if there exists a nonzero operator A satisfying the equation $AV = \lambda VA$. We prove that the set of all extended eigenvalues of V is precisely the set $\mathbb{C}\setminus\{0\}$, and describe in terms of Duhamel operators and composition operators the set of corresponding extended eigenvectors of V. The similar result for some weighted shift operator on ℓ_p spaces is also obtained.

© 2008 Elsevier GmbH. All rights reserved.

MSC 2000: primary 47A15; 47A65; secondary 47B38

Keywords: Wiener algebra; Volterra integration operator; Extended eigenvalue; Extended eigenvector; Duhamel product; Weighted shift operator

1. Introduction and background

Denote by $\mathcal{B}(X)$ the algebra of all bounded linear operators on a Banach space X. Let $C \in \mathcal{B}(X)$ be a fixed operator. It can be happen that there are nonzero operators $A, B \in \mathcal{B}(X)$ such that

$$AC = CB.$$ \hspace{1cm} (1)
If we denote by \mathcal{E}_C the set of all A for which there exists an operator B satisfying (1), then it is easy to see that \mathcal{E}_C is an algebra. Furthermore, one can define the map $\Phi_C : \mathcal{E}_C \to \mathcal{B}(X)$ by $\Phi_C(A) = B$. One can easily see that Φ_C is an algebra homomorphism, and it can be verified that (see [1]) it is in fact a closed (generally unbounded) linear transformation.

When $B = \lambda A$, for some complex number λ, Eq. (1) becomes

$$AC = \lambda CA.$$ \hspace{1cm} (2)

Clearly, a pair (A, λ) in $\mathcal{B}(X) \setminus \{0\} \times \mathbb{C}$ satisfies (2) if and only if λ is an eigenvalue for Φ_C and A is an eigenvector for Φ_C. Following[1], an eigenvalue of Φ_C will be referred to as an extended eigenvalue of C.

One knows that, when $\lambda = 1$, Eq. (2) can be used to obtain information about the operator A based on the properties of the operator C. In particular, a famous result of Lomonosov [8] asserts that if C is compact then A must have a nontrivial hyperinvariant subspace, that is the whole commutant $\{C\}'$ of C has a common nontrivial invariant subspace. Later, it was shown independently by Brown [2] and Kim et al. [9] that if C is compact and A satisfies (2), for any number $\lambda \in \mathbb{C}$, then A has a nontrivial hyperinvariant subspace. This extension naturally leads to the question as to whether there is an algebra \mathcal{A} that properly contains $\{C\}'$ and which, under specific conditions, has an invariant subspace. Such an algebra has been introduced by Lambert and Petrovic [7] and it was shown that it contains not only those operators that commute with C but also operators that satisfy (2) for some $|\lambda| \leq 1$. (For the related results see also [10,5].) Furthermore, if C is a compact operator, then this algebra has a nontrivial invariant subspace. Certainly, if $\mathcal{A} = \{C\}'$ this is just Lomonosov’s theorem. Therefore, it is of interest to find out whether the inclusion

$$\{C\}' \subset \mathcal{A}$$ \hspace{1cm} (3)

is proper. It was established by Lambert and Petrovic [7] that this happens when the spectral radius of A is positive. Thus, it remains to consider the case in which C is compact and quasinilpotent.

A first step in this direction was made by Biswas et al. [1] by showing that inclusion (3) is proper when C is a specific compact, quasinilpotent operator (i.e., Volterra operator). More precisely, for $X = L^2(0, 1)$ and $C = V$, where V is the Volterra integration operator on $L^2(0, 1)$, defined by

$$(Vf)(x) = \int_0^x f(t) \, dt.$$

It was shown in [1] that the set of all extended eigenvalues of V is precisely the set $(0, \infty)$ and for each such extended eigenvalue λ, the corresponding eigenvector can be found in the class of integral operators. It is easy to show that not all such extended eigenvectors A commute with V. Independently, Karaev [4] has obtained the same result in somewhat strengthened form. Unfortunately, this line of attack is not universally available. Namely, Shkarin [11] has shown that there are Volterra operators on a separable Hilbert space with no extended eigenvalues except $\lambda = 1$.

In this article we consider the Volterra integration operator \(V \), \((Vf)(z) = \int_0^z f(t) \, dt\), on the Wiener algebra

\[
W(\mathbb{D}) := \left\{ f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in \operatorname{Hol}(\mathbb{D}) : \|f\| := \sum_{n=0}^{\infty} |\hat{f}(n)| < \infty \right\}
\]

over the unit disc \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \), where \(\hat{f}(n) = f^{(n)}(0)/n! \) is the \(n \)th Taylor coefficient of \(f \). We prove that the set of extended eigenvalues of \(V \) is precisely the set \(\mathbb{C} \setminus \{0\} \), and describe in terms of Duhamel operators and composition operators the set of corresponding eigenvectors of \(V \).

Recall that for \(f, g \in \operatorname{Hol}(\mathbb{D}) \) their Duhamel product is defined by

\[
(f \circ g)(z) := \frac{d}{dz} \int_0^z f(z-t)g(t) \, dt = \int_0^z f'(z-t)g(t) \, dt + f(0)g(z),
\]

where the integrals are taken over the segment joining the points 0 and \(z \). It is easy to see that the Duhamel product satisfies all the axioms of multiplication, \(\operatorname{Hol}(\mathbb{D}) \) is an algebra with respect to \(\circ \) as well, and the function \(f(z) \equiv 1 \) is the unit element of the algebra \((\operatorname{Hol}(\mathbb{D}), \circ) \) (see [12]). An operator \(\mathscr{D}_f, \mathscr{D}_f g := f \circ g \), is called as the Duhamel operator on \(W(\mathbb{D}) \).

2. Extended eigenvalues and extended eigenvectors of \(V \)

In this section we describe the sets of extended eigenvalues and extended eigenvectors of the Volterra integration operator \(V \) on the Wiener algebra \(W(\mathbb{D}) \).

Note that if \(f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in W(\mathbb{D}) \), then

\[
Vf(z) = \int_0^z f(t) \, dt = \hat{f}(0)z + \frac{\hat{f}(1)}{2} z^2 + \frac{\hat{f}(2)}{3} z^3 + \cdots.
\]

From this it is clear that if \(Vf(z) = 0 \), then

\[
\hat{f}(0) = \hat{f}(1) = \hat{f}(2) = \cdots = 0,
\]

that is \(f = 0 \), which shows that \(\ker V = \{0\} \). This shows that \(\lambda = 0 \) is not an extended eigenvalues of the operator \(V \). Therefore, the set of all extended eigenvalues of \(V \) lies in \(\mathbb{C} \setminus \{0\} \). The following our result shows that the set of extended eigenvalues of \(V \) is precisely the set \(\mathbb{C} \setminus \{0\} \). We also describe the corresponding extended eigenvectors of \(V \).

Theorem 1. Let \(\lambda \in \mathbb{C} \setminus \{0\} \), and let \(A \in \mathcal{B}(W(\mathbb{D})) \) be a nonzero operator.

(a) If \(|\lambda| \leq 1 \), then \(VA = \lambda AV \) if and only if an operator \(A \) has the form \(AC_\lambda = \mathscr{D}_A1 \), where \(\mathscr{D}_A1 \) is the Duhamel operator in \(W(\mathbb{D}) \) and \((C_\lambda f)(z) = f(\lambda z) \) is a composition operator in \(W(\mathbb{D}) \).
(b) If $|\lambda| > 1$, then $VA = \lambda AV$ if and only if $A = D_{A1} C1_{\lambda}$; i.e.,

$$Af(z) = \frac{d}{dz} \int_{0}^{z} (A1)(z - t)f\left(\frac{t}{\lambda}\right) \, dt, \; f \in W(\mathbb{D}).$$

Proof.

(a) It is clear from (4) that

$$V^n f = \frac{z^n}{n!} \odot f, \; f \in W(\mathbb{D}), \quad (5)$$

$n = 0, 1, 2, \ldots$. Let $VA = \lambda AV$. Then

$$\lambda^n AV^n = V^n A$$

for each $n \geq 0$, that is

$$\lambda^n AV^n f = V^n Af$$

for all $f \in W(\mathbb{D})$, in particular,

$$\lambda^n AV^n 1 = V^n A1$$

for each $n \geq 0$. By considering (5), from this we have

$$A \left(\frac{(\lambda z)^n}{n!} \odot 1\right) = \left(A1 \odot \frac{z^n}{n!}\right)$$

or

$$\frac{1}{n!} A(\lambda z)^n = \frac{1}{n!} A1 \odot z^n,$$

which shows that

$$Ap(\lambda z) = A1 \odot p(z)$$

for all polynomials $p \in \mathcal{P}$. Since the set \mathcal{P} is dense in $W(\mathbb{D})$ and $(W(\mathbb{D}), \odot)$ is a Banach algebra (see, for instance, [3,6]), from the last equality we obtain that

$$Af(\lambda z) = A1 \odot f(z)$$

for all $f \in W(\mathbb{D})$. Therefore, $AC_{\lambda} f = D_{A1} f$ for all $f \in W(\mathbb{D})$, and hence $AC_{\lambda} = D_{A1}$.

Conversely if $AC_{\lambda} = D_{A1}$, then we have for each polynomial $p \in \mathcal{P}$ that

$$VAp(z) = VAC_{\lambda} p\left(\frac{z}{\lambda}\right) = V D_{A1} p\left(\frac{z}{\lambda}\right) = D_{A1} Vp\left(\frac{z}{\lambda}\right) = AC_{\lambda} Vp\left(\frac{z}{\lambda}\right)$$

$$= AC_{\lambda} \left(z \odot p\left(\frac{z}{\lambda}\right)\right) = \lambda AC_{\lambda} \left(\frac{z}{\lambda} \odot p\left(\frac{z}{\lambda}\right)\right) = \lambda AC_{\lambda} (Vp)\left(\frac{z}{\lambda}\right) = \lambda AVp(z)$$

thus

$$VAp(z) = \lambda AVp(z)$$
for all polynomials p, and hence
\[VAf = \lambda AVf \]
for all $f \in W(D)$. Therefore,
\[VA = \lambda AV, \]
which proves (a).

(b) Suppose that $\lambda AV = VA$. Then,
\[\frac{1}{\lambda} VA = AV \]
and hence
\[\frac{1}{\lambda^n} V^n A = AV^n \tag{6} \]
for all $n \geq 0$. By the same arguments, using (6) we can prove that (see the proof of (a))
\[Af(z) = A1 \otimes f \left(\frac{z}{\lambda} \right) \]
for all $f \in W(D)$, which implies that
\[A = \mathcal{D}_{A1} C_{1/\lambda}, \]
that is
\[Af(z) = \frac{d}{dz} \int_0^z (A1)(z - t)f \left(\frac{t}{\lambda} \right) dt \]
as desired.

On the other hand, let us now show that an operator A of the form $A = \mathcal{D}_{A1} C_{1/\lambda}$ satisfies the equation
\[\lambda AV = VA. \]
Indeed, for every $f \in W(D)$ we have that
\[
(AVf)(z) = (\mathcal{D}_{A1} C_{1/\lambda} Vf)(z) = \mathcal{D}_{A1}(Vf) \left(\frac{z}{\lambda} \right) \\
= A1 \otimes (Vf) \left(\frac{z}{\lambda} \right) = A1 \otimes \left(\frac{z}{\lambda} \otimes f \left(\frac{z}{\lambda} \right) \right) \\
= \frac{z}{\lambda} \otimes \left(A1 \otimes f \left(\frac{z}{\lambda} \right) \right) = \frac{z}{\lambda} \otimes \mathcal{D}_{A1} C_{1/\lambda} f(z) \\
= \frac{1}{\lambda} V \mathcal{D}_{A1} C_{1/\lambda} f(z) = \frac{1}{\lambda} VAf(z),
\]
which completes the proof of (b). Theorem 1 is proved. \[\Box \]
Corollary 1. \(\{V\}' = \{\mathcal{D}_f : f \in W(\mathbb{D})\} \), i.e., the commutant of the Volterra integration operator \(V \in \mathcal{B}(W(\mathbb{D})) \) is the set of all Duhamel operators on \(W(\mathbb{D}) \).

Taking into account that the Duhamel product is commutative, via Corollary 1 we have that
\[
\{V\}'' = \{V\}',
\]
where \(\{V\}'' \) denotes the bicommutant of \(V \).

Recall that a composition operator \(C_\theta \), acting in the Wiener algebra \(W(\mathbb{D}) \) (which is a subalgebra of the disc algebra \(C_A(\mathbb{D}) \)), is defined as
\[
(C_\theta f)(z) = (f \circ \theta)(z) = f(\theta(z)),
\]
where \(\theta : \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}} \) be a suitable analytic function. In the following corollary we are interested in determining whether a composition operator can be an extended eigenvector of \(V \). (Obviously \(C_\lambda = C_{\lambda z} \) and \(C_{1/\lambda} = C_{z/\lambda} \).)

Corollary 2. The composition operator \(C_\theta \) is the solution of the equation
\[
VA = \lambda AV,
\]
where \(|\lambda| \geq 1 \), if and only if \(\theta(z) = z/\lambda \).

Proof. Obviously \(C_\theta 1 = 1 \). Then according to assertion (b) of Theorem 1, we have that
\[
VC_\theta = \lambda C_\theta V
\]
if and only if
\[
C_\theta f(z) = \frac{d}{dz} \int_0^z f\left(\frac{t}{\lambda}\right) dt = f\left(\frac{z}{\lambda}\right) = C_{1/\lambda} f(z)
\]
for all \(f \in W(\mathbb{D}) \), which implies that \(C_\theta = C_{1/\lambda} \), that is \(\theta(z) = z/\lambda \). The proof of the corollary is completed. \(\square \)

It turns out that Corollary 2 describes the only situation in which a composition operator \(C_\theta \) can satisfy
\[
VC_\theta = \lambda C_\theta V.
\]
In fact, suppose that \(VC_\theta = \lambda C_\theta V \) for some \(\lambda \), \(0 < |\lambda| < 1 \). Then, according to assertion (a) of Theorem 1, we have that
\[
C_\theta C_\lambda = \mathcal{D}_\theta 1 = \mathcal{D}_1 = I,
\]
where \(I \) is an identity operator in \(W(\mathbb{D}) \), which implies that \(C_\theta C_\lambda z = z \), that is \(C_\theta(\lambda z) = z \), or \(\lambda \theta(z) = z \), and hence \(\theta(z) = z/\lambda \). Therefore,
\[
|\theta(1)| = \left|\frac{1}{\lambda}\right| > 1,
\]
which contradicts \(\theta(1) \in \overline{\mathbb{D}} \).
In conclusion note that the method used above for the Volterra operator acting on the Wiener algebra applies also to other classes of operators, like some weighted shifts on ℓ_p spaces, for instance. Indeed, let us consider the weighted shift operator $T e_n = 1/(n+1)e_{n+1}$, $n \geq 0$, on the sequence space ℓ_p ($1 \leq p < \infty$), where $\{e_n\}$ is the standard basis of ℓ_p. For the arbitrarily chosen elements $x = \sum_{n=0}^{\infty} x_n e_n$ and $y = \sum_{n=0}^{\infty} y_n e_n$ of the space ℓ_p, let us define the so-called Duhamel product (see, [12,4]) by the following formula:

$$x \otimes y := \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{n!m!}{(n+m)!} y_n x_m e_{n+m}. \tag{7}$$

It is easy to see that formula (7) is correctly defined.

It is also easy to verify that the Duhamel product (7) satisfies all the axioms of multiplication, ℓ_p is the commutative algebra with respect to \otimes, an element $e_0 = (1, 0, \ldots)$ is the unit element of the algebra (ℓ_p, \otimes), and $T x = e_1 \otimes x$ for every $x \in \ell_p$, where $e_1 = (0, 1, 0, \ldots)$. An operator D_y, $D_y x := y \otimes x$, is called the Duhamel operator on ℓ_p. The diagonal operator on ℓ_p with diagonal elements $a_n \in \mathbb{C}$, $n \geq 0$, is denoted by D_y, $D_y e_n = a_n e_n$.

Now, by the same method, as in the proof of Theorem 1, it can be proved (the proof is omitted) the following theorem which shows that the set of extended eigenvalues of T is the set $\mathbb{C} \setminus \{0\}$.

Theorem 2. Let $\lambda \in \mathbb{C} \setminus \{0\}$ and let $X \in \mathcal{B}(\ell_p)$ be a nonzero operator. Then we have

(i) if $\lambda \in \mathbb{D}$, then $T X = \lambda X T$ if and only if an operator X satisfies $X D_{\lambda} = D_{X e_0}$, where D_{λ}, $D_{\lambda} e_n = \lambda^n e_n$, $n \geq 0$, is the diagonal operator on ℓ_p and $D_{X e_0}$ is the Duhamel operator in ℓ_p;

(ii) if $\lambda \notin \mathbb{D}$, then $T X = \lambda X T$ if and only if $X = D_{X e_0} D_{1/\lambda}$.

Acknowledgments

This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with Project 107T649.

The author thanks the referee for his/her constructive remarks.

References