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Abstract

In this paper, we will introduce a cut and paste move, called a geometrically null log transform, and
prove that any two manifolds related by a sequence of these moves become diffeomorphic after one
stabilization. To motivate the cut and paste move, we will use the symplectic fiber sum, and a con-
struction of Fintushel and Stern to construct several large families of 4-manifolds. We will then pro-
ceed to prove that the members of any one of these families become diffeomorphic after one stabiliza-
tion. Finally, we will compute the Seiberg–Witten invariants of each member of each of the families.
 2002 Elsevier Science B.V. All rights reserved.
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It is well known that two homotopy equivalent, simply connected 4-manifolds become
diffeomorphic after taking the connected sum with enough copies ofS2×̃S2 [21]. The
same result is true withS2×̃S2 replaced byS2 × S2, and similar results are known for
special families of 4-manifolds whenS2×̃S2 is replaced by other manifolds. Taking the
connected sum with one of these specific manifolds is called stabilization. For this paper,
we will only consider connected sums withS2×̃S2, and stabilization will refer to taking
the connected sum with this specific manifold. Most of the arguments in this paper can be
easily modified to address other summands as well. Many families of distinct homotopy
equivalent simply connected 4-manifolds that become mutually diffeomorphic after one
stabilization are known [15]. There is, in fact, no known pair of homotopy equivalent
simply connected 4-manifolds which are not diffeomorphic after one stabilization.
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In this paper, we will introduce a cut and paste move, called a geometrically null log
transform, and prove that any two manifolds related by a sequence of these moves become
diffeomorphic after one stabilization. To motivate the cut and paste move, we will use the
symplectic fiber sum, and a construction of Fintushel and Stern to construct several large
families of 4-manifolds. We will then proceed to prove that the members of any one of
these families become diffeomorphic after one stabilization. Finally, we will compute the
Seiberg–Witten invariants of each member of each of the families.

Even though the Donaldson and Seiberg–Witten invariants can distinguish some
homotopy equivalent four-manifolds, these invariants cannot directly distinguish manifolds
of the formX #S2×̃S2. This is because both invariants are trivial on 4-manifolds with
an S2×̃S2 summand, provided that the second positive Betti number of the remaining
summand is positive [19]. A priori, it is possible thatX #S2×̃S2 ∼= Y #S2×̃S2 implies
some relation between the Seiberg–Witten invariants ofX and the Seiberg–Witten
invariants ofY . The first reason for considering a specific set of families in this paper is to
show that no simple relation between Seiberg–Witten invariants is implied by equivalence
after one stabilization.

If it was known that any pair of homotopy equivalent simply connected 4-manifolds are
related by a sequence of geometrically null log transforms, it would follow that any two
such manifolds become equivalent after one stabilization. It is known that any manifold
homotopy equivalent to a simply connected 4-manifold may be constructed by removing
a contractible 4-manifold and reglueing it via an involution [3,14]. This motivates the
question: Is it possible to modify the proof of the decomposition theorem to find a finite
set of moves which could be used to pass between any two homotopy equivalent 4-
manifolds? The contractible piece is known as a cork. A second reason for constructing
specific families is to study the effect that applying a geometrically null log transform to
one manifold of a pair of homotopy equivalent simply connected 4-manifolds has on the
cork.

1. Families of 4-manifolds

All of the 4-manifolds explicitly considered in this paper are formed by applying a cut
and paste operation, the fiber sum, to copies of a standard building block, called the K3
surface. This section begins with a short description of the K3 surface. (See the book by
Harer, Kas, and Kirby for more information about the K3 surface [9].) This section will end
with explicit handle decompositions of the 4-manifolds contained in the specific families
considered in this paper. S. Akbulut gave handle decompositions for the result of fiber
summing a nucleus withS1 × S3 among aS1 times a knot [2].

Recall that the K3 surface is essentially the quotient of a 4-torus by an involution. The
group,Z2 acts onT 4 via the map:

ε :T 4 = C2

Z[i]2 → T 4, ε
([x, y]) = [−x,−y].

It also acts onCP 2 via

η :CP 2 → CP 2, η
([x : y : z]) = [−x : −y : z].
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Fig. 1.XN .

There are 16 fixed points onT 4, namely,(1/2Z[i])2/(Z[i])2, and the fixed point set in
CP 2 is {[0 : 0 : 1]} ∪ {[x : y : 0]}. We may cut invariant neighborhoods of the 16 fixed
points out ofT 4 and glue in 16 copies of the complement of an invariant neighborhood
of {[0 : 0 : 1]} ⊆ CP 2, to get aZ2 action onT 4 #CP 2#16. The bar refers to the fact that
CP 2 is taken with the opposite orientation. The quotient ofT 4 #CP 2#16 by Z2 is theK3
surface. It is manifold essentially because the quotient of the disk,

D[x0:y0] = {[x : y : z]|[x : y] = [x0 : y0] & |z|2 � |x|2 + |y|2},
in CP 2 is also a disk.

All of the examples that we construct will be obtained by cut and paste along three tori
in theK3 surface. Let

T1 = {[
(x,1/3+ 1/3i)

] ∈K3 | x ∈ C
}
,

T2 = {[
(x, y)

] ∈K3 | Imx = Imy = 1/4
}

and

T3 = {[
(x, y)

] ∈K3 | Imx = Rey = 1/5
}
.

Let XN be the manifold obtained by fiber summingN copies of theK3 surface together
alongT3 in one copy andT1 in the next copy. (See Fig. 1.)
The fiber sum of(X,S) and(Y,T ) is (X − N̊N(S)) ∪∂N(T )=∂N(S) (Y − N̊(T )). It will be
denoted by(X,S)#(Y,T ). If S andT are symplectic submanifolds with opposite self-
intersection numbers, the fiber sum will also be symplectic [9]. The definition of the
fiber sum requires an orientation reversing glueing map from the boundary of a tubular
neighborhood ofS to the boundary of a tubular neighborhood ofT . Every thing that we
will assert about the manifolds,XN will be independent of the glueing maps. To be definite
one could chooseϕ : ∂N(S) → ∂N(T ) given by, ϕ(x1 + 1/5i + 10−2i cos(θ),1/5 +
10−2 sin(θ)+ x2i) = (x1 + x2i,1/3+ 10−2 cos(θ)+ 1/3i − 10−2i sin(θ)). The manifold
XN hasN + 2 of tori theTi remaining. Copies ofS1 × S3 may be fiber summed onto
these remaining tori, each alongS1 cross a knot (take the glueing map which identifies
the 0-framed longitude of the knot with a meridian or the torus). Fintushel and Stern
proved a remarkable formula relating the Alexander polynomial of a knot to the change
in the Seiberg–Witten invariant of a manifold after fiber summing withS1 × S3 alongS1

cross the knot. [6]. This formula will be used to compute the Seiberg–Witten invariants
at the conclusion of this paper. All of the manifolds obtained from a fixedXN , by fiber
summing withS3 × S1 as above are homotopy equivalent. We will show that all members
of the family of manifolds obtained from a fixedXN become diffeomorphic after one
stabilization. The last section of the paper describes the Seiberg–Witten invariants of these
manifolds.
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Fig. 2.N2.

Fig. 3.N(∂(T 2 ×D2)), N2 − N̊(T 2).

A well-known handle decomposition of the K3 surface is given in the book by Harer
et al. [9]. This handle decomposition has 24 handles, the minimal number of handles in a
handle decomposition of the K3 surface. Other 4-manifolds will require even more handles.
Because of this complexity, it is useful to decompose 4-manifolds into a union of compact
pieces and then describe handle decompositions of the pieces. One important piece of the
K3 surface is the Gompf Nucleus. By definition, this is a neighborhood of the union of a
cusp fiber and a section [6]. The nucleus of K3 will be denoted byN2. It may be constructed
by attaching three two-handles toT 2 ×D2 (see Fig. 2).

There are three disjoint copies of the nucleus in the K3 surface. Each one contains one
of the,Ti , tori described above asT 2 × {0} in Fig. 2. Given a handle decomposition of a
4-manifold with boundary, it will be useful to denote a collar of the boundary by putting an
I on each handle. For example, Fig. 3 displays handle decompositions ofN(∂(T 2 ×D2))

andN2 − N̊(T 2).
To construct a handle decomposition of the fiber sum of a pair of nuclei, we will turn

a copy ofN2 − N̊(T 2) upside down and glue it to a second copy ofN2 − N̊(T 2). To turn
a handle decomposition upside down, first reverse the orientation (reverse every crossing
and framing), then double. Assuming that the original manifold has no 3-handles, attach
one 0-framed 2-handle to the co-core of each original 2-handle, then delete the original
manifold (addI ’s to all of the original components). Fig. 4 displaysN2 − N̊(T 2) turned
upside down and a fiber sum of a pair of nuclei constructed by glueing theN2 − N̊(T 2)

from Fig. 3 to theN2 − N̊(T 2) from Fig. 4.
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Fig. 4.N2 − N̊(T 2), (N2, T
2)#(N2, T

2).

Turn now to the construction of handle decompositions for manifolds of the form
M3 × S1. Restrict the boundary ofM to be a disjoint union of tori. IfM is described
by surgery to the complement of a link isS3, there will be two approaches for constructing
handle decompositions forM3 × S1. Both methods begin by constructing a handle
decomposition forM3 × I . The first method is to pick a tunnel system for the linkL
whenM is obtained by Dehn filling onL. This tunnel system may be used to construct a
handle decomposition ofS3 − N̊(L). This is easily translated into a handle decomposition
of M3 and thenM3 × I (see [19, p. 250] for this process applied to the Poincaré homology
sphere).

The second approach is based on the observation that proves thatK # −K is slice for
any knot,K [1,3]. Namely,(K − N̊(pt))× I is a slice disk forK # −K. For any link,L,
I × (S3 − L) may be described as the exterior of a surface,F , in D4. The surface,F , is
constructed in the same way as the slice disk forK # −K. If M3 is surgery onL, a handle
decomposition ofI × (S3 −L) may easily be converted into a decomposition ofM3 × I .
To begin the description ofD4 − N̊(F ), notice that

I × S3 − N̊(I ×L)= I × S3 − N̊(I × pt)− N̊
(
I × (

L− N̊(pt)
)) =D4 − N̊(F ).

Fig. 5 shows a typical link and the frames of the movie obtained by intersectingD3 × {t}
with the canonical cobordism inD3 × I =D4.
Note that(

D4 − N̊(F )
) ∩ (

D3 × [0.6,1])
=D4 − N̊

((
D2)⊥⊥k) = (

D2 − N̊(k pts)
) ×D2

=
(
D2 ∪

k(∂D2)×D1
kD1 ×D1

)
×D2

=D4 ∪
k(∂ D1)×D3

kD1 ×D3.

This will allow us to describe a handle decomposition forD4 − N̊(F ) in terms of a
handle decomposition forF . So far we see that 0-handles inF correspond to 1-handles
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Fig. 5.L andF .

Fig. 6. Neighborhood of a 1-handle.

in D4 − N̊(F ) (this is the previous computation). Fig. 6 displays a neighborhood of a
1-handle inF embedded inD4. The cylinder around the band is a 2-handle inD4 − N̊(F ).
This illustrates the fact that 1-handles inF correspond to 2-handles inD4 − N̊(F ). It
also enables one to construct handle decompositions for(S3 − N̊(L))× I . Dehn filling is
accomplished by attaching a 2-handle and then attaching a 3-handle. This will complete
a handle decomposition ofM3 × I . The special cases whenM is D3, or S1 × D2, or
S2 × D1 are instructive, when extending a handle decomposition ofM3 × I to a handle
decomposition ofM3 × S1. In general, a(k + 1)-handle is added for everyk-handle
of M3 × I .

We can apply these ideas toM = S3−N̊(K). Let the knotK be expressed as the closure
of a braid,β , in such a way that the black board framing ofK is the zero framing. The
result is the handle decomposition for(S3−N̊(K))×S1 displayed in Fig. 7. Fig. 7 also has
a handle decomposition of(N2, T )#(S3 × S1,K × S1) obtained from(S3 − N̊(K))× S1

by gluing on anN2 − N̊(T ).
There are many different surgery descriptions of any given 3-manifold (see Fig. 8). Any

of these descriptions will produce a handle decomposition ofM3 × S1. It is an interesting
exercise to see how various 3-manifold moves translate into sequences of handle slides
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Fig. 7.(S3 − N̊(K))× S1 and(N2, T )#(S3 × S1,K × S1).

Fig. 8. Different descriptions of the same manifold.
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and handle pair birth/deaths. In particular, it is interesting to see how Markov moves on the
braid, handle slides, and Kirby moves effect the 4-dimensional handle decomposition.

Notice that any knot can be converted to the unknot by a sequence of±1 surgeries. This
will enable us to understand the fiber sum withS3 × S1 along a complicated knot crossed
with the circle using one simple move. We will come back to this later in this paper.

2. Stabilization

For this paper, stabilizing a 4-manifold will simply refer to taking the connected sum
with S2×̃S2. The manifold,S2×̃S2 is the nontrivialS2 bundle overS2. It may also be
described asCP 2 #CP 2. Stabilization is closely related to the surgery corresponding to
the addition of a five-dimensional 2-handle. This surgery amounts to replacing anS2 ×D3

by aD2 × S2 in the 4-manifold. IfS1 × {0} is homotopically trivial, we may assume that
it is contained in a 4-disk. Since surgery on a trivial loop in the 4-disk either produces a
puncturedS2 × S2 or S2×̃S2, it follows that surgery on a null homotopic loop is the same
as taking the connected sum with eitherS2 × S2 or S2×̃S2 (see Fig. 9).

Combining this with the observations that(S2×̃S2)#(S2 × S2)∼= (S2×̃S2)#(S2×̃S2),
and that any five-dimensionalh-cobordism may be constructed with just 2-handles and
3-handles proves that two homotopy equivalent, simply connected 4-manifolds become
diffeomorphic after some number of stabilizations [10,20]. See also [4].

Computing the number of stabilizations required is an interesting open problem. For
every known example, one stabilization is enough. The main argument used to prove that
one stabilization is enough is a five-dimensional handle argument due to Mandelbaum [11–
13]. In fact, many manifolds are known to become diffeomorphic to(CP 2)#n #(CP 2)#m

after taking the connected sum with justCP 2 [15]. Many related facts may be found
in [7]. If S and T are tori inX and Y , the basic five-dimensional argument analyzes
a natural cobordism betweenX⊥⊥Y and (X,S)#(Y,T ). Let S have a standard handle
decomposition,S = h(0) ∪ h

(1)
1 ∪ h

(1)
2 ∪ h(2). The natural cobordism is then

W = (I × (X⊥⊥Y )∪D1 × h(0) ×D2

∪D1 × h
(1)
1 ×D2 ∪D1 × h

(1)
2 ×D2 ∪D1 × h(2) ×D2.

The level ofW after the 1-handle,D1 × h(0) × D2, is X #Y . The level after the 2-
handles,D1 × h

(1)
1 × D2 andD1 × h

(1)
2 × D2, is X #Y #(S2 × S2) × (S2 × S2). The

section of the cobordism from this level to the end is obtained by attaching a 3-handle.
By turning this section upside down, we see that it is also obtained by attaching a five-
dimensional 2-handle to(X,S)#(Y,T ). The level is therefore(X,S)#(Y,T )#(S2 × S2).

Fig. 9. Surgery and stabilization.



D. Auckly / Topology and its Applications 127 (2003) 277–298 285

ThusX #Y #(S2 × S2)#(S2 × S2) ∼= (X,S)#(Y,T )#(S2 × S2). In the above argument,
we assumed thatX andY were simply connected, and that the framings on all of the
five-dimensional 2-handles are arranged so that factors ofS2 × S2 appear, not factors of
S2×̃S2.

Instead of checking the framings directly, we will use the five-dimensional argu-
ment as a guide for a four-dimensional handle sliding argument thatXN #(S2×̃S2) ∼=
(CP 2)#4N #(CP 2)20N .

The E8 Milnor fiber is embedded in K3 disjoint from the nucleus [10]. It follows
that E8 is also embedded inXN disjoint from all of the tori used in the fiber sum.
The argument begins by showing thatE8 #(S2×̃S2) ∼= W1 #(CP 2)#7#(S2 × S2) (see
Fig. 10). Sliding the factor ofS2 × S2 into the (N2, T

2)#(N2, T
2) from Fig. 4, and

performing the moves indicated in Fig. 11 produces Fig. 12. The handle slides in Fig. 11
correspond to the last section of the cobordism in the five-dimensional argument. Sliding
the complicated zero framed 2-handle over the 2-handle dual to the complicated 0I handle
will allow the complicated zero framed 2-handle to be pushed to the right of the figure as
in Fig. 13.

The next step is to add two canceling 1-handle/2-handle pairs to produce the 1-handles
in the right-side-upN2. This is done in Fig. 14, resulting in the handle decomposition in
Fig. 15. The handle slides in Fig. 16 will make the right side look exactly like a right-
side-up nucleus. Now, introduce two canceling 2-handle/3-handle pairs. Slide one of the
new 2-handles over the simple 0I component, then use the 2-handles dual to the 1I and
complicated 0I components to arrange the new 2-handle as in Fig. 17. Repeat with the
second new 2-handle.

Adding the 2-handles in the five-dimensional cobordism corresponds to the handle
slides in Fig. 18. The handle slides in this figure show that(N2, T

2)#(N2, T
2)#(S2 ×

S2)∼=N2 #N2 #(S2 × S2)#(S2 × S2). This argument may be repeated on each(N2, T
2)#

(N2, T
2). This will show that

Fig. 10.E8 #(S2×̃S2)∼=W1(CP
2)#7#(S2 × S2).
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Fig. 11. Handle slides for the five dimensional 3-handle.

Fig. 12.(N2, T
2)#(N2, T

2)#(S2 × S2).
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Fig. 13.(N2, T
2)#(N2, T

2)#(S2 × S2).

Fig. 14. Introducing 1-handles.

XN #
(
S2×̃S2) ∼= (K3)#N−1 #

(
S2 × S2)#N #

(
CP 2

)#7#W1 ∪M ∪E8

∼= (K3)#N−1 #
(
S2 × S2)N−1

#
(
S2×̃S2)#

(
CP 2

)#7#W1 ∪M ∪E8

∼= (
CP 2

)14N #
(
S2 × S2)N−1 #

(
S2×̃S2)#

(
W1 ∪M ∪W1

)#N

∼= (
CP 2)#4N #

(
CP 2

)#20N.

In the above argument,M is the complement of twoE8 manifolds in K3. Fig. 19 displays
handle decompositions ofM andW1 #M #W1.
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Fig. 15.(N2, T
2)#(N2, T

2)#(S2 × S2).

Fig. 16. Completing a nucleus.

We will now discuss the effect of a single stabilization on a manifold fiber summed
with an S3 × S1 along a knot cross a circle. LetK1 andK2 be two knots related by a
single crossing change. By Markov moves, the relevant crossing may be assumed to be in
the lower right corner of a braid representation ofK1. If S3 − N̊(K1) is described with
an extra non-interacting+1 Dehn surgery, then the manifold(N2, T )#(S3 × S1,K1 × S1)

will have the handle decomposition displayed in Fig. 20. All unlabeled 2-handles are zero
framed.
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Fig. 17.(N2, T
2)#(N2, T

2)#(S2 × S2).

Fig. 18.(N2, T
2)#(N2, T

2)#(S2 × S2)∼=N#2
2 #(S2 × S2)#2.

To obtain Fig. 21, take the connected sum withS2×̃S2 and slide handles. Now add two
canceling 2-handle/3-handle pairs and one 1-handle/2-handle pair (Fig. 22). From here a
long series of handle slides will demonstrate that

(N2, T )#
(
S3 × S1,K1 × S1)#S2×̃S2 ∼= (N2, T )#

(
S3 × S1,K2 × S1)#S2×̃S2
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Fig. 19.M andW1 ∪M ∪W1.

Fig. 20.(N2, T )#(S3 × S1,K1 × S1).

(Figs. 23–26). The moves from Figs. 25, 26 are illustrated in Fig. 27. The 1-handle with
feet is redrawn, represented by a circle with a dot. The rightmost strand may be pulled out
from the braid by sliding it over some of the concentric 2-handles.

Finally notice that one can pass from any knot to the unknot by a series of crossing
changes. Call the resulting sequence of knotsK1,K2, . . . ,Kn, with Kn, the unknot. Then



D. Auckly / Topology and its Applications 127 (2003) 277–298 291

Fig. 21.(N2, T )#(S3 × S1,K1 × S1)#(S2×̃S2).

Fig. 22.(N2, T )#(S3 × S1,K1 × S1)#(S2×̃S2).
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Fig. 23.(N2, T )#(S3 × S1,K1 × S1)#(S2×̃S2).

Fig. 24.(N2, T )#(S3 × S1,K1 × S1)#(S2×̃S2).
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Fig. 25.(N2, T )#(S3 × S1,K1 × S1)#(S2×̃S2).

Fig. 26.(N2, T )#(S3 × S1,K1 × S1)#(S2×̃S2).
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Fig. 27. Pulling a strand away from a braid.

Fig. 28. Geometrically null+1 log transform.

(N2, t)#
(
S3 × S1,K1 × S1)#

(
S2×̃S2)

∼= (N2, t)#
(
S3 × S1,K2 × S1)#

(
S2×̃S2) · · ·

∼= (N2, t)#
(
S3 × S1,Kn × S1)#

(
S2×̃S2) ∼=N2 #

(
S2×̃S2).
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Fig. 29. Stabilizing a log transform.

The previous argument may be distilled to prove that any two manifolds related by a
sequence of special moves become diffeomorphic after one stabilization. This special move
is given in Fig. 28 which displays two different ways to attach aT 2 × S2 to anI × T 3.
If the dotted line bounds an evenly framed disk in some four-manifold, we will call the
process of cutting out aT 2 × D2 and regluing it a geometrically null+1 log transform.
This is just the product of+1 surgery with a circle. The Kirby calculus in Figs. 29, 30
demonstrates the following theorem.

Theorem. Two manifolds related by a geometrically null +1 log transform become
diffeomorphic after one stabilization.
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Fig. 30. Stabilizing a log transform. Finish by sliding the labeled handle over the+1 framed handle and reversing
the moves from the beginning.

3. Seiberg–Witten invariants

Recall that the Seiberg–Witten series of a smooth 4-manifold with homology orientation
is

SWX = a0 +
∑

aj
(
exp(Kj )+ (−1)(χ(x)+α(x))/4 exp(−kj )

)
where the set of basic classes is{±K1,±K2, . . . ,±Kn} ⊆ H 2(X;Z), a0 = SWX(0), and
aj = SWX(Kj ). If b+

2 (X) > 0, thenSWX #(S2×̃S2) = 0. Thus the Seiberg–Witten invariant
cannot distinguish the two manifolds,X #(S2×̃S2) andY #(S2×̃S2). One might hope that
a diffeomorphism betweenX #(S2×̃S2) andY #(S2×̃S2) would imply some restriction
on the relationship between the Seiberg–Witten series,SWX andSWY . We will compute
the Seiberg–Witten series of all of the manifolds considered in the previous section.
The number of basic classes, the rank of the space spanned by the basic classes, and
the coefficients of the Seiberg–Witten series will vary arbitrarily in each family,FN , of
manifolds.

To compute the Seiberg–Witten series, we will use several gluing formula worked out
by Morgan, Mrowka, and Szabo, and utilized by Fintushel and Stern [17,16,5].

Fact 1: SWK3 = 1.
Fact 2: SW(X,T )#(Y,S) = SWX · SWY · (exp(T )− exp(−T ))2.

Fact 3: If π1(X) = 1, π1(X − T ) = 1, [T ] �= 0 in H2(X) and [T ]2 = 0, then
SW(X,T )#(S3×S1,K×S1) = SWX ·∆K(exp(2T )). Here,∆K is the Alexander poly-
nomial ofK.

The first fact is due to Witten, and is by now well known [21,19]. The second fact has
not yet appeared in the literature, but it is similar to the results in [17,16]. We have not
included the technical hypothesis for the second fact. The third fact is proved in [5].
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Refine our original notation, to denote the tori inXN by Tα,i , with α = 1,2 . . . ,N and
i = 1,2,3 so thatTα,3 = Tα+1,1 for α = 1, . . . ,N − 1. Using this notation, the Seiberg–
Witten series ofXN is

SWXN =
N−1∏
α=1

(
exp(Tα,3)− exp(−Tα,3)

)
.

Finally, let

Y0 =XN, Yα+1 = (Yα,Tα,2)#
(
S3 × S1,Kα,2 × S1),

Y ′ = (YN ,T1,1)#
(
S3 × S1,K1,1 × S1) and

Y = (
Y ′, TN,3

)
#
(
S3 × S1,KN,3

)
.

Then the Seiberg–Witten series ofY is

SWY =
N−1∏
α=1

[(
exp(Tα,3)− exp(−Tα,3)

) ·∆Kα,2

(
exp(2Tα,2)

)]

×∆K1,1

(
exp(2T1,1)

) ·∆KN,2

(
exp(2TN,2)

) ·∆KN,3

(
exp(2TN,3)

)
.
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