
WY7-4Y43iX5 53.w + w
hi IV85 Pcrpamon Pm* Ltd

FINDING THE MINIMUM VERTEX DISTANCE BETWEEN
TWO DISJOINT CONVEX POLYGONS IN LINEAR TIME

MICIIAkt. MCKENNA and GOIXKIED T. TOUSSAINT
School ot Computer Scwncc. McGill University. X05 Shcrhrookc Street Wext. Montreal, Quebec,

Canada H3A 2Kh

Commur~iwred hv Ervin Y. Rodin

Ahslract-Lcr V =- {\,,.I.. .I.,,,} and W = (IQ.~>. .K,,) be IWO lmearly separable convex

polygons whwc kenlce\ xc spec~lwd by thclrcancsian wordmates m order. An algorithm wth O(m + n)
worlrt-c~\c‘ nmc cwnplex~r~ I\ dcxrlbed fur findmg the mmimum euclidcan distance between a vertex
L’, m V and ;1 vcncx I(’ in M’. It IS also shown that the algorithm IS optimal.

I. INTRODUCTION

Let V be a convex polygon described by an ordered circular list {~,.LJ?, .v,,,} of its rn vertices.
Each edge of V is described by a pair (I:,.?, , ,) of consecutive vertices. We will say that the set

of points in the polygon includes the interior of- the polygon and its boundary. Let W be another
convex polygon similarly described by another list {MI,,I~‘~, ,w,,} of its n vertices. We assume

that V and W do not Intersect.
Let d(p.q) be the Euclidean distance between points p and q. This paper describes an

O(m + 11) optimal algorithm for findin g a pair of vertices (L’,.M~,) such that for any other pair
of vertices !\.,.\t,,). the tollowmg condition holds: d(v,,bt~,) 5 d(vl.w,).

This problem is significant for several reasons. In the theory of geometric complexity it
was an open question whether the problem could be solved in linear time. In practical applications

in pattern recognition and cluster analysisl8, Y] one often encounters problems where it is desired
to compute distances between sets of points representing objects or pattern classes. Finally, it
is likely that other geometric problems may require the computation of this distance for their
solution.

Recently. Chin and Wang[3] have independently found another algorithm for this same
problem. Their holunon is similar to ours to the extent that they also perform an initial decom-
position ot‘the problem into tour subproblems. However, their decomposition and solutions to

the subproblems vary considerably from ours. In particular, our approach is based on the
application of existing results for computing the relative neighbourhood graph of a convex
polygonl7]. These difference5 will be highlighted in later sections.

Edelsbrunner(4] describes an optimal O(log m + log n) algorithm for finding the minimum
distance between two convex polygons. where the nearest points are not restricted to vertices.
This improves an earlier algorithm for this problem due to Schwartz[S] which runs in O((log
)?I)(log 11)) time.

The following section presents some preliminary definitions and lemmas. Section 3 outlines
a linear-time ten-step procedure for finding the nearest pair of vertices between V and W. Section
4 shows how steps six. seven and eight of the tea-step procedure can be performed in linear
time and Sec. 5 show5 how step nine can be performed in linear time. Section 6 presents a
p:OOf thar the nearest-vertices problem has an fi(m + 11) worst-case lower-bound. Finally, Sec.
7 presents some concludin, ~7 remarks and open problems. As a final comment we remark that
where the proofs can readily be reconstructed by the reader. we omit them in the interest of
brevit).

2 PRELIMINARY DEFINITIONS AND RESULTS

The O!-irlgc between convex polygons V and W is the segment whose endpoints are the
nearest points found by Edelsbrunner’s algorithm. Note that the bridge may be realized by a
vertex and an edge-point.

1227

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82507217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1228

LEMMA 1

M. MCKENNA and G. T. TOL’SSAINT

If the bridge between V and W is realized by the pair of vertices (~,.Io,). then the shortest
distance between the vertices of V and W is also realized by this pair of vertices.

DEFINITION

A corridor is a region bounded by two distinct parallel lines. We will say that the set of
points in the corridor does not include the bounding lines. The complement of a corridor consists
two disconnected closed half-planes. Each of these half-planes will be called a half-complement.

DEFINITION
We will say that every segment induces a corridor having the following characteristics:

(1) the bounding lines of the corridor are perpendicular to the inducing segment, and
(2) one bounding line passes through each endpoint of the segment.

DEFINITION

The lune of a segment @,q) is the set of points r in the plane such that d(p,r) < d(p,q)

and d(q,r) < d(q,p). Note that the lune consists of the intersection of the interior of the two

circles. Both of these circles have a radius equal to d(p,q). One circle is centered at point p.

and the other is centered at point 4.

LEMMA 2

Let p and 9 be the endpoints of the bridge between V and W, and let L be the lune of
bridge (p,q). The following two conditions hold:

(i) There cannot be any point s E V in L, and
(ii) There cannot be any point t E W in L.

LEMMA 3

The bridge between convex polygons V and W induces a corridor K falling between the
polygons V and W. In other words,

(i) V n K = CJI and W fl K = CJJ, and
(ii) V and W lie in separate half-complements of K.
Proof (by contradiction) of condition (i). (See Fig. 1.) Let p and y be the endpoints of the

bridge. From Lemma 2, there cannot be any point of V or W in the lune of bridge (p,q).

Without loss of generality let us now assume that V fl K f 4. This means that there exists

some point t E V f~ K. Point t is in K, thus on segment (p,f) there must exist a point z in the
lune. Polygon V is convex, therefore segment (p,t) lies totally within V. Therefore point z E V.
Thus point z falls in both the lune and V which contradicts Lemma 2.

Proof of condition (ii). Let H, be the half-complement of K which contains bridge-endpoint
p E V, and let HZ be the half-complement which contains bridge-endpoint y E W. Polygon V
is connected, and H, and Hz are disjoint. Thus from condition i), V lies entirely in H, or it lies
entirely in HZ. Now p E V and p E H,, therefore V lies entirely in H,. Similarly, polygon W
lies entirely in H, or in Hz. Now 9 E W and q E H?, thus W lies entirely in HZ. Q.E.D.

DEFINITION

A point p is lef of a point y if the x-coordinate of point p is less than the x-coordinate of
point q. Here, point q is right of p. Similarly, a point p is ubove a point q if the v-coordinate
of point p is greater than the y-coordinate of point 4. Here, point y is helo~, point p.

DEFINITION

We will say that a point p is ubove a non-vertical line 1 if a vertical half-line drawn
downward from point p intersects line 1. Here, line I lies below point p.

Similarly, a point p is below a non-vertical line I if a vertical half-line drawn upward from
point p intersects line 1. Here, line 1 lies above point p.

Minimum vertex distance between two disjoint convex polygons

PCV

I229

Fig. 1

DEFINITION

Let H be a half-plane bounded by a vertical line. We will say that line I, lies below /? in
H if every point in I, II H is below line 12. Alternately, line l2 lies above line I, in H.

3. THE GENERAL PROCEDURE FOR FINDING THE NEAREST

PAIR OF VERTICES

In this section, the algorithm to find the nearest distance between the vertices of two convex
polygons V and W is presented as a ten-step procedure called TENSTEP.

Steps 6, 7, 8 and 9 are four subproblems. Thus the ten-step procedure is actually a linear-
time decompositon of the “nearest vertices” problem into the four subproblems of steps 6, 7,

8 and 9.

PROCEDURE TENSTEP

1. Find the bridge between V and W using Edelsbrunner’s algorithm. If the bridge is
realized by two vertices then stop, because these two vertices also realize the shortest distance
between vertices of V and W. Otherwise continue.

2. Let w be the midpoint of this bridge. Translate the convex polygons so that o is at

the origin.
3. Rotate polygons V and W around origin w to make the bridge horizontal. From Lemma

3, it follows that the horizontal bridge induces a vertical corridor between V and W. From here

on in this paper, the term “corridor” will refer to this vertical corridor.
4. Find the vertices of V and W having the maximum y-coordinates. Call these vertices

v,,,, and u’,,,,. If the maximum y-coordinate of polygon V is realized by a horizontal edge, then
assign the left vertex of this edge to Y,,,. If the maximum y-coordinate of polygon W is realized
by a horizontal edge, then assign the right vertex of this edge to MI,,,,.

5. Find the vertices of V and W having the minimum y-coordinates. Call these vertices

vmln and n’,,,. If the minimum y-coordinate of polygon V is realized by a horizontal edge, then
assign the left vertex of this edge to v,,,. If the minimum y-coordinate of polygon W is realized
by a horizontal edge, then assign the right vertex of this edge to w,,,.

The vertices l’,aX and \‘,,,,, delimit a left-chain and a right chain in polygon V. Similarly,
vertices MI,,, and M’,,, delimit a left-chain and a right-chain in polygon W. We will call these
chains V,, V,. W, and W, respectively.

6. Find the minimum distance d, between a vertex in VL and a vertex in W,.
7. Find the minimum distance dz between a vertex in V, and a vertex in W,.
8. Find the minimum distance d3 between a vertex in VR and a vertex in WR.
9. Find the minimum distance d, between a vertex in V, and a vertex in W,.

1230 M. MCKENNA and G. T. TOUSS,UNT

10. The minimum distance between vertices of V and W is the smallest distance in the

set id, ,&&d.J.

Steps 1, 2, 3, 4, and 5 above are computationally trivial and are easily done in O(m + ~1
time. Thus we turn our attention to steps 6 through 9.

We note here that this decomposition is different from that used by Chin and Wang[3].
Although they also obtain four chains, their chains are not delimited by v,,,,,. \‘n,lnr LV,,,,, bv,,,,,,
but by other vertices of V and W. The decomposition used here allows the problem to be solved
using existing algorithms for the relative neighbourhood graph[7]. Thus the advantage of the
method proposed here over that in [3] is that no new specialized code is needed.

4. PERFORMING STEPS 6, 7 AND 8 OF PROCEDURE TENSTEP

The subproblems in steps 6 and 7 are special cases of the following more general problem.

Let W, be the left-chain of W as determined by steps 4 and 5 of TENSTEP; and let {b,,b?,

. . ,bp} be the list of its vertices in ascending order. Let V, be any connected subchain of V

represented by a list {u,,u2, . . . ,a,} of its vertices in counterclockwise order. In linear time,
find the minimum distance between a vertex in V, and a vertex in W,.

We will solve the more general subproblem. The solution will be readily applicable to the

cases in steps 6, 7 and 8.

LEMMA 4
The perpendicular bisectors of two non-horizontal edges (b,,b, + ,) and (b, + , ,b,+,) of W,

will intersect somewhere to the right of point biTI.

Proof. Let 1, be the perpendicular bisector of edge (b;,b,+ ,) and let h, be the part of 1, which

is on the right of edge (b,,bi+,). Angle (b;,bi+,, ,+z b) is a right turn, so the intersection of 1, and

I, + , will be where hi and hi+, intersect. Now, at least one of h, or lzi+, lies to the right of point

b;,, so 1; and li+, will intersect to the right of point bi+, Q.E.D.

COROLLARY 4.1

If edges (b,h+,) and (b,,,, ,+z b.) are non-horizontal, then on the left of the corridor, bisector

1, + , lies above bisector fi.
If we look at steps 4 and 5 of procedure TENSTEP, we note that the first or last edge of

WL might be horizontal. If 1, is vertical, we will say that no points on the left of the corridor
fall below 1,. If 1,_, is vertical, we will say that all points on the left of the corridor fall below

I,-1.

COROLLARY 4.2
Let edges (bj,bi+,) and (bi+,,bi+z) be any two consecutive edges in chain W,. Every point

z on the left of the corridor which lies above l,., , will also lie above I,. Every point :’ on the
left of the corridor which lies below 1, will also lie below I,, , .

LEMMA 5
If among all vertices in W,, bk is the vertex nearest to u, E V,s, then (I, lies below Ii and

above lk-,. (See Fig. 2.)
Proof. d(u,,b,) < d(q,b,_,); thus u, lies above bisector IL_,. Also, d(q,bk) < d(a,,b,+,):

thus a, lies below bisector lk. Q.E.D.

COROLLARY 5. I
Vertex ui also lies above bisectors f,_ , J-3, ,I,.

COROLLARY 5.2
Vertex a, also lies below bisectors I,+ I ,li+:, ,I,- I.

Mmimum vertex distance between two disjoint convex polygons

Fig. 2

LEMMA 6

Let bL E W, be the vertex nearest to a, E Vs.

(i) For i < k, d(a,,b,,,) < d(cl,,b,).
(ii) For i 2 k, d(a,,b,) < d(u,,b,+,).
Proof.
(i) If i < k, then a, is above 1,; thus d(a;,b,+,) < d(u,,bJ.

(ii) If i 2 k, then a, is below I,; thus d(u,.bJ < d(n,,b,,,). Q.E.D.

Lemma 6 in effect says: Given any a, E V,, the function d(u,,b3 for k = {1,2, . p}
is unimodal, i.e., it has one local minimum. This is a key result which allows this problem to
be solved in linear time and follows essentially from the fact that a, lies outside of W. If u,
were in the interior of W, then &a$,) could be a multimodal function as was recently shown

by Avis, Toussaint, and Bhattacharya[l] and Toussaint[lOl.
Since d(u,,b,) is unimodal, the following function (called FINDMIN) will find the nearest

vertex bL for each vertex a, in Vs.

FUNCTION FINDMN

(* input: The list {~,,a~, . ,a,} of vertices in Vs, and the list Ibl,bz, . . &I of

vertices in WL.*)
1. jc- 1;
2. Find k such that d(ul,bl) is minimized;

3. 4,” * d(u,.b,);
4. REPEAT
5. j-j+-;
6. IF d(a,,bL_,) < d(u,,bJ THEN

7. WHILE d(u,,bl_ ,) < d(u,,b,) DO
8. k-k- 1;

9. ELSE
10. IF d(a,,b,+ ,I < d(u,,b,) THEN
11. WHILE d(u,.b,+,) -c d(u,,bJ DO

12 ‘2 M. MCKENNA and G. T. TOUSSAINT

12. k+k- 1:

13. IF d(a,,bk) -=c d,,,,, THEN d,,, + d(u,,b,);
14. UNTILj = cu;
15. RETURN WITH d,,, as the minimum distance between V, and W,;

END. (* of function FINDMIN *)

Procedure FINDMIN will work correctly because for every a, in V,. statements 6 thru 12
will minimize the unimodal function d(a,,&). Thus at the end of each REPEAT loop, variable
k points to the vertex bk in W, nearest to a,. Statement 13 assures that d,,, at the end of
FINDMIN’s execution will hold the lowest of the minimum distances between pairs (u;,b,).

We will now show that if V, has (Y vertices and W, has p vertices, then function FINDMIN

takes O(o_ + l3) time.
For each execution of the REPEAT loop, let j, be the value of variable j just before step

5 is performed, and let jZ be the value of j after step 5 is performed. Also, let k. be the value
of k just before steps 6 thru 12 are performed.

LEMMA 7

Just before the execution of step 5, variable k,, points to the vertex bAc, nearest to u,,.

LEMMA 8

Just before the execution of step 5 of FINDMIN, these conditions hold:

(i) For all i < k,, u,, lies above bisector 1,.
(ii) For all i 2 k,, uj, lies below bisector 1,.

Now, step 8 of FINDMIN is performed only when d(u,2,b,_,) < d(c.ql,b,); i.e. only when

bisector lk_! is above a,,. The execution of step 8 implies that during the current iteration of
the REPEAT loop, variable k is only decremented. (i.e. k < k,.) Thus from condition i) of
Lemma 8, a,, is above II._, which is in turn above a,,. In other words, step 8 is performed only

when edge (u,, ,a,,) crosses from above II; _ , to below II_, .
For a given edge (a,,,~,,) of Vs, the REPEAT loop is performed only once. If step 8 is

performed, then during this one iteration of the REPEAT loop, variable k will move only
downward. Thus if a given edge (a,,,~,?) intersects a bisector In-, , then step 8 will be performed

at most once for that intersection.

LEMMA 9

During the entire execution of function FINDMIN, step 8 is performed at most 2l3 times.
Proof. Let N be the number of intersections between edges in V, and bisectors of edges

in WL. From the previous discussion, we know that step 8 is performed only when edge

(u,,,u,?) intersects bisector lk- ,. We also know that step 8 is performed at most once for each
of these intersections. Thus the number of executions of step 8 is at most N. Now, V, is a
subchain of a convex polygon V. Thus a given bisector IL_, will intersect Vs at most twice.
Therefore N is at most twice the number of bisectors, which equals twice the number of edges
in W,. The number of executions of step 8 is at most N, which is in turn at most twice the

number of edges in WL. Q.E.D.

LEMMA IO

During the entire execution of function FINDMIN, step 12 is performed at most 2/3 times.
Proqf. The proof is similar to that of Lemma 9.

LEMMA 11
The execution of function FINDMIN takes O(a + p) time.
Proof’. Steps 1, 3 and 15 of FINDMIN each take constant time. Step 2 takes O(p) time.

Steps 4, 5. 6, 9, IO, 13, and 14 are each executed at most (a - 1) times. Steps 8 and 12 are
each executed at most 2p times. Steps 7 and 1 I are each executed at most (2p + cx - 1)
times. Q.E.D.

Mimmum vertex distance bctwecn IWO dkjoinr convex polygons

Since cx < tn and p < tl, the previous lemmas imply the following result.

123.7

THEOREM I
Function FINDMIN takes O(m + n) time to execute.
In linear time FINDMIN determines the nearest distance between vertices in chain W,

and vertices in any subchain V, of polygon V. Function FINDMIN can be used to perform
steps 6 and 7 of procedure TENSTEP in section three of this paper.

Step 8 of TENSTEP can be performed by simply negating the x-coordinate of chains V,
and W,, which reduces step 8 down to step 6.

5. PERFORMING STEP 9 OF PROCEDURE TENSTEP

In step 9 we wish to find the shortest distance between vertices of chains V, and W, in
linear time. Chain V, is a subchain of convex polygon V. so the vertices of V, will determine
a convex polygon. Similarly, chain W, will also determine a convex polygon as illustrated in
Fig. 3. Let U be the convex hull of V, U W, illustrated in Fig. 4. For a set S of points, let
B(S) denote the boundary of the convex hull of S. Thus B(V,_ U W,) = B(U).

Now, for any two chains V, and W,. 16 logical cases arise determined by whether
V max 3 V”,,” 9 T,,,, and w,,,, each does or does not determine a vertex of CT. The vertex of U having

the maximum v-coordinate must be either v”,,,~ or K’,,,; and the vertex of U with the minimum

y-coordinate must be either v,,, or w,,,. Thus only 9 of the I6 logical cases are possible. (These

9 cases are illustrated in Fig. 5.)
Recall that the horizontal bridge connects a point in V to a point in W. Thus I’_ and MI,,,,

must both be above the bridge; and L’,,,, and M’,,, must both be below the bridge. Because of

this, there cannot be a case where v,,, is above M’,,, or where vmax is below rv,,,,,.

In the rest of this paper, let us say that the set of points in a chain will consist of vertices,
and not edge-points. One can perform the following linear-time decomposition on the problem
of performing step 9 of procedure TENSTEP:

(i) Find B(V, U W,) in linear time. (Toussaint[9] and Shamos[6] exhibit linear-time
algorithms which find the convex hull of the union of two convex polygons.)

(ii) In linear time, determine which of the 9 possible cases holds.
(iii) Solve the problem for the appropriate case.

Now, case 9 can be reduced to case 5 in linear time by negating the x-coordinate of the
vertices in V, and W,. Similarly, case 3 can be reduced to case 2, and case 8 can be reduced
to case 6. Case 4 can be reduced to case 2 in linear time by negating the y-coordinate of the
vertices in V, and W,; and case 7 can be reduced to case 2 by negating both the x and _v-

v
max

a

I

I

I

I
I

\ \

“min

wmax

Wmin

WR

Fig. 3.

1333 M. MCKENNA and G. T. TOUSSAINT

Fig. 4.

coordinates of the vertices. To solve step 9 of TENSTEP in linear time, we are thus left to
solve for cases 1, 2, 5 and 6.

At this point, some more definitions and lemmas are introduced:

Let point Si be an element of point set S = {s, ,s:, . .L}.

DEFINITION

If si has a greater x-coordinate and a greater y-coordinate than every other point in S, then
we will say that point si l-dominates the rest of set S. If s, has a smaller x-coordinate and a
larger y-coordinate than every other point in S, then point si 2-dominates the rest of set S. If
point si has a smaller x-coordinate and a smaller y-coordinate than all the other points, then s,
3-dominates the rest of set S. If si has a larger x-coordinate and a smaller y-coordinate than all
the other points, then si 4-dominates the rest of S.

LEMMA 12

If point Si k-dominates the rest of set S, and if some point p not in S k-dominates all of

set S, then the point in set S closest to p is si.
Now, if point sj k-dominates the rest of set S, and if every point in set P = {p,,p, . ,

p:} in turn k-dominates all of set S, then the shortest distance between sets S and P is realized
by si and some point in P. The following function will thus find the shortest distance between
sets S and P in linear time:

FUNCTION SCANSET(s,,P);

1. d,,, + infinity;
2. FOR each point p E P DO

3. IF d(si,p) < d,, THEN dmi” t d(sivp);

4. RETURN WITH d,,,,, as the shortest distance between sets S and P;

END. (* of function SCANSET *)

DEFINITION

Let P = {pI,p2, . . . ,p,} be a finite list of points. The relative neighborhood graph of P

(denoted RNG(P)) is the list of edges {(p,,,p,,),(~;,,p,~), . .(p,,,p,,)) such that the lune of

each edge (pi,pj) is empty.
In [121, it is shown that the number of edges in this graph cannot exceed 3~ - 6. Thus

the number of edges in RNG(P) is always linear. If the points P = {pI,p2, . . . ,p,} represent
the vertices of a convex polygon in order, then RNG(P) can be found in linear time using an

algorithm by Supowit[7].

LEMMA I3

Mmimum vertex distance between two dipjomt convex polygons I235

Let S, and S: be two finite sets of points. The shortest distance between sets S, and S2 will
be realized by an edge in RNG(S, U Sz). This result has been proven in [1 I].

If C, and CT are disjoint subchains of convex polygon P = {p,,p?, . . ,pr}, then we can
get the shortest distance between vertices of C, and Cl in linear time by using the following
algorithm by Toussaint and Bhattacharya] 1 I]: we use Supowit’s[7] linear algorithm to find
RNG(C, U Cz), and then we locate the shortest edge of RNG(C, U Cl) that connects a vertex
of C, with a vertex of C,. The following function, called USERNG, uses this technique:

FUNCTION USERNGtC,,C2)

1.
7 *.
3.

4.

5.

6.
7.

END.

Find RNGtC, U C?) using Supowit’s linear algorithm;

d min + infinity;
FOR each edge (rr.b) of RNG(C, U C,) DO

IFuEC,ANDhEC?
OR h E C, AND a E C2 THEN

IF d(a.b) < d,,,, THEN cf,,,,, + 4a.b);
ENDFOR:
RETURN WITH d,,, as the shortest distance between C, and Cz;
(* of function USERNG *)

In [1 l] this solution is applied to the more general problem where the vertices of P are
arbitrarily colored with two colors, and we want to find the closest pair of vertices of opposite

colors.
Let us now return to the problem of solving cases 1, 2, 5 and 6 in Fig. 5. If case 1 holds,

then chains V, and W, are two subchains of a convex polygon. Thus we can find the shortest

c -

“L cq, WR

Case 1

Case 4 he 5 Case 6

Case7

Case 2 Case 3

Case 8 Case 9

Fis. 5.

1236 M. MCKENNA and G. T. TOUSSAINT

V ma

/
b

n

W max
-

>

wc+l /
wC

Wmin/
/

w’

W"

Fig. 6.

distance between chains V, and W, by applying USERNG to these two chains. Case 2 of Fig.
5 is illustrated in more detail in Fig. 6. One can see that USERNG cannot be applied for case
2 because not all the vertices of V, U WR are in B(V, U W,). However, chains V,_ and WR
can be broken into subchains that can be processed in linear time. The following function,
called CASE2, shows how this is done:

FUNCTION CASE2

(* Let W’ be the list of vertices in W, which are on B(V, U W,).
(In Fig. 6, W’ = {wmaxr . . . ,w,.}.)

Let W” be the list of vertices in W, which are not on B(V, U W,).
(In Fig. 6, W” = {w<+,, . . ,w,,,,~}.)

Let V’ be the list of vertices in VL which are above w,,,.

(In Fig. 6, V’ = {v,,,, . . . ,v,l.,
Let V” be the list of vertices in V, which are not above w,,,.

(In Fig. 6, V” = {v,,,, . . ,v,,,}.)

1. &,n +- smallest of the three values returned by these functions:

(i) USERNG(V,,W’)
(ii) USERNG(V’,W”)

(iii) SCANSET(w,,,,V”)
2. RETURN WITH d,,, as the shortest distance between VL and W,;

END. (* of function CASE2 *)

Function USERNG(V,,W’) can be used because V, and W’ are both on B(V,_ U W’) and
thus form a convex polygon. Similarly, chains V’ and W” form a convex polygon. SCAN-

SET(w,,,, V”) can be used because w,,, 3-dominates the rest of w” and every point in V” 3-

dominates W”. Thus FUNCTION CASE2 works correctly and takes O(m + n) time.
Now consider case 5. Here we can decompose the problem into five subproblems by

splitting V,_ and W, each into three chains as illustrated in Fig. 7 and using FUNCTION CASE5

defined below.

FUNCTION CASE5

(* Let W” be the list of vertices in WR that are on B(V, U W,).
(In Fig. 7, W” = {w,+,, . . . ,w,}.)

Mimmum vertex distance between IWO disjoint convex polygons 1237

“m
w

tin

Fig.

G&t‘- \
we ’ we+1

-2 .Wf+l , wf
/

ii mip
/

W’

W”

111

W

Let W’ be the vertices in W, that are above w”.
(In Fig. 7, W’ = {MI,,,, . ,w,}.)

Let W”’ be the vertices in W, that are below W”.

(In Fig. 7. W”’ = {w(+,. ,MJ,,,}.)
Let V” be the vertices in VL that are below w,,, and above wj,,,,,.

(In Fig. 7. V” = {v,?+,, . . . ,vh}.)
Let V’ be the vertices in V,_ that are not below wmaX.

(In Fig. 7, V’ = {v,,,,, . . . ,v,}.)
Let V”’ be the vertices in V, that are not above w,,,.

(In Fig. 7, V”’ = {v,,+,, . ,v,,,,,}.) *)

1. 4mn + smallest of the five values returned by these functions:

(i) SCANSET(M!,,,,V’)
(ii) USERNG(V” U V”‘,W’)
(iii) USERNG(VL,W”)
(iv) USERNG(V’ U V”,W”‘)
(v) SCANSET(w,,,,V”‘)

2. RETURN WITH d,,,, as the shortest distance between Vi_ and W,;

END. (* of function CASES *)

The three uses of USERNG are justified because in each case a convex polygon is being

processed. The first SCANSET will find the shortest distance between V’ and W’ because wmax
‘-dominates the rest of W’ and every point in V’ 2-dominates W’. The second SCANSET will
find the shortest distance between V”’ and W”’ because w,,, 3-dominates the rest of W”’ and
every point in V”’ 3-dominates W”‘. Thus FUNCTION CASE5 will correctly find the minimum
distance in case 5 in O(nz + 17) time.

Next. consider case 6. which is illustrated in Fig. 8. Let v, be the lowest vertex in
V, fl B(U). and let)I’, be the highest vertex in W, n B(U). Let vii be the lowest vertex of V,

which is above II’,,,,. and let \t’,, be the highest vertex of W, which is below v,,,. Vertices
)‘,..M’, .I‘,, and H’,, are illustrated in Fig. 8. Vertices I’, and v,, will divide V, into an upper, middle

and lower chain. Call these chains V’. V” and V”’ respectively. Similarly, let W’, W” and

W”’ be the upper. middle and lower chains of W,. Looking at case 6, one might at first glance

M. MCKENNA and G. T. TOLJSSAINT I238

V’

V”

III
V

\ “rnir

\

\

\

\

\
\

\
Wmax \ -

’ WC

---_

Wh

\ 7
Wmin

w’

W"

W"'

Fig. 8(a). (Case 6.1).

think that the following procedure will find the shortest distance between V, and W,:

d,in + smallest of the five values returned by these functions:

(i) SCANSET(w,,,V’)
(ii) USERNG(V” U V”‘,W’)

(iii) USERNG(VL,W”)
(iv) USERNG(V’ U V”,W”‘)

(V) SCANSET(v,i”vW”‘)

This will not work in all situations, however. If v, is higher than vh [as in Fig. 8(a)], then
the third use of USERNG need not work because V” is not in B(V’ U V” U W”‘). A simple
sequence of SCANSET’s and USERNG’s that works for all occurrences of case 6 was not

- v

!

“rnax

7 \ \Vh - -
\

\
fmin

\

b
.

c.

L.

I

\

\

\

--

w

--

\
\

\

Wmin

W’

W”

W”’

Fig. 8(b). (Case 6.2)

Minimum vertex distance between two disjoint convex polygons I239

v’

V”

V”

\
“h fr ---

” ‘+
\ “min

4
\

\

\
\

0

\

\,

\

0 ----

I Wmin

'C

Wh

W’

W”

W”’

Fig. 8(c). (Case 6.3).

found. However, case 6 can be further decomposed into the following four subcases:

(6.1) Y, is above v,, and w, is above w,,.
(6.2) v, is above v,, and w,. is below wh.
(6.3) v, is below v,, and w, is above w,,.
(6.4) v, is below vh and MI, is below w,,.

Each of these subcases is illustrated in Fig. 8. For case 6.1, the following statement will

find the shortest distance between V, and W,:

d m,n + smallest of the five values returned by these functions:

(i) SCANSET(w,,,,V’ U V”)

V’

V”

V”’
I_

\

-

Wmax \ -

\

Wmin

W’

W”

WI”

Fig. 8(d). (Case 6.4)

1240

(ii)
(iii)

(iv)
(v)

M. MCKENNA and G. T. TOUSSAINT

USERNG(V”‘,W’)
USERNG(V,, W”)
USERNG(V’,W”‘)
SCANSET(v,,,,W”‘)

The first SCANSET will find the shortest distance between V’ U V” and W’. and the
second SCANSET will find the shortest distance between V” U V”’ and W”‘. For case 6.2,

the following statement will find the shortest distance between V, and W,:

d,,,in t smallest of the five values returned by these functions:

(8
(ii)

(iii)

(iv)
(v)

SCANSET(w,,,,V’ U V”)
USERNG(V”‘,W’)
SCANSET(w,,V,)
USERNG(V’,W”‘)
SCANSET(v,,,,W”‘)

The first SCANSET will return with the shortest distance between V’ U V” and W’. The
second SCANSET will return with the shortest distance between V, and W”, because LV/, 2-
dominates the rest of W”, and every point in V, 2-dominates all of W”. The third SCANSET
will return with the shortest distance between V” U V”’ and W”‘. For case 6.3, the following
statement will find the shortest distance between V,_ and W,:

d nun + smallest of the five values returned by these functions:

(i) SCANSET(w,,,,V’)
(ii) USERNG(V” U V”‘,W’)
(iii) USERNG(V,,W”)
(iv) USERNG(V’ U V”,W”‘)
(v) SCANSET(v,,,,W”‘)

The first SCANSET finds the shortest distance between V’ and W’ and the second SCAN-
SET finds the minimum distance between V”’ and W”‘. Finally, for case 6.4, this last statement
will find the shortest distance between V, and W,:

(i)
(ii)

(iii)

(iv)

(v)

d ml” + smallest of the five values returned by these functions:

SCANSET(w,,,,V’)
USERNG(V” U V”‘,W’)
SCANSET(w,,V,)
USERNG(V’ U V”,W”‘)
SCANSET(v,,,,,W”‘)

The First SCANSET finds the shortest distance between V’ and W’. The second SCANSET

finds the shortest distance between V,_ and W”, because point wlr 2-dominates the rest of W”.
and every point in V, 2-dominates W”. The third SCANSET finds the minimum distance
between V”’ and W”‘.

Finding v,.,v,,,w,, and wh and determining their relative positions by F coordinates can
clearly be done in linear time. Thus, determining which of the four subcases applies can also
be done in linear time. Since each subcase requires only linear time we may conclude that step
9 can be executed correctly in O(m + n) time.

So far we have shown then that steps l-9 of procedure TENSTEP can each be performed
in linear time or faster. Step 10 obviously takes constant time and we have therefore established
the following theorem.

Minimum vertex distance between two disjoint convex polygona 1241

Fig. 9

THEOREM 2
The minimum vertex-distance between V and W can be computed correctly in O(m + n)

time.

6. A LOWER BOUND ON THE COMPLEXITY OF THE PROBLEM

THEOREM 3

The complexity of finding the shortest distance between the vertices of two convex polygons

is R(m + n).
Proof. Two polygons requiring a linear search are constructed and illustrated in Fig. 9.

We place the vertices of polygon W on an arc of a circle, and we let polygon V consist of only
one vertex 1’ located at the center of the circle. If one of the vertices w, of W is perturbed

slightly toward 1’ while maintaining the convexity of W, then the shortest vertex distance between
V and W will be realized by v and the perturbed vertex. To correctly find the shortest distance,
an algorithm will have to perform a linear scan through the vertices of W. Q.E.D.

7. CONCLUSlON

In this paper we have exhibited linear upper and lower bounds on the problem of finding
the closest pair of vertices between two linearly separable convex polygons. The algorithm
establishing the upper bound is based extensively on the application of existing results on
unimodality[1, lo], the relative neighborhood graph[7, 121 and distance between sets[111. An
immediate extension of this problem, not treated here, is the case of inrersecting polygons. By
combining the techniques used in this paper with existing results on polygon decomposition
and convex polygon intersections it is possible to show that the general problem that includes
intersecting polygons can also be solved in O(m + n) time[131.

Several related problems remain open questions. One concerns the extension of the above
problems to three dimensions. Another is the all-nearesr-vertices-benueen-sets problem for
convex polygons. Here, for every vertex \I, in V. we wish to find the closest vertex in W, and

1242 M. MCKENNA and G. T. TOL’SSAINT

for every vertex w, in W, we wish to find the closest vertex in V. The chief difficulty of this
problem lies in the cases where some closest vertices lie in the outer chains.

As mentioned in the introduction an alternate linear algorithm for this problem has been
independently discovered by Chin and Wang[31. Hence the lower bound proof presented here
also establishes the optimality of their algorithm. Thus we observe two different ways of
obtaining linear time algorithms. An interesting open problem from the practical point of view
would be to compare actual running times of implementations of both of these algorithms.

1.

7 _.

3.

4.

5.
6.
7.

8.

9.

10.
11.

12.
13.

REFERENCES

D. Avis, G. T. Toussaint and 8. K. Bhattacharya, On the multimodality of distances in convex polygons. Comp.
Much. Applic. 8, (1982) 153-156.
F. Chin and C. A. Wang, “Optimal algorithms for the intersection and the minimum distance problems between
planar polygons”. technical report, University of Alberta (1982).
E Chin and C. A. Wang, “Minimum vertex distance problem between two convex polygons”, technical report.
University of Alberta (1983).
H. Edelsbrunner, “On Computing the extreme distances between two convex polygons”. technical report F96,
Technical University of Gratz (1982).
J. T. Schwartz, Finding the minimum distance between two convex polygons. Infon. hoc. Letr. 168 (198 I).
M. 1. Shamos, “Computational geometry”, Ph.D. thesis, Yale University (1978).
K. J. Supowit, The relative neighborhood graph, with an application to minimum spanning trees. J.A.C.M. 30,
428 (1983).
G. T. Toussaint, Pattern recognition and geometrical complexity. Proc. 5rh lnrernarional Conference on Pattern
Recognition, Miami Beach, 1324 (1980).
G. T. Toussaint, Computational geometric problems in pattern recognition. Purrer-n Recognition Theor! and
Applicafions. 73 (1981).
G. ‘I’. Toussaint, Complexity, convexity, and unimodality, fnr. J. Comp. IfEfon. Sci. 13, 197 (1984).
G. T. Toussaint and B. K. Bhattacharya, Optimal algorithms for computing the minimum distance between two
finite planar sets. Fifth lnrernarional Congress of Cybernerics and Swems, Mexico City (1981).
G. T. Toussaint, The relative neighborhood graph of a finite planar set. Partern Recogmrion 12, 261 (1980).
G. T. Toussaint, “An optimal algorithm for computing the minimum vertex distance between two crossing convex
polygons”, technical report no. SOCS-83.7, McGill University (1983).

