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Abstract—Let V = {v,u.. .. o, and W = {wiws. .. w,} be two linearly separable convex
polygons whase vertices are specified by their cartesian coordinates in order. An algorithm with O(m + n)
warst-case time complexity s described for finding the minimum euclidean distance between a vertex
viin Voand a vertex sw, in W It s also shown that the algorithm 1s optimal.

I. INTRODUCTION

Let V be a convex polygon described by an ordered circular list {v,,v,, . . . ,v,,} of its m vertices.
Each edge of V is described by a pair (v,,v;, ) of consecutive vertices. We will say that the set
of points in the polygon includes the interior of the polygon and its boundary. Let W be another
convex polygon similarly described by another list {w,w,, . . .,w,} of its n vertices. We assume
that V and W do not intersect.

Let d(p.¢g) be the Euclidean distance between points p and ¢g. This paper describes an
Otm + n) optimal algorithm for finding a pair of vertices (v,.w,} such that for any other pair
of vertices (v,.w,). the following condition holds: d(v,,w)) = d(v,.w)).

This problem is significant for several reasons. In the theory of geometric complexity it
“was an open question whether the problem could be solved in linear time. In practical applications
in pattern recognition and cluster analysis[8. 9} one often encounters problems where it is desired
to compute distances between sets of points representing objects or pattern classes. Finally, it
is likely that other geometric problems may require the computation of this distance for their
solution.

Recently. Chin and Wang|3} have independently found another algorithm for this same
problem. Their solution is similar to ours to the extent that they also perform an initial decom-
position of the problem into four subproblems. However, their decomposition and solutions to
the subproblems vary considerably from ours. In particular, our approach 1s based on the
application of existing results for computing the relative neighbourhood graph of a convex
polygon{7]. These differences will be highlighted in later sections.

Edelsbrunner{4} describes an optimal O(log m + log n) algorithm for finding the minimum
distance between two convex polygons, where the nearest points are not restricted to vertices.
This improves an earlier algorithm for this problem due to Schwartz[5] which runs in O((log
mtlog n)) time.

The following section presents some preliminary definitions and lemmas. Section 3 outlines
a hinear-time ten-step procedure for finding the nearest pair of vertices between V and W. Section
4 shows how steps six. seven and eight of the ten-step procedure can be performed in linear
time and Sec. 5 shows how step nine can be performed in linear time. Section 6 presents a
proof that the nearest-vertices problem has an £0(m + n) worst-case lower-bound. Finally, Sec.
7 presents some concluding remarks and open problems. As a final comment we remark that
where the proofs can readily be reconstructed by the reader, we omit them in the interest of
brevity.

2. PRELIMINARY DEFINITIONS AND RESULTS

DEFINITION

The bridge between convex polygons V and W is the segment whose endpoints are the
nearest points found by Edelsbrunner’s algorithm. Note that the bridge may be realized by a
vertex and an edge-point.
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LEMMA 1
If the bridge between V and W is realized by the pair of vertices (v;,»,). then the shortest
distance between the vertices of V and W is also realized by this pair of vertices.

DEFINITION

A corridor is a region bounded by two distinct parallel lines. We will say that the set of
points in the corridor does not include the bounding lines. The complement of a corridor consists
two disconnected closed half-planes. Each of these half-planes will be called a Aalf-complement.

DEFINITION
We will say that every segment induces a corridor having the following characteristics:

(1) the bounding lines of the corridor are perpendicular to the inducing segment, and
(2) one bounding line passes through each endpoint of the segment.

DEFINITION

The lune of a segment (p,q) is the set of points r in the plane such that dip.r) < d(p.q)
and d(q,7) < d(gq,p). Note that the lune consists of the intersection of the interior of the two
circles. Both of these circles have a radius equal to d(p,q). One circle is centered at point p,
and the other is centered at point q.

LEMMA 2
Let p and g be the endpoints of the bridge between V and W, and let L be the lune of
bridge (p,q). The following two conditions hold:

(1) There cannot be any point s € Vin L, and
(i1) There cannot be any point t € W in L.

LEMMA 3
The bridge between convex polygons V and W induces a corridor K falling between the
polygons V and W. In other words,

A VNK=dand WNK = ¢, and

(ii) V and W lie in separate half-complements of K.

Proof (by contradiction) of condition (i). {See Fig. 1.) Let p and ¢ be the endpoints of the
bridge. From Lemma 2, there cannot be any point of V or W in the lune of bridge (p.q).
Without loss of generality let us now assume that V N K # ¢. This means that there exists
some point t € V N K. Point ¢ is in K, thus on segment (p,?) there must exist a point z in the
lune. Polygon V is convex, therefore segment (p,?) lies totally within V. Therefore point - € V.,
Thus point z falls in both the lune and V which contradicts Lemma 2.

Proof of condition (ii). Let H, be the half-complement of K which contains bridge-endpoint
p €V, and let H, be the half-complement which contains bridge-endpoint ¢ € W. Polygon V
is connected, and H, and H, are disjoint. Thus from condition i), V lies entirely in H, or it lies
entirely in H,. Now p € V and p € H,, therefore V lies entirely in H,. Similarly, polygon W
lies entirely in H, or in H,. Now ¢ € W and g € H,, thus W lies entirely in H.. Q.E.D.

DEFINITION

A point p is left of a point ¢ if the x-coordinate of point p is less than the x-coordinate of
point g. Here, point ¢ is right of p. Similarly, a point p is above a point ¢ if the y-coordinate
of point p is greater than the y-coordinate of point ¢g. Here, point ¢ is below point p.

DEFINITION

We will say that a point p is above a non-vertical line { if a vertical half-line drawn
downward from point p intersects line /. Here, line / lies below point p.

Similarly, a point p is below a non-vertical line [ if a vertical half-line drawn upward trom
point p intersects line /. Here, line / lies above point p.
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DEFINITION
Let H be a half-plane bounded by vertical line. We will say that line /, lies below [, in
H if every point in {, N H is below line /,. Alternately, line [, lies above line /, in H.

3. THE GENERAL PROCEDURE FOR FINDING THE NEAREST
PAIR OF VERTICES

In this section, the algorithm to find the nearest distance between the vertices of two convex
polygons V and W is presented as a ten-step procedure called TENSTEP.
Steps 6, 7, 8 and 9 are four subproblems. Thus the ten-step procedure is actually a linear-
time decompositon of the ‘‘nearest vertices’” problem into the four subproblems of steps 6, 7,
f and 9.

S any F

PROCEDURE TENSTEP

1. Find the bridge between V and W using Edelsbrunner’s algorithm. If the bridge is
realized by two vertices then stop, because these two vertices also realize the shortest distance
between vertices of V and W. Otherwise continue.

2. Let w be the midpoint of this bridge. Translate the convex polygons so that w is at
the origin.

3. Rotate polygons V and W around origin w to make the bridge horizontal. From Lemma
3, it follows that the horizontal bridge induces a vertical corridor between V and W. From here
on in this paper, the term ‘‘corridor’’ will refer to this vertical corridor.

4. Find the vertices of V and W havlno the maximum y-coordinates. Call these vertices

a0 U0 VOIULLOS aifliG v 0 HaAINAI COOILIIRICS, LTS

viax and wi.. . If the maximum y-coordinate of polygon V is realized by a horizontal edge, then

assign the left vertex of this edge to v,,,. If the maximum y-coordinate of polygon W is realized
by a horizontal edge, then assign the right vertex of this edge to wy,,,.

5. Find the vertices of V and W having the minimum y-coordinates. Call these vertices

Viin @Nd W, If the minimum y-coordinate of poiygon V is reaiized by a horizontal edge, then

assign the left vertex of this edge to v,,. If the minimum y-coordinate of polygon W is realized

b\/ a horizontal edoe. then assien the ﬂaht vertex of this Pdop tow

nONLVINAl CURC. WICIL dSSigll v VOIICA Ol min*

The vertices v, and v, delimit a left-chain and a rlght chain in polygon V. Similarly,
vertices wp,, and wy,, delimit a left-chain and a right-chain in polygon W. We will call these
chains Vi, Vi, W and Wy respectively.

Find the minimum distance d, between a vertex in V_ and a vertex in W.
Find the minimum distance d, between a vertex in Vi and a vertex in W,
Find the minimum distance d; between a vertex in Vg and a vertex in Wy.

Find the minimum distance d, between a vertex in V, and a vertex in We.

............................... Qg DOIWEOLIH & VOIRCA 1 vV <« vOILCA

?°.°°.\'.C“
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set {d,,d»,ds,d,}.

Steps 1, 2, 3, 4, and 5 above are computationally trivial and are easily done in O(m + n)
time. Thus we turn our attention to steps 6 through 9.

We note here that this decomposition is different from that used by Chin and Wang[3].
Although they also obtain four chains, their chains are not delimited by Vi Viine Waaxs Wins
but by other vertices of V and W. The decomposition used here allows the problem to be solved
using existing algorithms for the relative neighbourhood graph{7]. Thus the advantage of the
method proposed here over that in [3] is that no new specialized code is needed.

........ G PropLaeie s lal 21 14t Lol

4. PERFORMING STEPS 6. 7 AND 8 OF PROCEDURE TENSTEP

The subproblems in steps 6 and 7 are special cases of the following more general problem.

Let W, be the left-chain of W as determined by steps 4 and 5 of TENSTEP; and let {b,.b..
. . . ,bg} be the list of its vertices in ascending order. Let Vs be any connected subchain of V
represented by a list {a,,a,, . . . ,a,} of its vertices in counterclockwise order. In linear time,
find the minimum distance between a vertex in Vs and a vertex in W

We will solve the more general subproblem. The solution will be readily applicable to the
cases in steps 0, 7 and 8.

LEMMA 4

The perpendicular bisectors of two non-horizontal edges (b;.,b;.|) and (b, ,,b;.,) of W
will intersect somewhere to the right of point &; ..

Proof. Let I, be the perpendicular bisector of edge (b,,b;..,) and let A, be the part of /; which
is on the right of edge (b;,b,.,). Angle (;,b;,,,b;.,) is a right turn, so the intersection of /; and
{;., will be where 4, and A, ,, intersect. Now, at least one of &, or #1;,, lies to the right of point
b;., so [; and [;,, will intersect to the right of point b, ,. Q.E.D.

COROLLARY 4.1

If edges (b;,b;.) and (b;,.,,b;,,) are non-horizontal, then on the left of the corridor, bisector
l;+, lies above bisector /.

If we look at steps 4 and 5 of procedure TENSTEP, we note that the first or last edge of
W_ might be horizontal. If /, is vertical, we will say that no points on the left of the corridor
fall below /,. If [5_, is vertical, we will say that a// points on the left of the corridor fall below

1
g1

COROLLARY 4.2

Let edges (b;,b;, ) and (b, ,,b;,,) be any two consecutive edges in chain W, . Every point
z on the left of the corridor which lies above /;.; will also lie above /. Every point z' on the
left of the corridor which lies below [; will also lie below /;, ;.

LEMMA 3

If among all vertices in W, b, is the vertex nearest to a; € Vi, then a, lies below /, and
above [, _;. (See Fig. 2.)

Proof. d(a;,b,) < d(a;,b;_)); thus g; lies above bisector /,_,. Also, dla.b,) < d(a;,by,);
thus g, lies below bisector /. Q.E.D.

COROLLARY 5.1
Vertex g; also lies above bisectors {_ 5 -3, - - - /i
ARY 5.2

Corot

LLARY 2.2

Vertex a; also lies below bisectors li, . vzy - - o o
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LEMMA 6
Let b, € W, be the vertex nearest to a; € Vs.

(i) Fori <k, d(a,-,b,-+|) < d(aj’bi)'

(i) Fori = k, dla;,b) < da;.b;,,).

Proof.

(i) If { < k, then a; is above /; thus d(a;,b,.,) < d(a;.b;).

(i) If i = k, then a; is below [; thus d(a;,b) < d(a;,b;.). Q.E.D.

Lemma 6 in effect says: Given any a; € Vs, the function d(a;,by) for k = {1,2, .. . B}
is unimodal, i.e., it has one local minimum. This is a key result which allows this problem to
be solved in linear time and follows essentially from the fact that g, lies outside of W. If g,
were in the interior of W, then d(g;,b,) could be a multimodal function as was recently shown
by Avis, Toussaint, and Bhattacharya[1] and Toussaint[10].

Since d(a;,b,) is unimodal, the following function (called FINDMIN) will find the nearest
vertex b, for each vertex a; in V.

FUNCTION FINDMIN
(* input: The list {a,,a,, . . . ,a,} of vertices in Vg, and the list {b),b,, . . . ,bg} of
vertices in Wp.*)

1. je—1;

2. Find k such that d(a,,b,) is minimized;
3. dyin — dla,.by);

4. REPEAT

5. je—j+ 1L

6. IF da,.b,-) < d(a;,b;) THEN

7. WHILE d(a,.b;,) < d(a;b,) DO
8. k—k — 1,

9. ELSE

10. IF d(a;,b;.\) < d(a;,b;) THEN
11. WHILE d(a,.b,..,) < d(a;,b,) DO
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12. k—k -1

13. IF d(a;,b)) < dpin THEN d, < d(a;,b,);

14. UNTIL j = «;

15. RETURN WITH d,, as the minimum distance between Vg and W;
END. (* of function FINDMIN =)

Procedure FINDMIN will work correctly because for every g, in V. statements 6 thru 12
will minimize the unimodal function d(q;,b,). Thus at the end of each REPEAT loop, variable
k points to the vertex b, in Wy nearest to a,. Statement 13 assures that ., at the end of
FINDMIN’s execution will hold the lowest of the minimum distances between pairs (a;,5,).

We will now show that if V has « vertices and W has 3 vertices, then function FINDMIN
takes O(a + B) time.

For each execution of the REPEAT loop, let j, be the value of variable j just before step
5 is performed, and let j; be the value of j after step 5 is performed. Also, let k, be the value
of & just before steps 6 thru 12 are performed.

LEMMA 7
Just before the execution of step 5, variable &, points to the vertex b, nearest to a;.

LEMMA 8
Just before the execution of step 5 of FINDMIN, these conditions hoid:

(i) For all i < ky, a;, lies above bisector /.
(ii) For all i = ko, g; lies below bisector /;.

Now, step 8 of FINDMIN is performed only when d(a;,,b,_)) < d(a;,.b,); i.e. only when
bisector /;_, is above a;,. The execution of step 8 implies that during the current iteration of
the REPEAT loop, variable k is only decremented. (i.e. k << ky.) Thus from condition i) of
Lemma 8, g, is above /,_; which is in turn above q;,. In other words, step 8 is performed only
when edge (a; ,a;,) crosses from above [, _, to below [, _,.

For a given edge (q;,a;,) of Vs, the REPEAT loop is performed only once. If step 8 is
performed, then during this one iteration of the REPEAT loop, variable ¥ will move only
downward. Thus if a given edge (a;,a;,) intersects a bisector /;_,, then step 8 will be performed
at most once for that intersection.

LEMMA 9

During the entire execution of function FINDMIN, step 8 is performed at most 23 times.

Proof. Let N be the number of intersections between edges in Vg and bisectors of edges
in W. From the previous discussion, we know that step 8 is performed only when edge
(a;,,a4;) intersects bisector /,_,. We also know that step 8 is performed at most once for each
of these intersections. Thus the number of executions of step 8 is at most N. Now, Vs is a
subchain of a convex polygon V. Thus a given bisector /,_; will intersect Vg at most twice.
Therefore N is at most twice the number of bisectors, which equals twice the number of edges
in W_. The number of executions of step 8 is at most N, which is in turn at most twice the
number of edges in W . Q.E.D.

Lemma 10
During the entire execution of function FINDMIN, step 12 is performed at most 233 times.
Proof. The proof is similar to that of Lemma 9.

LEmMMA 11

The execution of function FINDMIN takes O(c + B) time.

Proof. Steps 1, 3 and 15 of FINDMIN each take constant time. Step 2 takes O(p) time.
Steps 4, 5, 6, 9, 10, 13, and 14 are each executed at most (a — 1) times. Steps 8 and 12 are
each executed at most 2§ times. Steps 7 and 11 are each executed at most (23 + o — 1)
times. Q.E.D.
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Since @ < m and B < n, the previous lemmas imply the following result.

THEOREM 1

Function FINDMIN takes O(m + n) time to execute.

In linear time FINDMIN determines the nearest distance between vertices in chain W
and vertices in any subchain Vg of polygon V. Function FINDMIN can be used to perform
steps 6 and 7 of procedure TENSTEP in section three of this paper.

Step 8 of TENSTEP can be performed by simply negating the x-coordinate of chains Vy
and Wy, which reduces step 8§ down to step 6.

5. PERFORMING STEP 9 OF PROCEDURE TENSTEP

In step 9 we wish to find the shortest distance between vertices of chains V, and W, in
linear time. Chain V| is a subchain of convex polygon V, so the vertices of V| will determine
a convex polygon. Similarly, chain Wy will also determine a convex polygon as illustrated in
Fig. 3. Let U be the convex hull of V| U W illustrated in Fig. 4. For a set S of points, let
B(S) denote the boundary of the convex hull of S. Thus B(V, U W) = B(U).

Now, for any two chains V, and Wg, 16 logical cases arise determined by whether
Vinax»VminsWmax @Dd wr, €ach does or does not determine a vertex of U. The vertex of U having
the maximum v-coordinate must be either v, or w,,.; and the vertex of U with the minimum
y-coordinate must be either v, or w,,. Thus only 9 of the 16 logical cases are possible. (These
9 cases are illustrated in Fig. 5.)

Recall that the horizontal bridge connects a point in V to a point in W. Thus v, and w,,
must both be above the bridge; and v,,, and w,,;, must both be below the bridge. Because of
this, there cannot be a case where v, is above w,,, or where v, is below w,,,.

In the rest of this paper, let us say that the set of points in a chain will consist of vertices,
and not edge-points. One can perform the following linear-time decomposition on the problem
of performing step 9 of procedure TENSTEP:

(i) Find B(V_ U Wg) in linear time. (Toussaint[9] and Shamos[6] exhibit linear-time
algorithms which find the convex hull of the union of two convex polygons.)
(11) In linear time, determine which of the 9 possible cases holds.
(1ii) Solve the problem for the appropriate case.

Now, case 9 can be reduced to case 5 in linear time by negating the x-coordinate of the
vertices in V and Wy. Similarly, case 3 can be reduced to case 2, and case 8 can be reduced

to case 6. Case 4 can be reduced to case 2 in linear time by negating the y-coordinate of the
vertices in V| and Wpg; and case 7 can be reduced to case 2 by negating both the x and y-

Vma X

Wmox

o A—

min Wmin

Fig. 3.
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Fig. 4.

coordinates of the vertices. To solve step 9 of TENSTEP in linear time, we are thus left to
solve for cases 1, 2, 5 and 6.
At this point, some more definitions and lemmas are introduced:

Let point s; be an element of point set § = {s,,55, .. . . .5.}.

DEFINITION

If 5; has a greater x-coordinate and a greater y-coordinate than every other point in §, then
we will say that point s; 1-dominates the rest of set S. If s5; has a smaller x-coordinate and a
larger y-coordinate than every other point in S, then point s; 2-dominates the rest of set S. If
point s; has a smaller x-coordinate and a smaller y-coordinate than all the other points, then s;
3-dominates the rest of set S. If s; has a larger x-coordinate and a smaller y-coordinate than all
the other points, then s; 4-dominates the rest of S.

LEMMA 12

If point §; k-dominates the rest of set S, and if some point p not in § k-dominates all of
set S, then the point in set S closest to p is s;.

Now, if point s; k-dominates the rest of set S, and if every pointinset P = {p,,p,, . . .,
p.} in turn k-dominates all of set S, then the shortest distance between sets S and P is realized
by s; and some point in P. The following function will thus find the shortest distance between
sets S and P in linear time:

FUNCTION SCANSET(s;,P);

l. dne < infinity;

2. FOR each point p € P DO

3.  IF d(s;,p) < d.i, THEN d;, < d(s;,p);

4. RETURN WITH d,,, as the shortest distance between sets S and P;
END. (* of function SCANSET *)

DEFINITION
Let P = {p,.p>, . . . ,p.} be a finite list of points. The relative neighborhood graph of P
(denoted RNG(P)) is the list of edges {(pi,,p,-,),(pi_,,p,:), C ,(p,-“,p/-“)} such that the lune of

each edge (p;,p;) is empty.

In [12], it is shown that the number of edges in this graph cannot exceed 3z — 6. Thus
the number of edges in RNG(P) is always linear. If the points P = {p,,p,, . . . ,p.} represent
the vertices of a convex polygon in order, then RNG(P) can be found in linear time using an
algorithm by Supowit|7].
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LEMMA 13

Let S; and S, be two finite sets of points. The shortest distance between sets S, and S, will
be realized by an edge in RNG(S; U §,). This result has been proven in [11].

If C, and C, are disjoint subchains of convex polygon P = {p,.p,. . . . ,p.}, then we can
get the shortest distance between vertices of C, and C, in linear time by using the following
algorithm by Toussaint and Bhattacharya]ll]: we use Supowit’s[7] linear algorithm to find
RNG(C, U C,), and then we locate the shortest edge of RNG(C, U C,) that connects a vertex
of C; with a vertex of C,. The following function, called USERNG, uses this technique:

FUNCTION USERNG(C,.C,)

1. Find RNG(C, U C,) using Supowit’s linear algorithm;
2. dy < infinity;
3. FOR each edge (a.b) of RNG(C, U C,) DO
4. IFa€e C,ANDD € C,
OR b € C, AND a € C, THEN
5. IF d(a.b) < d,,, THEN d,_,, < d(a.b);
6. ENDFOR:
7. RETURN WITH d,;, as the shortest distance between C, and C,;

END. (* of function USERNG =)

In [11] this solution is applied to the more general problem where the vertices of P are
arbitrarily colored with two colors, and we want to find the closest pair of vertices of opposite
colors.

Let us now return to the problem of solving cases 1, 2, 5 and 6 in Fig. 5. If case 1 holds,
then chains V| and Wy are two subchains of a convex polygon. Thus we can find the shortest

7’ A d
e -— ) \y WN
N
Y
Case 1 Case 2 Case 3
- N
P\ \\\ ) N
A Y \\ ~
AN L4 > ~
N -
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B 1” N §
Case 4 Case 5 Case 6
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4 r'd Pd
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distance between chains V, and Wy by applying USERNG to these two chains. Case 2 of Fig.
5 is illustrated in more detail in Fig. 6. One can see that USERNG cannot be applied for case
2 because not aii the vertices of V| U Wy are in B(V_ U Wg). However, chains V. and Wy
can be broken into subchains that can be processed in linear time. The following function,
called CASE2, shows how this is done:

FUNCTION CASE2
(* Let W' be the list of vertices in Wy which are on B(V_ U Wy).

(In Fig. 6, W' = {w_... - . . .w})

Let W” be the list of vertices in Wy which are not on B(V, U Wy).
(In Fig. 6, W' = {w.,\, . - . ;Wyin).)

Let V' be the list of vertices in V which are above w,,.
(InFig. 6, V' = {(Vius» - - - »Va})

Let V" be the list of vertices in V| which are not above w,,.
(InFig. 6, V' = {virts + - - sViint)

1. dpn < smallest of the three values returned by these functions:

» Gmin SiQUTsy Vi P

(i) USERNG(V_,W")
(ii) USERNG(V',W")
(iii) SCANSET(w,;n, V")
2. RETURN WITH d,,, as the shortest distance between V,_ and Wy;
END. (* of function CASE2 *)

Function USERNG(V_,W') can be used because V_ and W’ are both on B(V, U W') and
thus form a convex polygon. Similarly, chains V' and W” form a convex polygon. SCAN-

SET(Wui,, V") can be used because wy,, 3-dominates the rest of W” and every point in V" 3-
dominates W”. Thus FUNCTION CASE2 works correctly and takes O(m + n) time.

Now consider case 5. Here we can decompose the problem into five subproblems
splitting V, and Wy each into three chains as illustrated in Fig. 7 and using FUNCTION CAS
defined below.

y

b
E5

FUNCTION CASES

AV YZ Bics of oo anl oo P R,
A H>L Ul ClllLCb lll VVR Uldl &€ Or

W b
InFig. 7, W' = {w,,(, . .. ,w})

£ T o2
7 LCL

—_—
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Let W' be the vertices in Wy that are above W".

(In Fig. 7, W = {wpu, - - - ,W,})
Let W''' be the vertices in Wy that are below W".
(In Fig. 7. W' = {w1v .« -Wat)
Let V” be the vertices in V, that are below w,,, and above w;,.
(In Fig. 7. V" = {veurs - - - Vi)
Let V' be the vertices in V that are not below wp,,.
(In Fig. 7. V' = {vpus - - - 2Vl
Let V" be the vertices in V, that are not above wy,.
(In Fig. 7. V" = {Vhsrs -+« Vmind)) %)

1. d,,, < smallest of the five values returned by these functions:

(i) SCANSET (W, V')
(ii) USERNG(V" U V""" \W')
(iii) USERNG(V_,W")
(iv) USERNG(V' U V" W'
(v) SCANSET(w;,,V'"")
2. RETURN WITH d,,, as the shortest distance between V, and Wg;
END. (% of function CASES =)

The three uses of USERNG are justified because in each case a convex polygon is being
processed. The first SCANSET will find the shortest distance between V' and W’ because wi,,
2-dominates the rest of W' and every point in V' 2-dominates W'. The second SCANSET will
find the shortest distance between V'’ and W'’ because w,,;, 3-dominates the rest of W''* and
every pointin V'"' 3-dominates W'''. Thus FUNCTION CASES5 will correctly find the minimum
distance in case 5 in O(m + n) time.

Next. consider case 6. which is illustrated in Fig. 8. Let v, be the lowest vertex in
V., N B(U). and let . be the highest vertex in We M B(U). Let v, be the lowest vertex of V
which is above w,,.. and let w, be the highest vertex of Wy which is below vy;,. Vertices
y..w..1, and w, are illustrated in Fig. 8. Vertices v, and v, will divide V, into an upper, middle
and lower chain. Call these chains V'. V" and V'’ respectively. Similarly, let W', W" and
W''" be the upper. middle and lower chains of Wy. Looking at case 6, one might at first glance

CAMWA 11:12~G
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Vmax

Fig. 8(a). (Case 6.1).

think that the following procedure will find the shortest distance between V, and Wyg:

d i < smallest of the five values returned by these functions:

(i) SCANSET(Wpao V')

(i) USERNG(V" U V"' \W")
(iii) USERNG(V,,W")

(iv) USERNG(V' U V", W'"")
(v) SCANSET(Vins W)

This will not work in all situations, however. If v, is higher than v, [as in Fig. 8(a)], then
the third use of USERNG need not work because V" is not in B(V' U V" U W'}, A simple
sequence of SCANSET’s and USERNG’s that works for all occurrences of case 6 was not

Vmax

Fig. 8(b). (Case 6.2).
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Fig. 8(c). (Case 6.3).
found. However, case 6 can be further decomposed into the following four subcases:

(6.1) v, is above v, and w, is above w;.
(6.2) v, is above v, and w, is below w,,.
{(6.3) v, is below v, and w, is above w,,.
(6.4) v, is below v, and w, is below w,,.

Each of these subcases is illustrated in Fig. 8. For case 6.1, the following statement will
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d.., < smallest of the five values returned by these functions:

(i) SCANSET(wp,,,, V' U V")

- Vmox
N

Vh/ N
i 41 U ¥%max N
i S = N
~  Vmin Wh w"
~ w. |
~ (93
N q WIII
\/
Wi )

Fig. 8(d). (Case 6.4).
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(33 TIQRERN/C/ Y WY
(i) USLERINULY VY )

(iii) USERNG(V_,W")
(iv) USERNG(V',W''")
(v) SCANSET (v, W''")

The first SCANSET will find the shortest distance between V' U V” and W', and the
second SCANSET will find the shortest distance between V' U V' and W', For case 6.2,
the following statement will find the shortest distance between V, and Wy:

3
-t

-

4]

g «— smallest 6o
Copin smauest 0

(i) SCANSET(w,,,,V' U V")
(ii) USERNG(V""",W")

(i) SCANSET(w,,Vy)

(iv) USERNG(V’,W"")

(v) SCANSET(Vin, W'"")

The first SCANSET will return with the shortest distance between V' U V" and W'. The

cm*nnd SCANSET will return with the shortest distance hetween \/ and W, because u

secor nd W, because w, 2-

dominates the rest of W”, and every point in V, 2-dominates all of W”. The third SCANSET
will return with the shortest distance between V” U V''" and W'"’. For case 6.3, the following
statement will find the shortest distance between V, and Wy:

dnin < smallest of the five values returned by these functions:

(1) SCANSET(Wpax, V')
(i) USERNG(V" U V""" \W')
(iti) USERNG(V, ,W")

Aadiy UOSDANINGR

(iv) USERNG(V' U V" W'")
(v) SCANSET(v,;,, W)

The first SCANSET finds the shortest distance between V' and W’ and the second SCAN-
SET finds the minimum distance between V''" and W'’’. Finally, for case 6.4, this last statement
will find the shortest distance between V_ and Wg:

din < smallest of the five values returned by these functions:

(i) SCANSET(W,0, V')

(i) USERNG(V" U V"', W)
(iii) SCANSET(w,,Vy)

(iv) USERNG(V' U V", W'"")

(v) SCANSET(v,;,, W''")

The first SCANSET finds the

o < artect d
LU HIIOU S ManIi 1 Laus uiv O u

nce hetween V/ and W' The cecond SC
st CC DCIWES a1

i i v o oanG vy . 1nhc oClonu

finds the shortest distance between V| and W", because point w, 2-dominates the rest of W”,
and every point in V, 2-dominates W”. The third SCANSET finds the minimum distance
between V"'’ and W',

Finding v.v,,w., and w, and determining their relative positions by v coordinates can
clearly be done in linear time. Thus, determining which of the four subcases applies can also
be done in linear time. Since each subcase requires only linear time we may conclude that step

Q ran he avacrutad carractly in (M L 9} tima
> €aifl o CXCCUILh COMMCCuy i wum -~ A1) Uine.

So far we have shown then that steps 1-9 of procedure TENSTEP can each be performed
in linear time or faster. Step 10 obviously takes constant time and we have therefore established
the following theorem.
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Fig. 9.

THEOREM 2
The minimum vertex-distance between V and W can be computed correctly in O(m + n)
time.

6. A LOWER BOUND ON THE COMPLEXITY OF THE PROBLEM

THEOREM 3

The complexity of finding the shortest distance between the vertices of two convex polygons
is Q(m + n).

Proof. Two polygons requiring a linear search are constructed and illustrated in Fig. 9.
We place the vertices of polygon W on an arc of a circle, and we let polygon V consist of only
one vertex v located at the center of the circle. If one of the vertices w; of W is perturbed
slightly toward v while maintaining the convexity of W, then the shortest vertex distance between
V and W will be realized by v and the perturbed vertex. To correctly find the shortest distance,
an algorithm will have to perform a linear scan through the vertices of W. Q.E.D.

7. CONCLUSION

In this paper we have exhibited linear upper and lower bounds on the problem of finding
the closest pair of vertices between two linearly separable convex polygons. The algorithm
establishing the upper bound is based extensively on the application of existing results on
unimodality[1, 10}, the relative neighborhood graph(7, 12] and distance between sets[11]. An
immediate extension of this problem, not treated here, is the case of intersecting polygons. By
combining the techniques used in this paper with existing results on polygon decomposition
and convex polygon intersections it is possible to show that the general problem that includes
intersecting polygons can also be solved in O(m + n) time[13].

Several related problems remain open questions. One concerns the extension of the above
problems to three dimensions. Another is the all-nearest-vertices-between-sets problem for
convex polygons. Here, for every vertex v, in V. we wish to find the closest vertex in W, and
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for every vertex w; in W, we wish to find the closest vertex in V. The chief difficulty of this
problem lies in the cases where some closest vertices lie in the outer chains.

As mentioned in the introduction an alternate linear algorithm for this problem has been
independently discovered by Chin and Wang[3]. Hence the lower bound proof presented here
also establishes the optimality of their algorithm. Thus we observe two different ways of
obtaining linear time algorithms. An interesting open problem from the practical point of view
would be to compare actual running times of implementations of both of these algorithms.
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