On approximation intractability of the path–distance–width problem

Koichi Yamazaki

Department of Computer Science Gunma University, 1-5-1 Tenjin-cho, Kiryu zip:376-8515,
Gunma, Japan

Received 21 April 1999; revised 25 February 2000; accepted 10 April 2000

Abstract

Path–distance–width of a graph $G = (V, E)$, denoted by $pdw(G)$, is the minimum integer k satisfying that there is a nonempty subset of $S \subseteq V$ such that the number of the nodes with distance i from S is at most k for any nonnegative integer i. It is known that given a positive integer k and a graph G, the decision problem $pdw(G) \leq k$ is NP-complete even if G is a tree (Yamazaki et al. Lecture Notes in Computer Science, vol. 1203, Springer, Berlin, 1997, pp. 276–287). In this paper, we show that it is NP-hard to approximate the path–distance–width of a graph within a ratio $\frac{4}{3} - \varepsilon$ for any $\varepsilon > 0$, even for trees. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Given a graph G and a set of nodes $X_0 \subseteq V(G)$, we can determine easily and uniquely the decomposition (X_0, \ldots, X_d) in which X_i is the set of nodes of distance i from X_0. Thus, we can also determine the path–distance–width for the root set X_0 of G $pdw_{X_0}(G) = \max_{0 \leq i \leq d}|X_i|$. In this paper we will consider a graph problem in which we wish to minimize the path–distance–width by choosing a suitable root set. The minimum path–distance–width is called the path–distance–width of G, and is denoted by $pdw(G)$. This problem may not be as easy as it may initially appear; indeed, it is known that even for the trees T the decision problem $pdw(T) \leq k$ is NP-complete [11]. It is not known whether or not the problem is fixed parameter tractable, i.e., whether there exists an algorithm which solves the problem with running time $O(f(k)n^c)$, where c is a constant and independent of k, and f is any function.

1 Supported by the Scientific Grant-in-Aid for Encouragement of Young Scientists from Ministry of Education, Science, Sports and Culture of Japan.

E-mail address: koichi@comp.cs.gunma-u.ac.jp (K. Yamazaki).
This problem is related to the following two problems which are NP-complete even for the trees and fixed parameter intractable (see [4,5]):

BANDWIDTH

Instance: A graph \(G \) and a positive integer \(k \).

Question: Is there a bijection \(f: V(G) \rightarrow \{1, \ldots, |V(G)|\} \) such that \(\{u,v\} \in E(G) \) implies \(|f(u) - f(v)| \leq k\)?

UNIFORM EMULATION ON A PATH

Instance: A graph \(G \) and a positive integer \(k \).

Question: Is there a decomposition \((V_0, V_1, \ldots, V_\ell)\) of \(G \) such that

1. \(\bigcup_{i=0}^{\ell} V_i = V(G) \), \(V_i \cap V_j = \emptyset \) for \(0 \leq i < j \leq \ell \),
2. \(|V_i| \leq k \) for all \(0 \leq i \leq \ell \), and
3. \(\{u,v\} \in E(G) \) implies \(u, v \in V_i \cup V_{i+1} \) for some \(0 \leq i \leq \ell - 1 \).

We denote the minimum integer \(k \) which satisfies the condition in BANDWIDTH by \(bw(G) \), similarly by \(uep(G) \) for UNIFORM EMULATION ON A PATH. From the point of view of approximability, there is a close relationship between BANDWIDTH and UNIFORM EMULATION ON A PATH. It is easy to see that \(uep(G) \leq bw(G) \leq 2uep(G) - 1 \), so BANDWIDTH can be approximated within a constant factor if and only if UNIFORM EMULATION ON A PATH can be approximated within a constant factor. The path–distance–width problem can be thought as UNIFORM EMULATION ON A PATH with the restriction that (4) for every \(1 \leq i \leq \ell \) and for every \(v \in V_i \), there exists a node \(u \in V_{i-1} \) which is a neighbor of \(v \).

Recently, Blache et al. have shown, using gadget reduction from 3SAT, that BANDWIDTH does not have a polynomial time approximation algorithm with approximation ratio \(\frac{4}{3} - \varepsilon \) for any \(\varepsilon > 0 \) unless \(P = NP \), even for the trees [2]. It seems to be natural to ask whether or not the path–distance–width problem has a PTAS. In this paper we will show that for the path–distance–width problem there is no polynomial time approximation algorithm with approximation ratio \(\frac{4}{3} - \varepsilon \) for any \(\varepsilon > 0 \) unless \(P = NP \), even for the trees by using gadget reduction from EXACT COVER BY 3-SETS.

This paper is organized as follows: In Section 2 we give the definitions and notation which are used in this paper. The main results of the paper are described in Section 3.

2. Definitions

The graphs we consider are simple, undirected and connected, and contain no self-loops and no multiple edges. For a graph \(G \), we denote its set of node by \(V(G) \) and its set of edges by \(E(G) \). For a graph \(G \) and two nodes \(u \) and \(v \in V(G) \), \(dist_G(u,v) \) denotes the distance between \(u \) and \(v \) which is the number of edges on a shortest path between \(u \) and \(v \). For a set \(S \subseteq V(G) \) and a node \(w \in V(G) \), \(dist_G(S,w) \) denotes \(\min_{v \in S} dist_G(v,w) \).

We recall the definition of the path–distance–width.
Definition. Let G be a graph. A sequence of subsets of $V(G) (X_0, X_1, \ldots, X_d)$ is called the path–distance-decomposition of G with root set X_0 if $X_i = \{ v : \text{dist}_G(X_0, v) = i \} \neq \emptyset$ for all $0 \leq i \leq d$ and $V(G) = \bigcup_{0 \leq i \leq d} X_i$. The path–distance–width of G with root set X_0, denoted by $\text{pdw}_{X_0}(G)$, is $\max_{0 \leq i \leq d} |X_i|$. The path–distance–width of G, denoted by $\text{pdw}(G)$, is $\min_{S \subseteq V(G)} \text{pdw}_S(G)$.

In the proof of the main theorem, we will show a reduction from the following problem.

EXACT COVER BY 3-SETS (X3C)

Instance: A set X with $|X| = 3i$ and a collection \mathcal{C} of three-element subsets of X.

Question: Does \mathcal{C} contain an exact cover for X, i.e., a subcollection $\mathcal{C}' \subseteq \mathcal{C}$ so that each element of X occurs in exactly one member of \mathcal{C}'?

3. Result

The idea of our gadget reduction is as follows. In our gadget reduction, we construct a tree $T_{\mathcal{C}}$ with the following gap property from given an instance $\mathcal{C} = \{C_1, C_2, \ldots, C_n\}$ with $X = \{e_1, e_2, \ldots, e_m\}$ of X3C.

Gap property. There are some constants α and β ($\alpha < \beta$) such that if \mathcal{C} is a yes instance, then $\text{pdw}(T_{\mathcal{C}}) \leq \alpha$, otherwise $\text{pdw}(T_{\mathcal{C}}) \geq \beta$.

From this gap (i.e., between α and β), we can derive the inapproximability (for details see [1]).

Let us consider a modified problem instead of original problem in order to catch the idea. In the modified problem, we will consider a function W instead of pdw as objective function. Then we will construct a weighted tree $T_{\mathcal{C}}$ with the property that the objective value is at most $2s$ for a yes instance, and at least $3s$ for a no instance, where s is a constant.

The construction of $T_{\mathcal{C}}$ is as follows. Without loss of generality, we can assume that in \mathcal{C} no element occurs in more than three subsets (see [8]), and there exists an element in X which occurs in exactly one subset in \mathcal{C}. Each $C_i \in \mathcal{C}$ corresponds to a path $(v^1_i, v^2_i, \ldots, v^m_i)$ of length m. There are two extra paths: left path $(v^1_i, v^2_i, \ldots, v^m_i)$ and right path $(v^1_i, v^2_i, \ldots, v^m_i)$. The root has children as v^1_i, v^1_i, and v^1_i for all $1 \leq i \leq n$. All nodes in $T_{\mathcal{C}}$ are associated with weight 0, s or $2s$. The root has weight $2s$, v^j_i for $1 \leq j \leq m$ has weight s, node v^j_i has weight $(3-i)s$ $(i \leq 3)$ if e_j occurs exactly i subsets, node v^j_i has weight s if e_j occurs in C_i, and the other nodes have weight 0 (see Fig. 1).

Now we demonstrate that $T_{\mathcal{C}}$ has the gap property. Let us consider a path–distance-decomposition $D = (X_0, \ldots, X_d)$ with a root set X_0, and define $W(D)$ as the maximum
of the total weight of X_i over all $0 \leq i \leq d$. It is easy to see that if the instance has an exact cover \mathcal{C}' and $X_0 = \{v_{im} : C_i \in \mathcal{C}'\} \cup \{v_{m}^r\}$, then $W(D) = 2s$ (see Fig. 2). On the other hand, if there exists a path–distance-decomposition D such that $W(D) = 2s$, then the instance has an exact cover. The reason is as follows. Since the total weight of nodes in T_{ℓ} is equal to $4sm + 2s$, if $W(D) = 2s$ then $2m \leq d$. Furthermore, as the diameter of T_{ℓ} is $2m$, $d = 2m$. Hence, the total weight of nodes in X_i is equals to $2s$ for each $0 \leq i \leq d$. From $2m \leq d$, any internal node of T_{ℓ} cannot be in X_0. Thus $X_0 \subseteq \{v_{im}^l : 1 \leq i \leq n\} \cup \{v_{m}^l, v_{m}^r\}$. From the second assumption, there exists an index j ($1 \leq j \leq m$) such that e_j occurs in exactly one subset in \mathcal{C} (in Fig. 1, 8 is such an index). If v_{m}^l and v_{m}^r are both in X_0, then the total weight of nodes in X_{m-j} is at least $3s$. Hence, without loss of generality, we can assume that $X_0 \subseteq \{v_{im}^l : 1 \leq i \leq n\} \cup \{v_{m}^r\}$. Now it is easy to see that $\{C_i : v_{m}^r \in X_0\}$ is an exact cover.

Since $W(D) \geq 2s$ for any path–distance-decomposition D and $W(D)$ is a multiple of s, $W(D) > 2s$ implies $W(D) \geq 3s$. Therefore, if the instance does not have any exact cover \mathcal{C}', then $W(D) \geq 3s$.

Fig. 1. Tree T_{ℓ}.

Fig. 2. A optimal layout for Tree T_{ℓ}.
Theorem 3.1. For a path–distance–width problem, there is no polynomial time-approximation algorithm with approximation ratio $\frac{2}{3} - \varepsilon$ for any $\varepsilon > 0$, unless \textbf{P} = \textbf{NP}.

Proof. We will show a gadget reduction from exact cover by three-set (cf. [2]). Let $X3C = (X, \mathcal{C})$ be an instance of exact cover by three-set in which no element occurs in more than three subsets. The restriction does not violate its \textbf{NP}-completeness (see [8]), and plays an important role in the proof. Put $p = m/3$ and $q = n - p$, where $m = |X|$ and $n = |\mathcal{C}|$ (note that $q \geq 0$), and let s be some integer which is fixed later.

Construct tree T from $X3C$ in the following way. Each subset C_i $(1 \leq i \leq n)$ will be associated with a path of length m in which a star of size s is attached to the jth node iff e_j occurs in C_i. T has two other paths, L and R, of length m, thus T has $m + 2$ paths of length m. A star of size $s + q$ is attached to each node on the path L. Furthermore, two additional stars of size p and $2s + q$ are attached to the first node and the last node on L, respectively. If e_j occurs exactly in i $(i \leq 3)$ subsets, then a star of size $(3 - i)s + p$ is attached to the jth node on path R, while moreover an additional star of size $q + 1$ is attached to the last node on R. T has a center node called root and which has also an attached star of size $2s + p$. The first node of each path and root are linked by an edge (see Fig. 3).

In the following, we will refer to the node v on path $L(R, C_j)$ so that $\text{dist}_T(\text{root}, v) = m$ as $l(r, c_j)$, respectively.

First, we demonstrate that if $X3C$ has an exact cover \mathcal{C}', then $\text{pdw}(T) \leq 2s + n + 1$. Set $X_0 = \{c_i: C_i \in \mathcal{C}'\} \cup \{l\} \cup \{v_1, v_2, \ldots, v_{2r+q}: v_i \ (1 \leq i \leq 2s + q) \text{ is a child of } l\}$ (see Fig. 4). Then obviously $\text{pdw}(T) \leq 2s + n + 1$.

Second, we will show that if $X3C$ does not have an exact cover, then $\text{pdw}(G) \geq \frac{8}{3}s$. Let (X_0, X_1, \ldots, X_d) be an optimal decomposition for G. Without loss of generality, we can assume that:

(A1) the subset C_1 satisfies that $C_1 = \{e_{m-2}, e_{m-1}, e_m\}$ and $C_1 \cap \mathcal{C}' = \emptyset$ for all $C' \in \mathcal{C} - C_1$ (if there is no such set C_1, then modify the instance by adding new elements e_{m+1}, e_{m+2}, e_{m+3} to X and adding new set $\{e_{m+1}, e_{m+2}, e_{m+3}\}$ to \mathcal{C}'), and

(A2) e_{m-3} occurs in exactly three subsets (if there is no such element then the instance can be solved in polynomial time, see [8]).

Let us consider the following cases.

Case 1: $X_0 \not\subseteq \{l, r\} \cup \{v: \text{(the parent of } v\text{)} \in \{l, r, c_1\}\} \cup \{c_j: 1 \leq j \leq n\}$. From the assumption (A1), $c_j \ (2 \leq j \leq n)$ does not have children. Thus in this case X_0 has a node v such that $\text{dist}_T(\text{root}, v) \leq m - 1$. Hence, we have $d \leq 2m$. Let us define the weight of a node v as $k = |h/s| \times s$, where h is the number of neighbors of v with degree 1, and denote the total of weight of nodes in $S \subseteq V(G)$ by $W(S)$. It is easy to see that if for some $i \ (2 \leq i \leq d - 1)$ $W(X_i) \geq 3s$, then $|X_{i+1}| \geq 3s$. That is, $\text{pdw}(G) < 3s$ implies $W(X_i) \leq 2s$ for all $2 \leq i \leq d - 1$. From $d \leq 2m$, if $\text{pdw}(G) < 3s$ then $W(X_2 \cup X_3 \cup \cdots \cup X_{d-1})$ is at most $2s((d - 1) - 2 + 1) \leq 2s(2m - 2)$. Note that $W(X_d) = 0$ as $d > 2$. Since $W(V(G))$ is at least $s(4m + 4)$, $W(X_0 \cup X_1)$ is at least $8s$. Thus $|X_0 \cup X_1 \cup X_2|$ is at least $8s$. Therefore, $\text{pdw}(G) \geq \frac{8}{3}s.$
Fig. 3. Tree T.

Fig. 4. A layout satisfying $pdw(T) \leq 2s + n + 1$.
Case 2: \(X_0 \subseteq \{ l, r \} \cup \{ v : (\text{the parent of } v) \in \{ l, r, c_1 \} \} \cup \{ c_j : 1 \leq j \leq n \} \) and \(l \notin X_0 \).

Let \(i \) be the index such that \(l \in X_i \). Then in this case \(i \geq 1 \). If \(i \geq 2 \) then the \((2s + q) + (s + q)\) children of \(l \) have to be in \(X_{i+1} \). Thus, \(p\text{d}w(T) \geq 3s \). If \(i = 1 \) then we have two subcases root \(\in X_0 \) and root \(\in X_{m+1} \). If root \(\in X_{m+1} \) then \(c_j \notin X_0 \) for all \((2 \leq j \leq n)\), which means \(p\text{d}w(G) \geq 3s \) (recall the assumption (A1) and (A2)). If root \(\in X_m \), then the \(2s + p \) children of root have to be in \(X_{m+1} \). From \(i = 1 \), the \((s + q) + p\) children of the first node on path \(L \) have to be in \(X_{m+1} \). Thus, we have \(p\text{d}w(G) \geq ((s + q) + p) + (2s + p) \).

Case 3: \(X_0 \subseteq \{ l, r \} \cup \{ v : (\text{the parent of } v) \in \{ l, r, c_1 \} \} \cup \{ c_j : 1 \leq j \leq n \} \), \(l \in X_0 \), and \(\{ v : v \text{ is a child of } r \} \cap X_0 \neq \emptyset \).

From \(l \in X_0 \), there are at least \(s + q \) nodes of distance 3 from \(l \). In this case, as \(r \notin X_0 \), the parent of \(r \) in \(T \) is in \(X_2 \), so \(X_3 \) has other \(2s + p \) nodes of distance 3. Thus, \(|X_3| \geq (s + q) + (2s + p)\) (see left-hand side in Fig. 5).

Case 4: \(X_0 \subseteq \{ l \} \cup \{ v : (\text{the parent of } v) \in \{ l, r, c_1 \} \} \cup \{ c_j : 1 \leq j \leq n \} \), \(l \in X_0 \), and \(\{ v : v \text{ is a child of } r \} \cap X_0 \neq \emptyset \).

Without loss of generality we can assume \(c_x \in X_0 \) and \(c_y, c_z \notin X_0 \) otherwise we easily get \(p\text{d}w(G) \geq 3s \). Since \(l, c_x \in X_0 \) and \(c_1 \in X_1 \), we have \(|X_4| \geq (s + 1) + (s + 1) + (s + q + 1)\) (see the right-hand side in Fig. 5).
Case 6: $X_0 \subseteq \{l\} \cup \{v: \text{(the parent of } v) \in \{l, c_1\}\} \cup \{c_j: 1 \leq j \leq n\}$ and $l, c_1 \in X_0$. We can assume that $2s + q$ children of l are in X_0, other $s + q$ children of l are in X_1, and the children of c_1 are in X_1, because each c_j ($2 \leq j \leq n$) does not have children (i.e., leaves) and $l, c_1 \in X_0$. Now it is easy to see that if \mathcal{X}_3C does not have exact set cover, then $pdw(G) \geq 3s$.

As a result, in all cases we have seen that $pdw(G)$ is at least $\frac{3}{8}s$. Therefore, if \mathcal{X}_3C does not have an exact cover, then $pdw(G) \geq \frac{3}{8}s$.

Suppose that there exists a $\frac{4}{3} - \varepsilon$ polynomial time approximation algorithm A_ε for some $\varepsilon > 0$. Then we set $s > (4/3 - \varepsilon)(n+1)/2\varepsilon$, which means $\frac{3}{8}s > (\frac{4}{3} - \varepsilon)(2s + n + 1)$. It is clear that if \mathcal{X}_3C has an exact cover, then the output of A_ε is at most $2s + n + 1$. On the other hand, if \mathcal{X}_3C does not have an exact cover then the output of A_ε is at least $\frac{3}{8}s$. This means that EXACT COVER BY 3-SETS can be solved in polynomial time. Hence, we have shown that approximating the path–distance–width problem on trees is NP-hard for a factor of $\frac{4}{3} - \varepsilon$. □

4. Conclusion

We have shown that the path–distance–width problem (for short PDWP) does not have a PTAS. PDWP is related to the bandwidth problem (for short BWP). Recently, polynomial time approximation algorithms with a polylogarithmic approximation factor have been presented for BWP [3,6]. The author conjectures that PDWP have a polynomial time approximation algorithm with a polylogarithmic approximation factor. The technique volume respecting Euclidean embeddings introduced in [6] might be useful to derive such an approximation algorithm.

On the other hand, it have been shown that for any constant k there is no polynomial time approximation algorithm with a constant approximation factor of k for BWP [10]. It is also known that BWP can be approximated within a constant for dense graphs [9]. So the author conjectures that there is no polynomial time approximation algorithm with a constant approximation factor for PDWP, and PDWP has a PTAS for dense graphs (cf. [7]).

As another interesting further work, there is a graph–theoretical problem: What is the path–distance–width of complete k-ary trees? We do not know even if $k = 2$.

References

