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Abstract 

Melloy, B.J. and G.K. Bennett, Computing the exponential of an intensity matrix, Journal of Computational 
and Applied Mathematics 46 (1993) 405-413. 

A scaling and squaring procedure for computing the exponential of an intensity matrix is developed in this 
paper. Intensity matrices occur naturally in inventory, reliability and queueing systems. It will be seen that 
when these matrices are properly transformed, they are well-conditioned for the matrix exponential function, 
and particularly well-suited for the scaling and squaring approach. As a result, many of the reliability problems 
associated with the standard procedure have been circumvented. 
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1. Introduction 

A discrete-state continuous-time stationary Markov process may be represented as a system 
of linear, first-order differential equations. For time-homogeneous processes, the probability 
state vector may be found directly as 

77(t) = eQ’~(0), (1) 

where t, t 2 0, is a time scalar, ~(0) is the initial-state probability vector, eQr is the transition 
matrix, and Q is the intensity matrix. 

The intensity matrix Q has a very specialized structure which is characterized by [4] 

4ij a O> (2) 
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for all i and j, i #j, and 

j=l 

for all i. These matrices arise naturally, for example, in reliability, inventory and queueing 
systems [3]. Moreover, the exponential of an intensity matrix is (row) stochastic [4]. 

A methodology for computing the matrix exponential will be developed in Section 2 which 
exploits both the special structure of intensity and transition matrices. Upper and lower error 
bounds will be constructed for this procedure in Section 3. In Section 4, the reliability of the 
algorithm will be examined. In particular, it will be seen (in Section 5) that when intensity 
matrices are properly preconditioned, they exhibit many of the same desirable properties as do 
normal matrices for the matrix exponential function. Finally, concluding remarks will follow in 
Section 6. 

2. Algorithm development 

While there are many methods available for computing the matrix exponential, the scaling 
and squaring technique is among the most highly regarded [6]. Scaling and squaring methods 
employ the identity 

,Qt = [e2-“Ql]2m, (4) 
where m is a positive integer. Squaring the matrix is both more efficient and less prone to 
round-off error than performing 2”-’ successive matrix multiplications. The motivation for 
scaling the matrix is to reduce the round-off error difficulties and operation count, which are 
proportional to 11 2-mQt 11. The matrix exponential may then be computed satisfactorily using 
either diagonal PadC or Taylor approximants [6]. 

Algorithms based on the scaling and squaring algorithm have been developed for both Taylor 
and diagonal Pad& approximants in [8,12], respectively. These two algorithms are fundamentally 
identical, as the former was adapted from the latter. Prior to scaling the intensity matrix, the 
algorithm begins with a series of two inexpensive preconditioning steps, translation and 
balancing, which serve to reduce the norm of the matrix. 

First, the intensity matrix is translated by shifting the origin in the manner indicated below: 

Q’=Q+wI. 

The objective is to choose the shift operator o in such a way that 

IIQ’ll < IIQII, 

(5) 

(6) 
where the norm will be defined as 

II Q II = I~zyn ,C l qij l * 
. 1 ,=I 

Clearly, this operation is less expensive (and more stable [lo]) than scaling/squaring steps. 
(The norm that was used by the aforementioned authors was actually L,, rather than L,. 
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Nevertheless, if the alternate column stochastic convention was employed here (e.g., [5,9]), the 
identical results would be obtained for L,.) 

The value of the shift operator which minimizes the norm of an arbitrary matrix over all 
possible translations is difficult to obtain in practice, and consequently it is normally approxi- 
mated [12]. However, if the original matrix is an intensity matrix, no such approximation is 
necessary; the exact shift operator can be shown to be the absolute value of the most negative 
diagonal element. This is demonstrated in the following theorem. 

Theorem 1. Let Q’ = Q + WI, where Q is 
minimizes II Q’ II is 

w = q = lTlyn I 9ji I. 
. . 

Proof. 

an intensity matrix. Then the value of o which 

min II Q’ II = min 
w w II = min 

w 

= mjn [ ly::n [ I9ii + W l_4iil]. 
. . 

i 

max 
1 GiGn 1 I9ii + w I + k I4ij I 

j=l 
j#i Ii 

Let q = maxl ~ i ~ n ( qii (. Then, two cases must be distinguished: o < q and o 2 q. First 
suppose that o <q and let i denote the row where q occurs. Then 

n 

C IS~jl= lq+@l+q’ 
j=l 

Since ) q + o I > 0 for i, it follows that 

j=l 

and hence for this case )I Q’ 1) is strictly greater than q. 
Next consider the case when o 2 q. Then 

m~nIlQ’Il =rn~r~[~ma~~[q,~+w--q,,]]=o. 
. . 

Therefore II Q’ II is minimized when o = q. q 

Finally, note that the translation of Theorem 1 yields a matrix with a nonnegative diagonal 
and identical row norms. Therefore, Q’ is a positive-scalar multiple of a stochastic matrix. 
Moreover, since 

II Q II = lyyyn . . 

the optimal translation of the matrix has reduced the norm by exactly one-half. 
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The second preconditioning step, that of balancing the translated matrix, attempts to 
minimize the norm over all possible diagonal similarity transformations. That is 

min II E’Q’D II, 
DEly 

(9) 
where P is the set of all IZ x n nonsingular diagonal matrices. (The set P is restricted to 
integer powers of the machine base in order that rounding errors are not introduced.) This 
preconditioning step is also superior to scaling/squaring operations with respect to stability 
and efficiency. It will now be demonstrated, however, that this step may be omitted as the 
translated intensity matrix is already balanced. 

Theorem 2. Let Q’ = Q + qI, where Q is an intensity matrix. If q = maxI GiGn ( qii (, then 

min I( F’Q’D II = II Q’ II. 
DE-P 

Proof. Let Q” = D-‘Q’D. The ith row norm of the balanced matrix Q” may then be expressed 
as 

for all i. Next define 

&= I$jpq’ 
. . 

with i denoting the row where this entry occurs. Now from Theorem 1 it is known that 

j=l 

for all i. Hence for column i of the balanced matrix Q” it follows that 

since 

dj 

I I z 
2 1, 

for all j. Therefore the norm of the balanced matrix Q” will be greater than the norm of the 
original matrix Q’, unless 

dj = di, 

for all j. •i 

Thus there is no diagonal similarity transformation which will reduce the norm of the 
translated intensity matrix. 

Now, as a result of (4), (5) and Theorem 1, the transition matrix is expressed as 
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The positive integer m is chosen such that 

2”-’ < II Q’t I] < 2”, (11) 
which ensures that the norm of the scaled matrix is bounded by unity. (Observe, therefore, that 
as a result of (8), the number of scaling/squaring steps required has been reduced by one.> 
This serves both to reduce the round-off error and to increase the accuracy of the approxi- 
mants. 

Alternately, the matrix exponential may be represented as 

,Qr = [e-2-mqre2-“Q”]2m. 

This modification will preclude the possibility of a machine overflow error, since 

lk e-2mmqte2-mQ’t ]“II = lI[e2mmQt]2’II = 1, 

for i = 1, 2,. . ., m. Equation (13) follows from the fact that integer powers of 
matrix are also stochastic [4]. 

(13) 
a stochastic 

Subsequently, the scaled matrix exponential is approximated using Pad& rational functions: 

eSQ’ = [ D,,( -se’)] -‘N,,(sQ’), (14) 
where 

(12) 

Dkl(_SQ,)= e (k+l-i)! I! 
izo (k + I)! i! (1- i)! bQ’L 

4&Q’) = i 
(k+Z-i)! k! 

izo (k+l)! i!(k-i)!(SQ’)t’ 

(15) 

(16) 

and, for convenience, s = 2-” t. A Taylor approximant is obtained when I is set equal to zero. 
Diagonal Pad6 approximants are those which have the same degree polynomial in the 
numerator and denominator, i.e., when I = k. In both cases, the value of k is selected such that 
a predetermined truncation error criterion is satisfied. The diagonal form of the Pad6 
approximants is generally preferred because it has the smallest truncation error of those Pad& 
approximants requiring k - 1 matrix multiplications [12]. 

3. Error bounds 

Error bounds are commonly constructed in order to provide a measure of accuracy for 
numerical procedures. Three bounds will be described in this section: a lower bound, a 
recursive bound and an upper error bound. First, it is not possible to formulate an expression 
for a lower bound ordinarily, because the final form of the resultant matrix is unknown. 
However, here, due to the well-known structure of the (stochastic) 
derivation of this bound is straightforward: 

11 eQr - eFt 11 
Ej = 

IleQ’ II = max [ iI lbQrlij- [e?Iij~] 2 I~~ni iY 
14iGn ;=1 . . j=l 

transition matrix, the 

LeQtlijJ - 2 l[eft]iji[ 
;=1 

(17) 
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where the subscript c denotes a computed quantity. Observe that the absolute and relative 
error are equivalent, which is also due to the fact that the transition matrix is stochastic. 

Second, in order to detect algorithm failure, it is necessary to monitor the error during the 
course of the procedure. This is accomplished by recursively calculating the error at each stage 
of computation. The recursive equation, originally developed in [12], is modified using (lo), (12) 
and (13) to obtain 

~l~~jl ~2115i_111+l15i_1112+~~-p 
Il[r epsqesQ’ 2’s’ c 2> 1 III 

for i= 1, 2,..., m, where p denotes the number of digits used to represent the mantissa of a 
floating-point number, with 

II 5a II G epsq [IIWQ')ll +h(~Q'>lh (19) 
where Tk(s&‘> and R,(sQ’) denote the truncation and round-off error, respectively. (Of 
course, the equations for these errors are specific to both the Taylor and Pad6 approximants; 
the former are detailed in [5,8], and the latter in [12].) The purpose of this bound is to indicate 
the minimum number of accurate digits in the norm of the computed matrix exponential; a 
prohibitively large value implies algorithm failure. Lastly, the upper error bound is simply 

6, = 5,Y (20) 

due to (18). 

4. Algorithm reliability 

Recall that the computational error will be monitored using the recursive formula of (18). A 
large error estimate, which will render the results unusable, may be the result of any of three 
causes: (i) the problem is inherently sensitive; (ii> the algorithm is unstable; or (iii) the error 
bound has been severely overestimated [6]. Thus, although the error bound precludes the 
possibility of accepting erroneous results, it is not entirely satisfactory since (in general) it 
cannot discriminate between the above three situations. These issues will now be re-examined 
with regard to the specific matrix exponential problem described herein. 

Van Loan [ll] has developed an exponential condition number which serves to measure the 
sensitivity of the map A += eAt, where A denotes an arbitrary matrix. Naturally, an ill-condi- 
tioned problem may result in algorithm failure. However, the condition number v(Q’, t) is as 
small as it can be for the translated intensity matrix Q’; that is, 

v(Qf, t) G ,(lle 
II Q’ II 

Q’(f-x, (1. (jeQ’x (( dx_ 

II eQft II 

= 
s 

II Q’ II ’ eIIQ’IIc~-~)eIIQ’ll~ dx_ = 

0 
e II Q’ II t II Q’ II /;: dx = II Q’ II f, (21) 

due to Lemma A.1 (see the Appendix). Therefore, the translation step yields a matrix which is 
well-conditioned for the matrix exponential function. 

Algorithm instability may be the result of either of two causes; the “hump” phenomenon, or 
catastrophic subtractive cancellation [6]. The algorithm becomes unstable when the elements of 
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the matrix exponential grow before they decay, which gives rise to a “hump” in the norm. The 
difficulty occurs when 2 -“‘t is under the “hump” and t is beyond it, for then 

Ile 2mmAt 11 2m B lIeAt II (22) 

[6]. Since the rounding error E is of order [l] 

E = z4 II e2-mAt II 2m, (23) 

where u represents the unit round-off, the round-off error is usually small relative to 
Ile 2-“At II 2m rather than to 1) eAt 1). However, for this particular problem, 

E = u Ile2-mQf 11 2” = u lleQt 1) = 24 (24) 

(since e2-“Qt is obviously also a stochastic matrix), which precludes the possibility of a hump. 
Subtractive cancellation, on the other hand, typically occurs when relatively large values of 

the same order of magnitude are subtracted. In this event, absolute errors may be created 
which are larger than the final result, causing irreversible contamination. It has been conjec- 
tured that this catastrophic cancellation may only occur in the presence of a large “hump”, but 
the relationship of round-off error to the sensitivity of the matrix exponential function remains 
an open issue [6]. 

The diagonal Pade approximants may be susceptible to subtractive cancellation because the 
Taylor expansion of the diagonal Pad& approximant, beyond 24 has negative coefficients. In 
addition, D,,( -se’) may be ill-conditioned with respect to inversion [6]. In contrast, the 
Taylor approximant NkO(sQ’> is a function of matrices which are strictly nonnegative [2], and 
requires no matrix inversion. Thus although the Pad& approximant is more efficient, the Taylor 
approximant is arguably more stable. 

Ideally, a large error estimate would occur only when the algorithm has failed. Unfortu- 
nately, this is not the case; such an indication may be spurious. Statistical bounds have been 
developed to address this problem [13], but they are not completely satisfactory. However, for 
this particular problem, in the absence of numerical difficulties, the actual computational error 
will be approximately equal to 

II Ej II = 2 II Ei-1 II + II Ei-1 II 2 + na-@, (25) 
for i = 1, 2,. . . , m, due to (13) and (18). Observe that this equation reflects only the truncation 
and round-off error, which precludes the possibility of a “false alarm”. Thus, the upper bound 
of (20) will be extremely sharp. As a result, when this upper bound is used in conjunction with 
the lower bound of (171, the characteristic uncertainty surrounding the error estimate is 
minimized. 

Finally, it is noteworthy that the magnitude of the error realized when employing the Taylor 
polynomial is (normally) roughly equal to that of the lower bound (17). This is the case because, 
typically, [eFtlij E [O, 11, for all i and j, due to the fact that the Taylor polynomial is a 
monotonically increasing function (assuming negligible round-off error). In other words, 

due to the tendency of round-off error to cancel. 
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5. Discussion 

It is noteworthy that Q’, which is a positive-scalar multiple of a stochastic matrix, displays 
many characteristics with respect to L, that normal matrices exhibit with respect to L, for the 
matrix exponential problem. Specifically, (i> the matrices are inherently balanced (Theorem 2 
and [7]), (ii) the “hump” does not exist ((24) and [6]), and (iii) the exponential condition number 
is as small as it can be ((21) and [ll]). Thus it may be conjectured that these matrices are 
“L,-normal”. However, since the condition number for the inversion of a positive-scalar 
multiple of a stochastic matrix is not equal to 1, this supposition is not correct. 

6. Conclusion 

In this paper, an algorithm was developed expressly for the purpose of computing the 
exponential of an intensity matrix. The procedure is based on the scaling and squaring 
procedure, which is one of the most effective procedures known for computing the matrix 
exponential. First, the intensity matrix is preconditioned in a single step which yields both the 
optimal translation (with respect to L,) and a balanced matrix. The scaled matrix exponential is 
then computed using either Taylor [8] or diagonal Pad& [12] functions. Once the scaled 
approximant is obtained, it is normalized, which precludes the possibility of a program- 
terminating overflow error during the squaring process. Lastly, the normalized scaled approxi- 
mant is squared, which yields the transition matrix. 

Computing the matrix exponential in this manner resulted in an extremely reliable proce- 
dure. First, the translated matrix was shown to be ideally conditioned for the matrix exponen- 
tial problem. Moreover, since the translated matrix is nonnegative, employing the Taylor 
polynomial would also circumvent any possibility of catastrophic cancellation. Further, no 
hump exists, due to the inherent structure of the transition matrix. Finally, an error interval was 
developed (with a sharp upper bound) which minimizes the characteristic uncertainty surround- 
ing the error estimate (thereby avoiding the need for a supplemental statistical bound). 

Appendix 

Lemma A.1. Let U = cP, where P is a stochastic matrix and c is a nonnegative real scalar. Then 

Proof. It is not difficult to show that the Cauchy-Schwarz and triangle inequalities are strict 
equalities for positive-scalar multiples of row stochastic matrices in L,. Therefore it follows 
directly that 
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