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Global existence

1. Introduction

We consider the following equations of multi-dimensional compressible viscoelastic flows [9,11,15,

21]:
pr + div(pir) =0, (1.1a)
(Pl +div(pli ® ) — u Al — (A + p)Vdivii + VP(p) = adiv(pFF '), (1.1b)
Ft+1-VF = VUF, (11¢)

* Corresponding author. Current address: Courant Institute of Mathematical Sciences, New York University, New York, NY
10012, USA.
E-mail addresses: xianpeng@cims.nyu.edu (X. Hu), dwang@math.pitt.edu (D. Wang).

0022-0396/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2010.10.017


https://core.ac.uk/display/82507064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jde.2010.10.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:xianpeng@cims.nyu.edu
mailto:dwang@math.pitt.edu
http://dx.doi.org/10.1016/j.jde.2010.10.017

X. Hu, D. Wang /J. Differential Equations 250 (2011) 1200-1231 1201

where p stands for the density, @ € RN (N =2,3) the velocity, and F € MN*N (the set of N x N
matrices) the deformation gradient. The viscosity coefficients u, A are two constants satisfying p > 0,
2 + NA > 0, which ensures that the operator —u Al — (A + @)V divia is a strongly elliptic operator.
The pressure term P(0) is an increasing and convex function of 6 for ¢ > 0. The symbol ® denotes
the Kronecker tensor product, F' means the transpose matrix of F, and the notation @ - VF is un-
derstood to be (i~ V)F. For system (1.1), the corresponding elastic energy is chosen to be the special
form of the Hookean linear elasticity:

o
W(F) = 5|F|2, a >0,

which, however, does not reduce the essential difficulties for analysis. The methods and results of this
paper can be applied to more general cases.
In this paper, we consider the Cauchy problem of system (1.1) subject to the initial condition:

(5,8, F)|t=0 = (Po(x), Bo(x), Fo(x)), xeRN, (12)

and we are interested in the global existence and uniqueness of strong solution to the initial-value
problem (1.1)-(1.2) near its equilibrium state in the multi-dimensional space RN. Here the equilibrium
state of the system (1.1) is defined as: p is a positive constant (for simplicity, 6 =1), @=0, and F=1
(the identity matrix in M3*3). We introduce a new unknown variable E by setting

F=I+E.
Then, (1.1) becomes
Or + div(pi) =0, (1.3a)
(Pl + div(Pl ® &) — Al — (1 + 1)V divii+ VP(p) =adiv(p(I + EYT+E)T),  (1.3b)
E;+10-VE = VaE + va, (1.3c)
with the initial data
(.8, E)|t=0 = (Po(x), Bo(x), Eo(x)), xeRN. (14)

There have been some results about the local existence of strong solutions to the compressible
viscoelastic flows, see [10,15] and the references therein. The global existence to (1.1) is a difficult
problem due to the appearance of the deformation gradient. The challenge is to identify an appro-
priate functional space where the Cauchy problem (1.1)-(1.2) is well-posed globally in time. In this
paper, to construct a global solution, we are going to use the scaling for the compressible viscoelas-
tic flow to guess which space may be critical. We observe that system (1.1) is invariant under the
transformation

(Po(x), o (x), Fo(x)) = (Po(Ix), g (Ix), Fo(lx)),
(A, %), 0(t, %), E(t, %) — (p(Pt, Ix), la(Pt, Ix), F (Pt Ix)),

up to changes of the pressure law P into [P, and « into I?«.. This suggests the following definition:
A functional space A ¢ S’ (RN) x (S’ RN)N x (S’ (RN))N*N is called a critical space if the associated norm is
invariant under the transformation (p,u, F) — (p(l-), lu(l-), F(l-)) (up to a constant independent of ), where
&' is the space of tempered distributions, i.e., the dual of the Schwartz space S. According to this definition,
B x (B%_l)N % BY (see Section 2 for the definition of B := Bi](RN)) is a critical space. The mo-

tivations to use the homogeneous Besov space BS with the derivative index % include two points:
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first, BY is an algebra embedded in L, which allows us to control the density and the deformation
gradient from below and from above without requiring more regularity on derivatives of 0 and F;

second, the product is continuous from B x B% to BY% for 0 <o <N.

For the global existence, the hardest part of the argument is to deal with the linear terms Vp,
divE and Vi, especially the first two terms. It turns out that finding some dissipation for divE is
a crucial step. This step for the incompressible case has been fulfilled successfully in [14]. For the
compressible system (1.1), we will reformulate the system, and use the divergence-free property of
compressible viscoelastic flows for the “compressible” part of the velocity, while the property on curl
is used to deal with the “incompressible” part of the velocity. Meanwhile, we decompose the defor-
mation gradient into two parts: the symmetric part and the antisymmetric part. With this technique
and decomposition, we will be able to obtain successfully the dissipation estimates on the density and
the deformation gradient for an auxiliary system with convection terms. These estimates are crucial
for the global existence. We remark that for the global existence of solutions to (1.1) near equilib-
rium, the intrinsic properties of the divergence and the curl are important and necessary. During the
final stage of this paper, we noticed that some similar results are also obtained independently in [20],
where the intrinsic properties of the divergence and curl of viscoelastic flows (see Appendix A) to
system (1.1) are used to control the dissipation of the deformation gradient F.

For the incompressible viscoelastic flows and related models, there are many papers in literature
on classical solutions (cf. [7,8,12,13,17] and the references therein). On the other hand, the global
existence of weak solutions to the incompressible viscoelastic flows with large initial data is still an
outstanding open question, although there are some progress in that direction [16,18,19]. For the well-
posedness of global solutions to the compressible Navier-Stokes equations, see [3,4] (for barotropic
cases), and [5] (for barotropic cases with heat conduction). For the inviscid elastodynamics, see [22]
and their references on the global existence of classical solutions.

The rest of this paper is organized as follows. In Section 2, we review the definitions of Besov
spaces and show some good property of the Besov spaces. In Section 3, we reformulate the sys-
tem (1.1) and state the main theorem. Section 4 is devoted to a priori estimates for an auxiliary linear
system with convection terms. In Section 5, we give the proof of our main result, while in Appendix A,
we prove two intrinsic properties of compressible viscoelastic flows.

2. Basic properties of Besov spaces

Throughout this paper, we use C for a generic constant, and denote A < CB by A < B. The notation
A= B means that A < B and B < A. Also we use (ctg)qez to denote a sequence such that quz og < 1.

(flg) denotes the inner product of two functions f, g in L2(RN). The standard summation notation
over the repeated index is adopted in this paper.

The definition of homogeneous Besov spaces is built on a homogeneous Littlewood-Paley decom-
position. First, we introduce a function ¥ € C®(RN), supported in the shell

5 12
C= RN: Z <1< =,
{Ee 6 €] 5}

such that

> w2 %) =1, ifszo0.

qeZ

Denoting by h := F~14 the inverse Fourier transform of ¢/, we define the dyadic blocks as follows:

Agf = (279D) f = 29N f h(2%) f(x— y)dy

RN
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and
Sqf = Z Ap f s
p<q-1
where D is the first-order differential operator. The formal decomposition

f=) Agf (21

qeZ

is called the homogeneous Littlewood-Paley decomposition. But unfortunately, the above identity is
not always true in S’(RV) as pointed out in [4]. Nevertheless, (2.1) is true modulo polynomials (see
[1,2,6]).

For seR and f e S'(RN), we denote

£ 8 == 2% Aq fll 2.

qeZ

Notice that || - ||gs is only a semi-norm on {f € S'(RN): | fllgs < oo}, because || f||ps vanishes if and
only if f is a polynomial. This leads us to introduce the following definition for homogeneous Besov
spaces:

Definition 2.1. Let s € R and m = —[§ + 1 —s]. If m <0, we set

B = {feS’(RN): I £l gs <ooandf=ZAqfinS’(RN)].

qeZ
If m > 0, we denote by Py, the set of polynomials with N variables of degree < m and define

BS = {f € S'(RN)/Pm: |Ifllps <ooand f =" Aqf in S/(RN)/Pm}.

qe’
Functions in B® have many good properties (see Proposition 2.5 in [4]):

Proposition 2.1. The following properties hold:
e Density: the set Cg° is dense in B* if |s| < %

e Derivation: || f|lps = |V f |l gs-1.

e Fractional derivation: let I' = v/—A and o € R; then the operator I'° is an isomorphism from B’ to
B57°.

e Algebraic properties: for s > 0, BS N L is an algebra.

e Interpolation: (BS!, BS2)y 1 = B/S1T(1-0)s2,

For the composition in BS, we refer to [2] for the proof of the following estimates:
Lemma 2.1. Given s > 0 and f € L*° N BS.

o letW e W1[3l+2(RN) such that ¥ (0) = 0. Then ¥ (f) € BS. Moreover, there exists a function C of one
variable depending only on s, N and ¥, and such that

19 ()] o < CUF M) L g
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o letd e Wl[gl”(RN) such that ®'(0) = 0. Suppose that f and g belong to B> and that (f—g) eB’

for some s € (—%, %]. Then & (f) — ®(g) belongs to B® and there exists a function of two variables C
depending only on s, N and &, and such that

o) = @@z <C(llflle, IIgIILOO)(IIfIIBg + IIgIIBg)IIf — 8llBs-

But, different from the nonhomogeneous Besov space, the homogeneous Besov spaces fail to have
nice inclusion properties. For example, owing to the low frequencies, the inclusion BS < B" does not
hold for s > r. Still, the functions of B are locally more regular than those of B": for any ¢ € C5° and
f € B, the function ¢ f is in B". This motivates the definition of hybrid Besov spaces where the growth
conditions satisfied by the dyadic blocks are not the same for low and high frequencies. Let us recall
that using hybrid Besov spaces has been crucial for proving global well-posedness for compressible
gases in critical spaces (see [4,5]). The definition of the hybird Besov space is given as follows (see
Definition 2.8 in [4] or [5]).

Definition 2.2. Let s, t € R. We set

1f e =D 2% 1Aqfll2 + D 2% Ag fll 2.

q<o0 q>0

Denoting m = —[§ + 1 — 5], we define

C=(f €S RY): [ fllzee <00} ifm <0,
={f €S’ RY)/Pn: [Ifligs: <00} ifm>0

Remark 2.1. Some remarks about the hybrid Besov spaces are in order:

BS N BS
If s <t, then BS' = BS N B'. Otherwise, BS = BS + Bt. In particular, B2 < L% as s < 8.
o The space B%S coincides with the usual nonhomogeneous Besov space

{f e S'®Y): [x(D)f]| 2+ D 2% 1Agf 2 < oo}, where x (§) =1- ) ¢(27%).

q=0 q=0
o If 57 <sp and t; > t, then BS1:1 —s BS2:t2,
For products of functions in hybrid Besov spaces, we have (see Proposition 2.10 in [4]):

Proposition 2.2. Given s, s3,t1,t2 € R.

e Forallsy,sy; >0,
”fg”BS] 52~ ||f||L°°||g||BS1 s + ||g||L°° ”f”BS] Sy .
e Forall sy, s; < % such that min{sy +t1,s2 +t2} > 0,

”fg” 31+32__ f1+f2—— ~ ”f”BS] 52 ||g||3f1 5
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In order to state our existence result, we introduce some functional spaces and explain the nota-
tions. Let T > 0, r € [0, 0] and X be a Banach space. We denote by M(0, T; X) the set of measurable
functions on (0, T) valued in X. For f € M(0, T; X), we define

T 1
”f”L;.(X):(/Hf(f)”g(df) ifr < oo,
0

I fllzecx) = supess| f (o) -
7€(0,T)

Denote

L0, T; X) = {f € MO, T; X): || fllir (x) < o0}
If T =00, we denote by L"(R™; X) and || f|lir(x) the corresponding spaces and norms. Also denote
by C([0, T], X) (or C(R*, X)) the set of continuous X-valued functions on [0, T] (resp. R*). We shall
further denote by Cp(R™*; X) the set of bounded continuous X-valued functions.

For a € (0, 1), C¥([0, T]; X) (or C*(R™; X)) stands for the space of the Hélder continuous functions
in time with order «, that is, for every t,s in [0, T] (resp. R*), we have

[f@©) = FG)]y Slte—sl”

In this paper, the following estimates for the convection terms arising in the localized system will
be used several times (cf. Lemma 5.1 in [5] or Lemma 6.2 in [4]).

Lemma 2.2. Let G be a homogeneous smooth function of degree m. Suppose f% <si, <1+ gfor i=1,2.
Then the following inequalities hold:

[(G(D)Aq(u -V )|G(D)AqS)|
S;Caqz*ﬂ¢gsz@)7mnhﬂ%l+gHfﬂgq;ZHG(D)Aqf”Lz (2.2)

and
|(G(D)Aq(u -V )|Aqg) + (Aqg(u-V)|G(D)Aqf)]
_ tq,t: _
< Cagllul, y 71OV GD) A f | 218N 510
+ 27902 £ o 1Agg ), (23)
where

s, ifqg<0,
t, ifg>1.

> Q) = {
For the nonlinear term VuE, we have the following estimates.

Lemma23.1f -5 <s; <1+ % fori=1,2, then

IVUE|gsi.sy < Cllull g [1E N soss - (2.4)
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To proof the above lemma, we need to recall the paradifferential calculus which enables us to
define a generalized product between distributions. The paraproduct between f and g is defined by

Trg=Y Se1fAgg.
qeZ

We also have the following formal decomposition (modulo a polynomial):
fe=Tsg+Tgf +R(f. 2,
with

R(f.8) =) AqfAqg,

qeZ
where Aq =Ag_1+ Ag+ Agy1.
Proof of Lemma 2.3. Denoting T}g =Trg+R(g, f), we get the following decomposition
Ag(VUE) = AqT/EVu + Jg (2.5)
with

Jg= Z ([Aq, Sg—1(VW]AGE 4+ (Sg—1 — Sq—1) (VW AGA¢ E + Sq_1(Vu) AJE).
lg'—qI<3

Applying Proposition 5.2 in [5] or Proposition 6.1 in [4], we see that the first term on the right-hand

side of (2.5) satisfies (2.4) provided —% <si < % +1 for i =1, 2. Next we estimate J; term by term.

First, for the commutator [Ag, S¢—1(Vu)]Ay E, we have

1
[Ag. Sg—1 (VW) ]AgE(x) =271 /f h(Y)(y - Sqg-1(VVw) (x —27%7y)) Ag E(x — 27 9y) dr dy.
RN O

The above identity, together with Young’s inequality for convolution operator, yields
I[Ag. Sy—1(VW]AGE| 2 < Cl VUl | Ag Ell 2,
since
[ISq-1V VUl 29 Vu| e 21 Il
according to Bernstein’s Lemma (cf. [1,2]). Hence, we easily obtain the following inequality:

—adS1:52
1 qli2 < Cog2™ @], w [Ellsis, -

The proof is complete. O
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3. Reformulation and main results

In this section, we state our global existence result. We first reformulate system (1.1). Assume that

the pressure P(p) is an increasing convex function with P’(1) > 0, and denote xg = (P’(l))*%. For
0 > 0, system (1.1) can be rewritten as

Or+0-Vp+ pdiva=0, (3.1a)

WA a1 N o PP
ou; +u-Vu; — ;(MAui — (A + )y lell) + Taxip = C(ijaijik, (3.1b)
Ft+0-VF = VUF, (3.1¢)

where we used the condition div(0F ") =0 (see Lemma A.1) for all t > 0, which ensures that the i-th
component of the vector div(pFF ") is

dx; (OFikF jk) = PF jidx; Fik + Fikdx; (OF ji)
= PF jkdx;Fik-
Define

p(t,x)=p(x3t. xox) — 1, w(t,x) = xo(x3t, xox),  E(t.x)=F(x3t, xox) — I,

then
pr+u-Vp+divu=—pdivu, (3.2a)
o +u - Vuj — Au+ Vy, 0 —adx; Eij = aE ji9x; Eix — %Au — K(0)ox p, (3.2b)
Eir+u-VE —Vu=VuE, (3.20)
with
P'(p+1) o

K(p):= 1, A:=uA+ A+ pn)Vdiv, a

A+p)P(1) TPy

We remark that for simplicity of the presentation, we will assume that a =1 for the rest of this paper.
For s € R, we denote

A f = F Y EPF).
Let
d=A""divu
be the “compressible part” of the velocity, and

w=A"Tcurlu, with (curl(u)){ = dy;u' — g0/
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be the “incompressible part”. Setting v = A 4+ 2, system (3.2) can be rewritten as

pr+ Ad=—pdivu—u-Vp,

(3.3a)

od—vAd— Ap —TE= AT div(—u -Vu+ E jxdx; Eik — %Au — K(,o)axip), (3.3b)

otw — UWAw —RE = A1 curl(—u -Vu+ Ejdx; Eik — %Au - K(,o)axl.,o>,

Et+u-VE — Vu=VuE,
u=-A"'vd+ A Tcurlw,
where
R=A"'curldiv, 7 =A"ldivdiv.

The operators A, 7 and R are differential operators of order one.

(3.3¢)

(3.3d)

(3.3e)

a2 Am..
Notice that the condition div(4F) =0 for all t > 0 implies that I PFyp) _ 0 for all t > 0 and smooth

0X;0Xj
functions p, F. Hence, we have

TE=A"1 ﬁ
0X;0X;

_ 4 (32[(1 + p)(Sij + Eij)]

— A7V divdiv(pl + pE
9,0%; ) ivdiv(pl + pE)

=0

= Ap — A~V divdiv(pE),

where

s _ [0, ifiz],
=11, ifi=j.

On the other hand, according to Lemma A.2 (see Appendix A), we have

_ 0Eik OE jk
RE)ii= A" 8y [ %) — 8, [ —2*
(RE); ((8) (3
_ 0E i OE i
=AY o, [ =X -0, [ =L

( x"( 3Xj> xk( 9X; ))

1 0Eij dEji 1
=A""| 0y o) Ox N + A7 0% (EwViEij — E|jViEik)
K

- A_]axk(ElleEji — EiVIE jk)

(3.4)

= —A(Eij — Eji) + A" 0y (ExViEij — EjjViEix) — A~ 3y (ExVIE ji — EiiVIE jr).
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Thus, we finally obtain
pr+ Ad=—pdivu—u-Vp,
od—vAd—2Ap

=A"1 div(—u - Vu+ Ejdx; Eir — %Au —K(p)ox,p — div(pE)),

dw—pnAw+ AE—ET)

=A"1 curl(—u -Vu+ Ejkaij,'k — %Au — K(p)axi,o> + S,

(E"—E),+u-V(E" —E) + Aw= (VuE)" — VuE,
E+2Ad=—A""9, A7 0y, (w- V(Eij + Ejp))
+ A9, A9y ((VuE)jj + (VuE) ji),
u=-A"'vd+ a™! curlw,
where the antisymmetric matrix S is defined as
Sij = A~ 9y (ExViEij — E;jViEi) — A7 8y (ExVIE ji — EiVIE jy),
and the scalar function £ is defined as
ij= A9 A7 0y (Eijj + Eji).
Notice that from Proposition 2.1, we deduce that
I€NBs = |[E+ET s
and
IElIss + | E— ET | gs ~ IIEllgs.
Also, according to (3.4) and the second equation of (3.5), we have
ord —vAd —2AE

=A"1 div(—u - Vu+ Ejox; Eik — %Au — K(p)oxp + div(pE)).

1209

(3.5a)

(3.5b)

(3.50)

(3.5d)

(3.5e)

(3.5f)

(3.6)

(3.7)

The motivation to write the second equation of (3.5) as (3.7) is to obtain the estimate on the sym-

metric part £ of the deformation gradient, as we will see in Section 4.

The fact that this new formulation ((3.5), supplemented with (3.7)) is equivalent to (3.1) re-
quires some explanation: it is not immediately obvious that the second and the third equations
in the above system are equivalent to the second equation in (3.1) under the condition that
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div((1 + p)(I+ E)T) = 0. Notice however that the right-hand side (denote it by ) of the third equa-
tion in (3.5) and the term A(E' — E) are skew-symmetric matrices and satisfy the following Jacobi
relation:

0, O + 8y, Ol + 8, 0! =0 for 1<, j.k <N.

Since wp := A~ curlug is a skew-symmetric matrix satisfying the Jacobi relation, this is also the case
for w. We therefore have the equivalence

u=-A"'"Vd+ A lcurlwo & divu=Ad and curlu= Aw,
which enables us to conclude that u indeed satisfies the second equation of (3.1) as soon as d and @
satisfy the second and the third equations in (3.5).

The existence of a solution to (1.1) is proved thanks to a classical (and tedious) iteration method:
we define a sequence of approximate solutions of (1.1) which solve a linear systems to which Propo-
sition 4.1 applies. For small enough initial data, we obtain uniform estimates so that we can use a
compactness argument to show the convergence of such an approximate solution. Refer to Section 5

for more details of the complete proof.
Let us now introduce the functional space which appears in the global existence theorem.

Definition 3.1. For T > 0 and s € R, we denote
85 ={(p,u, E) e (L'(0, T; BT5) n ([0, TT; BS™'))
x (LY(0, T; By nc((o, TI; B )"
x (L'(0, T; BS*1) nc(lo, T); B 1)) M)
and
” (,0’ u, E)“ %5[ = ”/0”[};_0([35—1.5) + ”u”L;’_C(BS*LS) + ”E”L]O_O(BS—LS)
+ ||,0||L1T(gs+1,s) + ”u”Llr(BS“) + ||E||L1T(§s+1.5)'

We use the notation 9° if T = +o0 by changing the interval [0, T] into [0, co) in the definition above.

Now it is ready to state our main result:

. .. e A ~N N . N
Theorem 3.1. There exist two positive constants y and I", such that, if pp—1 € B 2742 fige B2 Fg—1I¢€
~N N .
Bz~17 satisfy

o ||loo—1]. it Fo—1I|. <V
I 0 I\ngg + |l ollBg_ri-H 0 ||Bg_1g <Y

e div(foF]) =0;
o Fi(0)VyFij(0) = Fij(0) Vy Fix (0),

then system (1.1) has a solution (6, 4, F) with (6 — 1,4, F —I) in B satisfying
“(,5 -1,0,F - 1)”%% < I(lfo— ]Hég’]‘% + ||ﬁ0||3g71 + IFo — I”B%’]‘%)'

Remark 3.1. The solution in Theorem 3.1 is also unique, but we omit the proof of the uniqueness.
The proof of uniqueness will be same as in [3] with a slightly modification due to the deformation
gradient. See also [20] for a proof.
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4. Estimates of a linear problem
In this section, we consider the following auxiliary linear system:
dp+u-Vo+ Ad=Eg,
od+u-Vd —vAd —2Ap =M,
dow+u-Vo—puAo+ A(E—ET) =N, (41)
#(ET—E)+u-V(ET —E) + Ao =9Q,
E+u-VE+2Ad =R,

where £, 90,7, Q, J, &, and u are given functions, and (3.6) gives a relation of E, E — ET, and £. We
remark that, as in (3.7), to obtain estimates on £, we need to rewrite the second equation of (4.1) as

od+u-Vd —vAd —2AE =73, (4.2)
under the constraint
2Ap +IM=2AE+73. (4.3)
For this system, we have the following estimate:

Proposition 4.1. Let (p,d, w, E — ET, £) be a solution of (4.1) on [0, T), and

t
V()= /”u(s) “B%“ ds.
0

Under the condition (4.3), the following estimate holds on [0, T):

o5+ IEOL gy + 0]y + oo, 5

t
4 [Uol oy + O]y + IEO gy + 0Oy
0

< CetVO E d )
< ool y 1.y + 1ol y_y w +lidoll_y_, + llewoll y_,

B2"12

t
—CVv
+/e QUL 1y + 1Dy Iy + 12y y
0

+I30 5y + ||ﬁ||ggl_g)ds},

where C depends only on N.

Remark 4.1. Notice that the constraint (4.3) is always satisfied by our system (3.5) in view of the
divergence property of the deformation gradient E, and J will be given as the right-hand side of (3.7).
This implies that the estimates in Proposition 4.1 also hold for solutions to (3.5).
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Proof of Proposition 4.1. To prove this proposition, we first localize (4.1) in low and high frequencies
according to the Littlewood-Paley decomposition. We then use an energy method to estimate each
dyadic block. To this end, we will divide our proof into four steps.

Let (p,d, w, E) be a solution of (4.1) and K > 0. Define

15 — efl(V(t)p, a: efKV(l')d7 E-T _ E— — efl(V(t) (ET _ E),

o=eKVO E=eKViOg,
and

f—eKVOg M =e KVO9n, T =e KVO
5 _ e—KV(t)C" R kVhg
Applying the operator A4 to (4.1) and (4.2), we deduce that (Aq0, Aqa, AVION Aql:j) satisfies
AP+ Aq(u- V) + ADgd = AgL — KV'(£) AgP,
0 Aqd + Aq(u-Vd) —VAAGd —240¢p = Ay — KV'(£) Aqd,
atchb + Aq(u- V@) — nAAgD + AAG(E — ET) AN — KV () Ag@,

- < - (4.4)
0 8q(ET —E) + Aq(u-V(ET —E)) + Ad=2¢Q — KV ()2 (ET ~ E),
oA d—i—Aq(u Vd)—vAAqd 2ANg E= Aqd,
oA E—l—Aq(u V8)+2AA d= Ag R.
Denote
N_ ~ ~ = =\ 112 5 ~
gq:=29 ”(znquniz +208¢dl1% + | Ag(ET = E)|[ 7 + 1A¢EI% + 1A¢@1I%
1
v T = - v .~V s
— —(AAG(E" —E)|Aq@) — =(AAGPIAqd) — —(AAGE| Agd)
n n n
for q < qo with n = max{4q°‘§2+3,v, o 4qO’“}—H
N_ - ~ ~\ 12 ~ ~ 5
8 =297V (| AAGDI% + [ AAG(ET — E)| 2 + 14AAGENZ + 1A¢dI1% + | Ag@1I%
~ - - . N |
— (AAPIAG) — (AAG(ET — E)|Ag®) — (AAGE|Agd))?
for q > qo, where g1 = % Br==,v= max{-2 ke 31 +1, and qq is chosen to satisfy
IAAqfll2 =2y 11Aqfll2 forallg > go. (4.5)
Due to the fact supp F(Aqp) C 29C and supp F(AqE) C 29C, one deduces that
+1
<C (4.6)

Nz
=

(v ;
2002 2@ (| Agpll 2 + 1 AgEll2) + 293 V(| Agdll 2 + | Agdl 2)

for a universal constant C.
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The first two steps of the proof are devoted to getting the following inequality:

g2+ k29" D (1A I, + [ ABG(ET — E) |7, + 1AAGENZ + 14q@1% + 1 Agdl )

N =
A =

Catggq(I121 yy w + 1Dy oy + IR w031y + Iy, + IRy
~ =T T

V'O gy +|ET—E]

—KV'g2, (4.7)

oy HIEL w y + 1y + @]y )

where k is a universal constant.

First step: Low frequencies. Suppose q < qo and define

< ~ ET _ E\ |2 3 >
f2=20180p11 + 2101125, + | Ag(ET — E) |12 + 1186E17: + 1840117

v ~ ~ - v - ~ V ~ ~
- E(AAq(ET —E)|Aq@) — E(AAquqd) - E(AAquqd).

Taking the L?-scalar product of the first equation of (4.4) with Agp, of the second equation with Aqa,
of the third equation with A4®, and of the fourth equation with Aq(ET — E), we obtain the following
four identities:

1d _ - - ~ - = - ~
5 g 18aPlEz + (g VA AgP) + (AlgdIAD) = (84 E1AgH) = KV I AP IIT::  (48)
d - - - - .
S ¢ 18adliE + VI AAGIT + (Aq(u- VA)|Agd) = 2(AAg ] Agd)
= (DM Agd) — KV Agd |12 (4.9)

1d N - . . . .
EE||Aqa)||Lz + (Aq(u- V)| Aqd) + u||/quc()||f2 + (AAg(E - ET)|Aqa))

= (AN AG®D) — KV [ A2 (4.10)

%%“ AQ(ET - E) ”iz + (Aq(u . V(ET — E))|Aq(1~:‘—r — E‘)) + (AAqCZ)|Aq(I::T _ E))

= (A(QT ~ )| Ag(ET ~ B)) — KV (B - E)|. (a11)
And, we also have, from the fifth and sixth equations in (4.4)

1d - - - .
ia||Aqd||§2 + VI AAGdNE, + (Aq(u- Vd)| Agd) — 2(AAGE| Agd)

= (Aq31Aqd) — KV'|| Agd]l: (412)
1d . s S L N
Ea||Aqg||§2 + (Mg VE)AGE) +2(AAdIAGE) = (AgRIAGE) — KV Ag€lI%,.  (413)

For estimates of the term (AAq,5|Aqa), we apply A to the first equation in (4.4) and take the

L2-scalar product with A4d, then take the scalar product of the second equation with AA43 and sum
both equalities to yield
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d B ~ ~ B 5 ~
5 (A8aP18gD) + [ AAGdIIT; = 21 AAgPIIE: + (A8gH1 Aq(u - VD))
+ (AAg(u- V)| Agd) + v (A2 Aqd| AAGD)
= (ADGL|AG) + (AAGHIAGIM) — 2KV (AAGP|Agd). (4.14)
For estimates of the term (A Aq(I:I—r — E‘)lAqd)), we apply A to the fourth equation in (4.4) and take

the L2-scalar product with Aq@, then take the scalar product of the third equation with AAq(ET —E
and sum both equalities to yield

d ST EV[A - 2Tz - =T = -
E(AAq(ET — E)[Aq®) — [ AAg(ET — E) ”iz +1AAGDIZ, + (AAG(ET — E)[Aq(u- V)
+(AAg(u-V(ET = E))|Ag@) + 1 (A* Aqg@| AAG(ET — E))

= (AAQIA®) + (AAG(ET — E)|AqM) — 2KV (AAG(ET — E)|Ag®). (415)

For estimates of the term (AAqE‘lAqfi), we apply A to the last equation in (4.4) and take the

L2-scalar product with Aqa, then take the scalar product of the fifth equation with Aqu‘f and sum
both equalities to yield

d - - s s .
5 (A8E18qd) + [AAGd]2, — 2 ANGE T, + (AAGE|Ag(u- Vd))
+ (A0q(u - VE)|Agd) + v(A%Aqd| ANGE)
= (ADGRIAG) + (ADNGE|AGT) — 2KV (ANGE|Agd). (4.16)
Taking linear combination of (4.8)-(4.16), we obtain

1 d v - ~ ~\ 12 ~ ~
Eaf‘; + E(2||Aqu||§2 + | AAG(ET — E)| 2 + 21 AAE 112, + 2 — 3)[| AAgdll 2

— (vA2AdIAAGD) — (MAPAGDIANG(ET — E) — v(A%Agd|ANGE))) + KV f7
+ <u - %) VYN
=X, (417)
where
X 1= 2(AgL1AgH) + (Mg Agd) + (AgNAgdD) + (2qQIAG(ET — E)) + (Ag3|Aqd)

+ (AqRIAGE) = 2(Aq(u- V)| AgP) — 2(Aq(u- Vd)|Agd)
—(Aq(u-V(ET —E))|Ag(ET —E)) — (Aq(u- V@) |Agd) — (Ag(u - VE)|AGE)
+ %{(AAquq(u -Vd)) + (AAg(u- V)| Agd) + (AAG(ET — E)|Aq(u- V@)
+(AAG(u-V(ET = E))|Aq®) — (AAqE|Aqd) — (AAG(ET — E)|AgD)
— (ADGP|AGIM) — (ADNGQ|Ag@) + (AAGE| Aq(u - V) + (AAg(u - VE)|Agd)
— (AAGK|Agd) — (AAGEIAG D)}
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As q < qo, there exists a constant cg > 1, which depends on A, i, such that
1 ~ ~ ~ ~\ 2 = -
afj <HAAIE + 1815 + | Ag(ET — E)||12 + 1A + 1Aq@I12% < coff.  (418)

and this equivalence implies that there exists a universal positive constant k depending on A and w,
such that

%(zu/mqﬁnfz + | ABG(ET = E)|)2, + 21 A8 1%, + 20 — 3) Al 2
— (VA2AqdIANGD) — (L AP Ag@IAAG(ET — E) — v(A%Aqd|AAGE)))
4 (u - 21) 1AAG@I2
n
> k2%(||AgANE + || Aq(ET — E) ||f2 + 1AGEI% + 1 Aq@II% + 1 AqdI%,). (4.19)

For terms on the right-hand side of (4.17), we use Lemma 2.2, (4.18), and the Cauchy-Schwarz
inequality to obtain

11 < Cfa(I1AgE N2 + 11 8¢l 2 + 1 AR 2 + 182112 + 11 Ag Rl 2 + 11 ATl 2
—q(5-1 ~ ET _F ]

+279C VgV (150 n_yy + [ET—E| y_yy +1E1un

iy + 1]y ). (4.20)
Hence, combining (4.17)-(4.20) together, we obtain

1d
2dt
< Cfa(1Ag8H2 + 11AgM 12 + 1 AN 2 + 18gQ1112 + 1Ag Rl 2 + 18T ]2

P24 k229(18g51% + | ADG(ET = E) |5 + 148615 + 1 8¢011% + 1 8qd11%)

—q(N_1 S~ =T = 5 ~ ~
+2792 gV (1Al y oy + |ET—E| gy + 1€y oy + 1Al y 160y )
—KV'f2. (4.21)

Second step: High frequencies. In this step, we assume q > qo. We apply the operator A to the first
equation of (4.4), multiply by AA40 and integrate over RN to yield

| =

IAAGBIE + (AAq(u- V) AAGS) + (A2 Agd| AAGH)

N =
Q.

t
= (AAGEIANGD) — KV AAGAI. (4.22)

Applying the operator A to the fourth equation of (4.4), multiplying by AAq(f:"T — E) and integrating
over RN, we get

|

|A6g(ET - E) ||i2 +(ABg(u-V(ET —E))[A8q(ET —E)) + (A% 2q0|A0q(ET — E))

N —
Q.

t

= (ANAIAAG(ET — E)) — KV'| Ang(ET = E)|?

iy (4.23)
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Applying the operator A to the sixth equation of (4.4), multiplying by AAqé'~ and integrating over RV,
we obtain

1d
2dt

= (AAGRIAAGE) — KV ANGE . (4.24)

||AAq€||L2 (AAg(u- VE)AAGE) +2(A%Aqd| ANGE)

Denote
~ ~ =\ 12 = ~ -
FE=1AMPIZ + | AAG(ET = E)| 2 + 14AGEI1% + 2y 1 AgdI% + v [ 8011
— B1(AAGH|AGd) — B2 (AAG(ET — E)|Ag®) — 281(ADGE|Aqd).
Combining (4.9), (4.10), (4.12), (4.14), (4.15), (4.22), and (4.24), we obtain

B1 B2 .
2dtfq + B ANGDIZ: + 2B 1 AAGENZ, + <2)/V - —)II/\A d”Lz <MV - 7>||AAqwllfz

+ %HAAQ(E'T — E)|, — 27 (A8ghI1AGd) — 27 (AAGE| Agd)

—y(AN(ET —E)|Ag@) + KV f7
=Y, (4.25)

where
YV =y (AgMAGd) + ¥ (831 Aqd) + ¥ (AgTAgdD) — 2y (Aq(u - Vd)| Agd)
—y(Aqu- V@) |Ag@) + %((AAqMAq(u V) + (ADg(u- V5)|Agd) — (AAGEL|Agd)
— (ADGPIAGIM) +2(AAGE|Aq(u - V) +2(AAg(u - VE)|Aqd) — 2(AAGR|Aqd)
—2(AA¢E1A¢D)) + %((AA(,(E‘T — E)|Aqu- V@) + (AAg(u- V(ET — E))|Ag@)
— (AAGQ|AG@) — (AAG(ET — E)|AgT

)
+ (ADGEIAAGP) — (AAg(u-V(ET —E))|AAG(ET — E)) + (AAqQIAAG(ET - E))
—(ADq-VE)ANGE) + (ANGRIANGE).

) — (AAq(u- VD) AAGD)

Notice that, for q > qp, we have
F2RNANPIE + I ANGENZ, + | AqdI12, + | Ag@11%: (4.26)
and
~2 ) /31 :32
Bl AAGAIZ, + 2811 AAGENZ, + (27 — = |l AAGIZ, + ( iy — = |1 AA@ 12
B2 = . S s ~ - -
+= |AAG(ET — E)||12 — 27 (AN Agd) — 2y (AAGE| Agd) — y (AAG(ET — E)|Aq®)

- ~ - = =\ 112 5
~ANDIE, + 1AgdI2, + 1Aq@112, + |AAG(ET — E) |2 + 1AAGEN . (4.27)
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Next, we apply Lemma 2.2 to obtain, using (4.26)

VI < Cl(IAAGEN2 + 1AM 2 + [ AAGRI 2 + 1Ag N2 + 1AM 2 + | Ag N2

+aq2 GOV (11 y 1Ay + [ET - E|

N_| N
B2 12

+ ||5|| Sy IOl y ) (4.28)

Therefore, there exists a universal positive constant «, which depends on @ and v, such that

d . - ~ -
S fa He(1486DI% + 1 AAGENL + 1 8gdIE, + 11801172
< Cfa(lADGEN L + 148 QN2 + 1AAGRI + 1 AgT 1l 2 + 1A 2 + [ AgTl 2

+aq2*4<¥*1>v/(||,5||3%,1_% 1l y -, + [ET ]y

N
27h2

+||5|| Ly @y L)) =KV 2. (4.29)

Third step: Damping effect. We are now going to show that inequality (4.7) entails a decay for p, E,
d and w. We postpone the proof of smoothing properties for d and w to the next step. Let § > 0 be a
small parameter (which will tend to 0) and denote ha = gz + §2. From (4.7), and dividing by hg, we
obtain

d ~ - -
ceha +sehg < Corg (LBI gy y + 19y + IRy y + 031y + 190 g, + 10y ,)

+CaqV’(||p‘||Bg,l,g +||d||Bg,1+||ET El oy oy +1ENy oy +101 )

—KV'hg + 8KV’ + k.
Integrating over [0, t] and having § tend to 0, we obtain

t t

2001+ & [ gu(r1d <800+ C [ (11 y + IRy -0y + 130y 150y
0 0

t
Iy +||QIIB%_1g)ds+/V’(s){Caq(s)(llﬁIIBg_l,g +ldly
0
- < -
+HET—E[ oy oy 1€y y + 101y ) — Keg()} ds. (4.30)
Thanks to (4.6), we have
Caq(IAly 1y +||c~i||3%,l+||isT EII yoy HIEL Yy HIDNy ) — Kegg(s)

N 4N

< C“q(s)Hﬁ(s)”ﬁﬂ.% —KCT122% @A 2

NIZ

N_4,
+ Cag(s)|ET(s) —E9)| . %_lg—KC’]Zf’Z @ ag(ET

—B) -
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- N N -

+Cag®) €|y y —KCcT12%? TP @IAL
~ _ E_ ~

+Cozq(s)||d(s)|}3g7] —KCT129G 7D ALd| 2

~ — N_ ~
+Cag®)|@©)| y —KCTT21ETV A 2.
If we choose K > C?, we have

D ACaq (Al g +1dl oy + [ET—E oy oy + €Iy y + 160y ) — Kgg()} <O.
qeZ

According to the last inequality, and thanks to (4.6) and (4.30), we conclude, after summation
on Z, that

6@ 51y +E@]
t

+K< /(Hﬁ(f)uggﬂg + HE(T)HB%H,% + Ha(f)HB%H.%—l + ”@(T)HB’ZVJrl.’;’—l)dT)
0

g+ eO] y .+ 1dO] -

~ N
Bz1

t

<C{Ilpollgg1.g FlEoll 1y +llwoll y_, + ||d0||Bg,1 +/(H£(S)||Bg,1g
0

+ DS a s + IOy IRy oy + [Ty + ||Q||Bg1.g’)d5}- (431)

Fourth step: Smoothing effect. Once showing the damping effect for p and E, we can further get the
smoothing effect on d and w for the system (4.1) by considering the second and third equations with
terms Ap and AE being seen as given source terms. Indeed, thanks to (4.31), it suffices to state the
proof for high frequencies only. We therefore assume in this step q > qo. Define

Ig =297 V) Agdll 2 + 297 V) A @ 2
Then, from the energy estimates for the system

9 Aqd + Aq(u-Vd) —VAAGd =2AAgf + AgIt — KV'(t) Aqd,
dAq® + Aqu- V@) — WAAG®D = RAGE + At — KV () Agd,

we have

1d N - N_ ~ N_ I~ N
5513 F 222 <1 (292 | Agpll 2 + 292V A 2 + 29 TV A2 + 297 | AgE ] 2)

+1gV' (O (Caq(ldll y , + 1@y ) = Klq).

for a universal positive constant «. Using JZ = IZ + 87, integrating over [0, t] and then taking the limit
as § — 0, we deduce
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t
Iq(t) + k2% / Iq(s)ds
0
t t
g0+ [ 25D (g5 | + [ a0 | ) ds+ [ 272 (12050 2 + [8aE®)]2)ds
0 0

t
+C/ v’(s)aq(s)(||&(s)||3%,1 +]e@)| y)ds. (4.32)
0

We therefore get

t
3 (| agd0]p + |4060] ) +x [ 30 BE0( 2] + 8000 1) b5
q=qo 0 4240

t
< 1ol + ool + [ (1T g, + RG]y ) ds
0

t
+/ qu (|Agh®) | 2 + | AgE®)] ;) ds+CV (©) sup (Id] v IS0 w,).
; se[0,t] B B2

Using (4.31), we eventually conclude that

t
. / 29340 (| 8gd(5) | 5 + | Aqd(s)] 2) ds
0 929

<C(1+ V(t)){llpollégl_g + IIEOIIBg,l,g + ||w0||3g4 + IIdollBg,l
t

4 (18608 + IO g+ 1905+ 1860
0

ROy + 0l e

Combining the last inequality with (4.31), we finish the proof of Proposition 4.1. O

In the rest of this section, we will sketch the proof of the existence of a unique global so-
lution to (4.1). To this end, we only need to use some properties of transport and heat equa-
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tions in nonhomogeneous Sobolev spaces H® with high regularity order, see [12]. Indeed, we set
(p°,d°, @, E%) = (po, do. wo, Eo) and

atpn-‘r] +u- vaH-] — _Adn +£’

B d™ ! — A" =9 —u - VA" + 240",

o™ — LA =N 4u- Vo + A((E") " — EV), (433)
8t((E”+1)T . En+1) +u- V((E"H)T _ En-H) = A"+ 9,

HEMT +u- VETT = —2Ad" + R,

where
(p"1,d™ ™ ET)| ) = (0. do. wo. Eo).

Let T > 0 and s (large enough) be fixed, and let K be a suitably large positive constant (depending on
s, T and u). We set

/511 — efKtpn’ d" = efl(tdn’ ~n —Kt_n EM — eiKtEn.

The straightforward computations show that {(0", d", &", EMlnen is a Cauchy sequence in

C(10, T1; H*) x (C(10, T1; H~' x ") n L' ([0, T1; B! x H51))*N x (10, T1; H?)" N,

Denoting by (8, d, @, E) the limit, then it is easy to show that (eX5, eXtd, eXt@, eX'E) solves (4.1).
5. Global existence

The goal of this section is to prove the global existence of solutions to (1.3) by building approxi-
mating solutions (p",u", E") using an iterative method. Those approximate solutions are solutions of
auxiliary systems of (4.1) to which Proposition 4.1 applies.

We set the first term (p%, u®, E®) to (0,0,0). We then define {(o",u", E")} ey by induction. In
fact, we choose (p"*+!, u™*1, E"t1) as the solution of the following system:

atpn+1 +u. vpn+1 + Adn+1 — £n’

atdn+1 + T VdnJrl _ ])Adn+] _ ZAanr] — f)ﬁ",

ata)n-H +u". an—H _ /,LAa)"'H _ A(En—H _ (En-H)T) — ;nn’

at((En-H)T _ En+1) +u‘v((5n+l)—r _ En+1) + A" = Q" (5.1)
QM fu- VEMT 4 2AdT! = &1,

un+l — _Aflvdn+1 _ Afl curlw”*l,

(pn+l’dn+17wn+1, En+1)

lizo = (on. A~ divuy, AT curluy, Ey),

where

Pn = Z Agpo, u, = Z Aqup, En= Z AgEop,

lgl<n lgl<n lgl<n
£ = —p'divu",
o

M =u" vd"— A~ div(u” -Vu' + K(p") V" + WAu” — ETdx, Ej + div(,o”E”)),
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n
N =u"- Vo' — A7! curl(u“ VU + K(p") V" + #Au” - E'}kaij;.}(),

n
Q"= (Vu"E") | — Vu"E",
and

R =u"-VE" — A7 0, A7 0y, (u - V(E]; + )
+ AT 9 A7 0y ((VUTET) ; + (VU"ET) ;).

As in (3.7), due to the divergence property of the deformation gradient, we can rewrite the second
equation in (5.1) as

od™ ! u. vd"H —pAdTT —2AE™H = §, (5.2)

where J" is given by

n

P
1+ p"

J=u"-vd" - A7} div(u” -Vu" + K(p")Vp" + Au" — E 0 Efl — div(p”E”)).

The argument in the previous section guarantees that the system (5.1) is solvable and Remark 4.1

tells us that, in view of (5.2), the solution to (5.1) satisfies the estimates in Proposition 4.1.

5.1. Uniform estimates in the critical regularity case
. . . . . . N
In this subsection, we establish uniform estimates in B2 for (p", u", E"). Denote
= _ u Eoll. .
14 IIPollBg,l,g +1l ollBg,l-Hl OIIBg,Lg

We are going to show that there exists a positive constant I such that, if y is small enough, the
following estimate holds for all n € N:

(" w" By <. (%)
B2
We will prove (3;) by the mathematical induction. Suppose that (3,) is satisfied and let us prove
that (n+1) also holds.

According to Proposition 4.1 and the definition of (o, up, E), the following inequality holds

[ (o™ u™ L B |y < Ce (llpoll yyy + ol y oy + 1 Eollyy y + 2" [
il U RYRTIE b L RS o Bl T
IRy, 13 pye) (53)
where
%0
V”:/Hu”(s)”B%H ds.
0

Hence, it remains to obtain the estimates for £", 9", M", 8", 3" and Q" by using (Py).
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Estimate of £": The estimate of £" is straightforward; thanks to Proposition 2.2, we have

<cle g [dive]

N\z

Lw(tﬁ”

<Criy?. (5.4)

n
” ||L1(B%7]’ Ll(Bg)

Estimates of 9", N", and J": To estimate M, N", and J", we assume that y satisfies

1
<5+
2re

where € is the continuity modulus of BY 1% s [ If (*Bn) holds, then

1
[0 iy < €0 yony <5

and

<eley g <

1
“ E" ||L°°(R+XRN) DN

We will estimate 91" term by term. First we have, according to Proposition 2.2 and Lemma 2.1,

Ion 2 2 pn
vau'" < Cl|vea” =
H 1+ p" ! ned V5 ”LI(B%I) T+ 0" oY)
<C||u“||L1(B2+1 | o" ||LN(BZ)<Cr2y2_ (5.5)

Since K(0) =0 and Lemma 2.1, one has
K9P s, <ELRE i 192" gy, <"
On the other hand, we have, by Holder’s inequality,

o0
N

CRE S L IR 1\
"1 g, = [ (@ @ agr o)) @ a0 ) ) a
0

qeZ

o
< / 0"y 10" O]y y e

2.,2
<10 gont 17, gy, <CT22
Thus, the above two inequalities imply that
IK (") V" nako, S Crey?. (5.6)

From Proposition 2.2, we obtain the following estimates:
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R I M I M 2

<¢ [0y (8@ y + " O],y de
0

U N[ BT P
<Cry?, (5.7)
oo
I3 Bl g3 <€ [IEMO gy [E" O oy
0
< g 1L,
<Criy?, (5.8)
and
: negn
Jav(e"E") ], o
oo x
<C</”P"(0”§g4g [E" Oy oy dt+/||5"(t)|fé%_1.g G ey dt)
0 0
< C(Hpn ”LOC(B%—L%)”ETI ”L](g%ﬂ,%) + ”En ”LOC(B%—L%)”'OH ”LI(B%H‘%))
<Criy?. (5.9)
Summarizing (5.5)-(5.9), we finally get
P L I I (510)
Estimates of Q" and &": It is easy to obtain, using Proposition 2.2,
o
Ve, pay, <€ [0 O]y Oy d
0
R L
<Criy2. (5.11)
Hence
19"y oy + 18]y y <Cry.
From (5.4), (5.10) and (5.11), we finally have
H (pn+1,un+1’ En+1)”%% < CeCFV(FZyz +y). (5.12)
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Now we choose I" =4C and choose y such that

1
rly <1, eV<2 and Iy <o %)

then (3,) holds for all n € N.
5.2. Existence of a solution

In this subsection, we show that, up to a subsequence, the sequence (p",u", E"),cn converges in
D'(R* x RN) to a solution (p, u, E) of (1.3). We will use some compactness arguments. The starting
point is to show that the first-order time derivative of (p",u", E") is uniformly bounded in appro-
priate spaces. This enables us to apply the Ascoli-Arzela theorem and get the existence of a limit
(p,u, E) for a subsequence. Then, the uniform bounds of the previous subsection provide us with
some additional regularity and convergence properties so that we may pass to the limit in the sys-
tem (5.1).

To begin with, we have to prove uniform bounds in the suitable functional spaces and the conver-
gence of {(p",u", E")}nen. The uniform bounds are summarized in the following lemma.

Lemma 5.1. {(p", u", E") },en is uniformly bounded in

(R+ Bf_l) ( loc(R+ BT_%))N ( loc(R+ Bf_l))NXN

loc
R e N_2\N N_1\NxN) ;
(andalsoin C7 (B27" x (B279)" x (B27)) )if N > 3).
Proof. We will finish the proof via five steps.

Step 1: Uniform bound of 3;o" in L>(B %‘1). In fact, notice that

dep"t = —p"divu" —u"- V"t — Ad".

According to the estimates in the previous subsection and the interpolation result in Proposition 2.1,
we see that {u"},cn is uniformly bounded in LZ(Bg), and {(p", E")}nen is uniformly bounded in
(L®(B%))N*+1. Thus, —p" divu" — u" - Vp"+! — Ad" is uniformly bounded in L2(B% 1), which im-
plies that 9;p" is uniformly bounded in LZ(B%”), and furthermore {p"}nen is uniformly bounded in

> (R BET).

loc

Step 2: Uniform bound of 3 E" in L2(B2 ~1). In fact, notice that
o ((E™1)" = E™1) = —Aw" 4+ VU"E" —u . V((E™) T — ETT).

According to the estimates in the previous subsection and the interpolation result in Proposition 2.1,
we conclude that {u"},cn is uniformly bounded in L2(B%), and {(0", EM)}nen is uniformly bounded
in (L®°(B%))N**+1, Thus, — A" + Vu'E" —u" - V((E™NT —E™1) is uniformly bounded in [2(B51).
Therefore, o;E" 1s uniformly bounded in LZ(Bf_l) and furthermore, {(E")T — E"} ey is uniformly

bounded in (C C(RJr 37_1))NXN Similarly, we can show that {E"}pen is uniformly bounded in

IOC(RJr B>~1). Hence, {E"}ney is uniformly bounded in CIOC(R+; B5-1).
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Step 3: Uniform bound of 3.d" in L3 (B2 ~2) + L4(B¥~3). To this end, we recall that
atdn-H —_u". vdn+1 + vAdH1 + 2/\,On+1 +u"-vd"

pn
1+ p"

- A7t div(u” -Vu' + K(p") V" + Au" — ET oy, Efj + div(,o"E")).
The estimates in the previous subsection and the interpolation result in Proposition 2.1 yield that
{u"},en is uniformly bounded in Lm(Bg_l) N L%(B%). This uniform bound, combining together

with the uniform bound of {p"}pen in L“(B%), gives a uniform bound of

n
—u" - VA" + vAd™T 0 vd" - AT div<u” V4 J‘: . Au">
0

in L%(BNTﬂ). Using the uniform bound of {p"},en in L°°(B%) n L2(B%) obtained from the uniform
bounds of {p"}ney in L®(B2~12)NL1(BZ*1-7) and the interpolation result in Proposition 2.1, we
deduce that {p"}pen is uniformly bounded in L4(B¥), and hence {Ap"}ney is uniformly bounded

in L‘%B#). Finally, both E’J?kaij?k and div(p"E™) are also uniformly bounded in L4(B¥), since

{p"en and {E"}pen are uniformly bounded in L“(B%) n L4(B¥) and div(pE) can be rewritten as
the sum of pdivE and VpE. Therefore, {3;d"}nen is uniformly bounded in L%(B%_%) + L4(B%_%).

Step 4: Uniform bound of ;" in L3 (Bg‘%) + L4(B¥). We recall that
atwn+1 — _un . vwn+1 +/7/Awn+l + A((En+1)—r _ ETIJrl) +uﬂ A an

Ion
1+ p"

— A curl <u” -Vu' +K(p") V" + Au" — E?kaxj E?,()_

Similar to the argument in Step 3, we conclude that

n
—u" - vd" VA 4 u" VA — AT curl(u” -vu' 4+ 5 f Au”)

on
is uniformly bounded in L%(B¥), using the uniform bound of {p"};en in LW(B%) N LZ(B%). Also,
similarly to Step 3, {AE"!},eny and {E’]?kaij?k}neN are uniformly bounded in L4(B¥). Hence,
{89:@"}neny is uniformly bounded in L3 (B> ~3) +L4(B>~3).

Step 5: Uniform bound as N > 3. Indeed, in this case, the only difference is the uniform bound on u".
Actually, from the uniform bounds on {u"};cy in L°°(B%*1) N LZ(B%), we deduce that {u" - Vu"}pen
is uniformly bounded in L2(B%_2). Then, following the same argument in Step 3 and Step 4, we
can deduce that {9;d"}peyy and {3;@"}ney are uniformly bounded in L2(B% ~2) + L°(B%~2), because

{AP" nen, {AE™ 1 }en and {Eykax). Ef}nen are uniformly bounded in L“(Bgfz). This further implies
that {9:u"}ney is uniformly bounded in L2(B%~2) + L°(B>~2), and hence is uniformly bounded in
1 N
CL.RT:B27%). O
We can now turn to the proof of the existence in Theorem 3.1, using a compactness argument.

To this end, we denote {xp}pen be a sequence of Cgo(]R{N) cut-off functions supported in the ball
B(0,p +1) in RN and equal to 1 in a neighborhood of the ball B(0, p). For any p € N, Lemma 5.1
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tells us that {(xpo", xpu™, XpEM}nen is uniformly equicontinuous in C(]R+ B3 x (B¥)N X
(B>~1)NxN) Notice that the operator f i xpf is compact from B 511 B% into A2, and from
B>~ 1N B"T into H'7 . This can be proved easily by noticing that f +— x,f is compact from

HS N HY into HS for s < and BS < HS. We now apply the Ascoli-Arzela theorem to the sequence
{(xpp™, xpu™, xpE™}nen on the time interval [0, p]. We then use Cantor’s diagonal process. This fi-

nally provides us with a distribution (p,u, E) belongmg to C(RT: HE~1 x (H"THN x (HE-1)NxN)
and a subsequence (which we still denote by {(p", u", E")}nen), such that, for all p € N, we have

(xpP". xpu™, xpE") = (Xpp. XpW. XpE) (513)

in C([0, p); H2 =1 x (H"ZH)N x (HE~1)N*N). In particular, this implies that (o",u”, E") tends to
(p,u, E) in D'(RT x RN) as n — oo. Furthermore, according to the uniform bounds in the previous
subsection, we deduce that (p, u, E) belongs to

and belongs to C7(R+;B2~1) x (Ci(R*; BT )N x (C2(R*;B>~1)N*N (and also belongs to
CIRT;B2~1 x (B22)N x (B2~1)N*N) if N > 3). And, obviously, we have the bounds provided by
(Bn) for this solution.

Next, we need to prove that (p,u, E) obtained above solves (1.1). To this end, we first observe
that, according to (3.4),

" +u" - V! 4 dive™! = —p" divu”,
atun+l + u . Vun+] _ Aun+l + Vpl’l+] _ le Eﬂ+1

— K(o") " aiv((E) (7)),

QEM . VE"“ + Vu" = Vu"EMH .

(5.14)

Hence, the only problem now is to pass to the limit in D’(R* x RN) for each term in (5.14), especially
for those nonlinear terms Let 6 € CP (R x RN) and p € N be such that suppé c [0, p] x B(0, p). For

the convergence of Au", we write

1+ n
n
9( P - P Au)
14 p" 1+p
o" XpP" XpP )
= A(xpu" u)+6 — Au
P AL = xow) <1+xpp“ T+ x0 )
Since 6 5 pn is uniformly bounded in L*°(B 5 ) C L°°(H2) and Xpu tends to xpu in C([0, pl; ' )
the first term in the above identity tends to 0 in C([O, p]; H 2 ), while 11’)’('0 tends to lf’)’(ﬁp in

C([0, pI; H%_l) by Lemma 2.1, which implies that the third term also tends to 0 in C([O, p]; H%).
The convergence of other nonlinear terms can be treated similarly.

Finally, we now prove the continuity of p and E in time.
N_1N
2

Lemma 5.2. Let (p, u, E) be a solution to (1.1). Then p and E are continuous in B2~17, and u belongs to

CR*; BT ).
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Proof. To prove this, we follow the argument in [4]. Indeed, the continuity of u is straightforward,
because u satisfies

oju=—-u-Vu+ Au—Vp — <#>AU —K(p)Vp + Ejkvijiln

and the right-hand side belongs to L1(B>~') + L2(B2~1) due to the facts that p e [2(B5~1) and
Eel?B3 ).

To prove p, E € C(R+; B2 1), we notice that po, Eg € B2, p, E € L®(R*; B>~1) and & p, &E €
L2(R*; B%’l). Thus, it remains to prove the continuity in time of p, E in B%. To this end, we apply
the operator Aq to the first equation of (1.1) to yield

0 Agp =—Aq(u-Vp) — AAgd — Ag(p divu). (5.15)

Obviously, for fixed g, the right-hand side belongs to L'(R; L2). Hence, each Agp is continuous in

time with values in L? (thus in B ). Now, applying an energy method to (5.15), thanks to Lemma 2.2,
we obtain

1d —qN ;
5 e 18aPlE S ClAGplz(@q2 2 lipll y 0l y 1y + 148qdl 2 + [ Ag(p divw ] ).

Integrating the above inequality with respect to time on the interval [t1, t], we obtain

)

N N
2% | aap@) ] <2 [Agpe) +€ [ @l g [l iy
t

+ 215D | Agd(D)] 2 +277 [ Aq (o divu) ()] o) .

Since p € L®(B%), uel!(B5*!), and pdivaeL! (B%), we eventually obtain

t %)
lp)] y Slp@] y +(1+ ||p||m3%))/Hu(r)uﬁﬂ d‘r-i-/deiV“(T)”B% dr,
t

t

which implies that p belongs to C(R™; BY).
Similarly, we can prove that E also belongs to C(R; B%).
This finishes our proof. O
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Appendix A
For the completeness of the presentation, we give in this appendix the proof of two fundamental
lemmas concerning the divergence and curl of the deformation gradient in the viscoelasticity sys-

tem (1.1).
The first one we are going to state now is the following lemma (cf. Proposition 3.1 in [15]).

Lemma A.1. Assume that diV(,OgF(—)r) =0and (p,u, F) is the solution of the system (1.1). Then the following
identity

div(pr') =0 (A1)
holds for all time t > 0.

Proof. First, we transpose the third equation in (1.1) and apply the divergence operator to the result-
ing equation to yield

32u]‘
9 (0x;Fji) +u- V(0x;Fji) = <3xkaxj>Fki' (A2)

Multiply the first equation in (1.1) by dx;Fji, multiply (A.2) by p, and summing them together, we
obtain

24
0°u;

0X)0Xj

A (pdx,;Fji) +u- V(pdy,Fji) =,0( >Fki — PO Uk Ox; F ji. (A3)

On the other hand, we differentiate the first equation in (1.1) with respect to x; to yield
9%y,

at(anp) +u. V(ax]p) + anukanp + anan

P+ 0x; POy U = 0. (A4)

Multiplying (A.4) by Fj;, multiplying the third equation in (1.1) by dy; 0, and summing them together,
we obtain

82uk
0t (3x; pFji) +W- V(0x; pFji) = —p| ———— |Fji — Ox; 0 0% UkF ji. (A.5)
0X)0Xj
Adding (A.3) and (A.5) together yields
3 (div(pF")) +div(u @ div(pF ")) = 0. (A6)

If (p,u, F) is sufficiently smooth, we multiply (A.6) by div(pF "), to get
an(|aiv(o ")) + div(uldiv(pe ")) = 3 divuldiv(peT)
Integrating the above identity with respect to x over RN, we obtain

d 1
clav(erT) [ =2 f divu|div(orT)|* dx
RN

1
< 2 ivulie Jaiv(orT) 2
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which, by Gronwall’s inequality, implies that, for all t > 0
t
[div(pET) O < [div(pord) 163 foIVuPli=dr,

Hence, if div(,ooFg) =0, the above inequality will give || diV(pFT)HLz =0 for all t > 0, which implies
that div(pF ") =0 for all t > 0.

This finishes the proof. O

Another hidden, but important, property of the viscoelastic fluids system (1.1) is concerned with
the curl of the deformation gradient (for the incompressible case, see [13,16]). Actually, the following

lemma says that the curl of the deformation gradient is of higher order.

Lemma A.2. Assume that (1.1c) is satisfied and (u, F) is the solution of the system (1.1). Then the following
identity

FixViFij = FjV|Fig (A7)
holds for all time t > 0 if it initially satisfies (A.7).

Proof. First, we establish the evolution equation for the equality FyV|Fij — F);jV/Fi. Indeed, by
Eq. (1.1c), we can get

0t VIFij +u- VV|Fjj + Viu - VFjj = Vi ViFpj + VIV iF ;.
Thus,
Fi (3 VIFij +u- VV|Fjj) + Fi ViU - VFjj = Fig Vi ViFmj + Fie ViV uiFpyj. (A.8)
Also, from (1.1c¢), we obtain
VIFij(0tFi +u - VF) = V[Fij VigW F . (A.9)
Now, adding (A.8) and (A.9), we deduce that
0t (Fik VIFij) +u- V(Fi ViFij)

= —FViu- VFjj + Fig VUi ViFmj + Fig ViVimUiFpj + ViFij VinW F

=FicVin;i ViFmj + Fit ViVin i F ;. (A10)
Here, we used the identity which is derived by interchanging the roles of indices | and m:
FiViu - VFjj = Fi ViU VipFij = ViFij VW F ..
Similarly, one has
O (FIjVIFik) +u - V(F|jV|Fix) = Fij VinWi ViF i + Fij VI ViU Py (A11)
Subtracting (A.11) from (A.10) yields

0 (FiVIFij — FIjViFix) +u - V(Fi VIFij — Fij ViFik)

= Vi (Fic ViFmj — FiiViFmk) + ViV (FmjFie — FmiFi)- (A12)
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Due to the fact
ViV = Vi Vi,
in the sense of distributions, we have, again by interchanging the roles of indices [ and m,
VIV (FmjFie — FnkF1) = ViVmWiFmjFie — Vi Vin Wi i Fyj

= VIVinUiFmjFix — Vim VIUiF 1k Fmj

= (ViVinu; — Vi Viu)) FeFmj = 0.
From this identity, Eq. (A.12) can be simplified as
0 (FixVIFij — FIjViFik) + u - V(F ViFij — Fij ViFik)
= VWi FikxViFmj — F1jViFmk).
Multiplying (A.13) by FiV|Fij — Fij ViFik, we get
Ot|Fie VIFij — FleIFu<|2 +u-V|FVFij — FIleFikl2

= 2(FikVIFij — Fj ViFik) VmWi (Fik ViFmj — Fij ViFmk)

<2Vl o gy M2,
where M is defined as

2
M= Ii'ﬂ]al)((“FIkVIFij — FiViFil*}.

Hence, (A.14) implies
atM + u- V./\/l g 2”Vu”l_oo(R3)M

On the other hand, the characteristics of 9; f +u-V f =0 is given by
d
aX(s) =u(s, X(s)), X(t) =x.
Hence, (A.14) can be rewritten as

U

where
Ut.y) =M(t. X(t.%),  B(t,y) =2|Vul s (t. X(t. ¥)).
The differential inequality (A.16) implies that

t

u,y)<u exp( / B(s, y)ds).

0

(A13)

(A14)

(A15)

(A16)
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Hence,

t
M(t, x) < M(0)exp /2||Vu||Loo(R3)(s)ds
0

Hence, if M (0) =0, then M(t) =0 for all t > 0, and the proof of the lemma is complete. O
Using F =1+ E, (A.7) means
ViEij + ExViEij = VjEjx + E|jV(Ej. (A17)

According to (A.17), it is natural to assume that the initial condition of E in the viscoelastic fluids
system (1.3) should satisfy the compatibility condition

VkE(0)ij + E(0) VIE(0)ij = V;E(0)i + E(0)j VIE(D)jk. (A18)
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