Investigation of pipeline corrosion in pressurized CO₂ containing impurities

Aki S. Ruhl, Axel Kranzmann

Abstract

Transmission of captured CO₂ in pipelines is an essential part of the carbon capture and sequestration process chain. Dependent of the fuel, the combustion process and the capture technology the resulting gas contains impurities that might cause corrosion effects in pipelines constructed of low alloyed steels. Corrosion testing under simulated conditions therefore is a prerequisite for the installation of reliable and safe CCS systems. Sulfur and nitrogen oxides together with water vapor form corrosive acids. Their behaviours and corrosive effects in static pressurized experiments were critically investigated in the present study. The results indicate that experimental limitations might influence the predictive capability of corrosion tests with sulfur dioxide. The limited supply of corrosive constituents in static test might lead to an underestimation of the corrosion risk.

© 2013 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of GHGT

Keywords: Type your keywords here, separated by semicolons ;

1. Introduction

Economic transmission of captured carbon dioxide (CO₂) to the receiving geological formation requires a pressurized dense fluid, either in a liquid or supercritical state. Constituents in the fluid can cause corrosion and pressure inside the pipe causes additional mechanical stress in the pipeline walls that are typically constructed of low alloyed carbon steels with ferritic-pearlitic micro-structure. Safe operation of CO₂ transmission pipelines requires long-term resistance towards any type of corrosion and rapture.

Resulting concentrations of impurities in captured CO₂ are dependent on many influencing factors such as fuel type, combustion regime, gas cleaning, capturing technologies and others. The impurity

* Corresponding author. Tel.: +49-30-314-25493; fax: +49-30-314-23313.
E-mail address: aki.s.ruhl@tu-berlin.de.
levels are not fully clarified yet but residual impurities can be expected [1]. Sulfur di- or trioxide (SO$_2$ or SO$_3$) or nitrogen dioxide (NO$_2$) can react with water vapor (H$_2$O) to corrosive acids. The dew points of the resulting acids can be much lower than that of water. Therefore it is necessary to consider potential reaction products and their phase behavior. Corrosive effects of SO$_2$ and NO$_2$ with regard to atmospheric corrosion are well known [2,3].

In the present investigations pipeline steels were exposed in autoclaves of different volumes to pressurized CO$_2$ at 100 bar and 60°C. Varying gas compositions were mixed using CO$_2$, SO$_2$, NO$_2$ and oxygen (O$_2$). Defined volume flows of the gaseous compounds were adjusted with mass flow controllers. The real-time gas mixture was pressurized with two subsequent compressors. The humidity was simulated by injecting a defined volume of deionized water into the autoclave prior to pressurization.

The results indicate that the continuous supply of impurities could cause severe corrosion, dependent on their concentrations and the humidity level. However, the molar amount of corrosive constituents in static experiments is limited since the fluid cannot be refreshed without changing the boundary conditions such as temperature or pressure.

Gravimetric analyzes were employed to quantify the corrosive material loss. However, weight losses cannot be extrapolated to achieve long-term corrosion rates due to the decrease and depletion of corrosive constituents in the static experiments.

2. Materials and Methods

A number of corrosion tests were conducted in two types of autoclaves with inner volumes of 1.0 and 1.9 litres, respectively. The experimental setup has been previously described, both in words and schematically [4]. Roughly, specimens were positioned on a glassware level to avoid direct contact with the autoclave material. Humidity was added as droplets of water supported on another glassware level prior to insertion and pressurization with a pre-mixed gas composition. Gas constituents were mixed with mass flow controllers as previously described [5,6]. The necessary molar amount of water was calculated according to the molar density of CO$_2$ at 60°C and 100 bar. The pre-heated autoclaves were not flushed with CO$_2$ before pressurization to avoid a loss of water. Since the initial gas in the autoclave consisted of ambient air, small amounts of nitrogen and oxygen were included in all experiments. Reported autoclave volumes used for corrosion testing in pressurized CO$_2$ range from 140-200 mL [7, 8], over 1.0 L [9,10], 1.8 L [11], 2.2 L [12, 13], 4 L [14], 8.9 L [15,16] to 9 L [17], thus the autoclave used here are comparable to other studies.

3. Results and Discussion

3.1 Theoretical considerations

Possible corrosion reactions can be balanced on the basis of molar amounts of precursor substances such as SO$_2$ or SO$_3$ and H$_2$O. Equation 1 describes the formation of sulfurous (x=2) or sulfuric acid (x=3) and indicates that two moles protons (H$^+$) are formed per mole SO$_x$.

$$\text{SO}_x + \text{H}_2\text{O} \rightarrow 2 \text{H}^+ + \text{SO}_{x+1}^{2-} \quad (\text{eq. 1})$$
Protons are reduced during corrosion according to net equations 2 (anaerobic) or 3 (aerobic). Two moles of protons are required per mole of corroded iron (Fe0 or Fe2+). In the presence of O\textsubscript{2} ferrous iron (Fe2+) can be further oxidized to ferric iron (Fe3+)

\[
\text{Fe}^0 + 2 \text{H}^+ \rightarrow \text{Fe}^{2+} + \text{H}_2 \quad (\text{eq. 2})
\]

\[
\text{Fe}^0 + 0.5 \text{O}_2 + 2 \text{H}^+ \rightarrow \text{Fe}^{2+} + \text{H}_2\text{O} \quad (\text{eq. 3})
\]

Combining equation 1 with equation 2 or 3, corrosive dissolution of iron requires an equivalent molar amount of SO\textsubscript{x}. Hence it can be assumed that the concentration of SO\textsubscript{x} is the limiting factor in pressurized experiment when concentrations of O\textsubscript{2} and H\textsubscript{2}O are comparably higher. The maximum corrosive material loss can be estimated from the initial molar amount of SO\textsubscript{x} that can be derived from its concentration or partial pressure and the applied pressure P and temperature T or the according fluid density \(\rho\), respectively.

3.2 Experimental complexity of SO\textsubscript{2}

Preliminary test were conducted to investigate the reliability of corrosion testing with low concentrations of impurities such as SO\textsubscript{2}. We have previously reported [4] that no corrosion occured with addition of sulfuric acid or mixtures of sulfuric acid and H\textsubscript{2}O (omitting direct contact with the steel specimen) in supercritical CO\textsubscript{2}. This observation indicated that no significant diffusion of sulfuric acid (towards the steel specimen) occurs in supercritical CO\textsubscript{2}, most likely due to low solubility of H\textsubscript{2}SO\textsubscript{4} in supercritical CO\textsubscript{2}.

In autoclave experiments humidity is typically adjusted by adding a calculated amount of H\textsubscript{2}O into the autoclave expecting that H\textsubscript{2}O completely dissolves in the subsequently added CO\textsubscript{2} with SO\textsubscript{2}. However, during gas addition and pressurization with CO\textsubscript{2} containing SO\textsubscript{2} and O\textsubscript{2}, all gas constituents readily partition into the H\textsubscript{2}O that is initially present in the autoclave. The dissolution of SO\textsubscript{2} in the H\textsubscript{2}O leads to the formation and dissociation of sulfurous acid according to equation 1. In the presence of oxygen, sulfurous acid might be further oxidized to sulfuric acid. Subsequently, dissolution of the resulting liquid phase containing sulfurous or sulfuric acid is inhibited. A residual liquid phase was observed after 120 hours exposure in several corrosion tests conducted with CO\textsubscript{2} containing SO\textsubscript{2}. In order to clarify the origin of the liquid phase, the total amount of 225 μL H\textsubscript{2}O (corresponding to a target humidity of approximately 1000 ppm) was added as 9 symmetrically positioned droplets of 25 μL H\textsubscript{2}O each. All 9 drops were still found after the experiment as shown in Fig. 1. The vaporization and dissolution in the CO\textsubscript{2} therefore was not complete. Hence the target concentration in the supercritical fluid was not achieved but significant molar amounts of both corrosive SO\textsubscript{2} and H\textsubscript{2}O were immobilized in the residual acidic droplets. A low pH value in the droplets was confirmed with a pH indicator. This effect is relevant for static and circulated corrosion tests with humidification by addition of liquid H\textsubscript{2}O. Alternatively, humidity can be adjusted by vaporization of H\textsubscript{2}O into CO\textsubscript{2} (compare [5,6]) prior to pressurization. However, solubility of H\textsubscript{2}O decreases with increasing pressure (up to the critical point) and condensation with the above discussed dissolution of SO\textsubscript{2} can not be excluded either.
According to the previous discussion no corrosive effect was observed in static corrosion tests with H$_2$O addition followed by pressurization with 100 ppm SO$_2$ and 100 ppm O$_2$ in CO$_2$. Corrosion effects were neither visually nor gravimetrically observed. Both the limited molar amount of corrosive species and its immobilization might have inhibited corrosive effects.

The results obtained here indicate that continuous corrosion tests under ambient pressure but with constant supply of corrosive constituents as previously conducted [5,6] are an valuable complement to pressurized but static corrosion tests with inherent experimental difficulties.
3.3 Corrosion tests with nitrogen oxides

Nitrogen dioxide also forms corrosive acids. According to equations 4 and 5 nitrogen dioxide might completely react to nitric acid with an equivalent molar amount.

\[2 \text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_2\] (eq. 4)

\[\text{HNO}_3 + 0.5 \text{O}_2 \rightarrow \text{HNO}_3\] (eq. 5)

According to previous findings nitric acid completely diffuses into supercritical CO\(_2\) and reacts with steel specimens [4]. A molar amount of CO\(_2\) of 6.59 mol in the autoclave volume (1000 mL) at 100 bar and 60°C was assumed according to thermodynamic data [18]. Thus a molar amount of 329 μmol is equivalent to 50 ppm mole fraction. The constituents of nitric acid as purchased (65 wt\%) were 14.5 mol/L HNO\(_3\) and 27 mol/L H\(_2\)O. A dosage of 22.7 μL nitric acid therefore yields concentrations of 50 ppm HNO\(_3\) and 94 ppm H\(_2\)O in the pressurized CO\(_2\). In order to investigate the reaction kinetic in static autoclave experiments, a series of tests with differing exposure durations were conducted.

![Graph showing weight increase](image)

Fig. 3: Weight increase of specimens after corrosion in supercritical CO\(_2\) and 22.7 μL nitric acid corresponding with 50 ppm NO\(_2\) and 94 ppm H\(_2\)O.

The results shown in Fig. 3 indicate that corrosion was caused by the addition of nitric acid. The maximum weight increase was observed after 120 hours. The variation was probably caused by variations of the volumetric addition of nitric acid and thus varying molar amounts of corrosive constituents. However, according to the results the corrosive effects of the impurities in the supercritical CO\(_2\) are depleted after a few days. Exposure durations of 5 days therefore appear to be sufficient and no further corrosion can be expected in long-term static exposure tests.

Acknowledgment

The investigation was supported by the Federal Ministry of Economics and Technology on the basis of a decision by the German Bundestag (contract 03277902) and third party funding by Alstom, EnBW, EON, Vattenfall Europe and VNG. We thank Dr. Bettge and Mr. Göbel for valuable discussions and
experimental support. We are grateful to Ms. Hoffmann and Mr. Fritze for metallographic investigations and Mr. Saliwan Neumann for SEM analyses.

References