Note
On central difference sets in certain non-abelian 2-groups
Rod Gow, Rachel Quinlan
Mathematics Department, University College, Belfield, Dublin 4, Ireland

Available online 2 August 2005

Received 13 July 2004

Abstract
In this note, we define the class of finite groups of Suzuki type, which are non-abelian groups of exponent 4 and class 2 with special properties. A group G of Suzuki type with $|G| = 2^{2s}$ always possesses a non-trivial difference set. We show that if s is odd, G possesses a central difference set, whereas if s is even, G has no non-trivial central difference set.

© 2005 Elsevier Inc. All rights reserved.

MSC: 05B10

Keywords: Central difference set; Conjugacy class; Non-abelian 2-group

1. Introduction

Let G be a finite multiplicatively written group of order v and let D be a k-subset of G, where $1 < k < v$. Let λ be a positive integer. We say that D is a (v, k, λ)-difference set in G if for each non-identity element g in G, there are exactly λ ordered pairs (a, b) in $D \times D$ with

$$g = ab^{-1}.$$

We say that D is a central difference set in G if it is a union of conjugacy classes in G. In the theory of difference sets in non-abelian groups, central difference sets seem to represent objects which are more tractable for study. We may mention in this respect a formula...
which offers the prospect of employing, for central difference sets, the character-theoretic methods which have proved to be effective in abelian difference sets [4, Theorem 12]. There is also a multiplier theorem for central difference sets, although it still awaits significant applications [1, Chapter VI, Theorem 4.14]. The purpose of this note is to construct, for each odd integer \(s \), central difference sets in certain non-abelian 2-groups of order \(2^{2s} \) and exponent 4. The groups we use are what we call groups of Suzuki type, a family which includes the Sylow 2-subgroups of the simple Suzuki groups. While other examples of non-trivial central difference sets in non-abelian groups may be known, we note that the 1999 survey article of R. Liebler suggested that such difference sets might not exist [4, Conjectures, p. 351].

2. Groups of Suzuki type

Let \(G \) be a group of order \(2^{2s} \), where \(s \geq 2 \) is an integer. Let \(Z(G) \) denote the centre of \(G \). We say that \(G \) is of Suzuki type if the following hold:

- \(Z(G) \) and \(G/Z(G) \) are both elementary abelian groups of order \(2^s \).
- If \(x \) is any element of \(G - Z(G) \) and \(C_G(x) \) is the centralizer of \(x \) in \(G \), then \(|C_G(x)| = 2^{s+1} \).

Specific examples of groups of Suzuki type are provided by the Sylow 2-subgroups of the simple Suzuki groups. (We remark that there is a related concept of a Suzuki 2-group. See, for example, [3, Chapter 8, §7].) We construct these 2-groups in the following way. Let \(F \) be a finite field of order \(2^{2s} \), where \(s \geq 2 \). Define a multiplication on the set \(F \times F \) by putting

\[(a, b)(c, d) = (a + c, a^2c + b + d)\]

for all ordered pairs \((a, b)\) and \((c, d)\) in \(F \times F \). It is straightforward to see that \(F \times F \) is a finite group of order \(2^{2s} \), which we shall denote by \(G_s \). The identity element is \((0, 0)\) and the inverse of \((a, b)\) is \((a, a^3 + b)\). The centre \(Z(G_s) \) of \(G_s \) consists of all elements \((0, v)\) and is elementary abelian of order \(2^s \). The quotient \(G_s/Z(G_s) \) is also elementary abelian of order \(2^s \).

Let \(x \) be any element of \(G_s - Z(G_s) \). We may write \(x = (a, b) \), where \(a \neq 0 \). It is easy to check that \(C_{G_s}(x) \) consists of all elements \((c, d)\), where \(d \) is an arbitrary element of \(F \) and \(c = 0 \) or \(c = a \). Thus \(|C_{G_s}(x)| = 2^{s+1} \) and we see that \(G_s \) is a group of Suzuki type according to the definition above. There do, however, exist groups of Suzuki type that are not isomorphic to a group of the form \(G_s \). For instance, a Schur covering group (or stem cover) of an elementary abelian group of order 8 is a group of Suzuki type of order 64. There are 10 non-isomorphic such covering groups, including the group \(G_3 \).

Let \(G \) be a group of Suzuki type with \(|G| = 2^{2s} \). We will consider \(Z(G) \) to be a vector space of dimension \(s \) over \(\mathbb{F}_2 \). Given elements \(x \) and \(y \) in \(G \), let \([x, y] \) denote the commutator \(x^{-1}y^{-1}xy \). Since \(G \) is nilpotent of class 2, \([x, y] \in Z(G) \) and the relation

\[[x, yz] = [x, y][x, z] \]
holds for all \(z \) in \(G \). Thus, if we fix \(x \) to be an element of \(G - Z(G) \) and let \(y \) run over \(G \), the commutators \([x, y]\) form a subgroup of \(Z(G) \). Moreover, since \([x, y] = 1\) if and only if \(y \in C_G(x) \), and \(|C_G(x)| = 2^{s+1}\), we see that there are \(2^{s-1} \) different elements of the form \([x, y]\) and they therefore constitute a hyperplane, \(H_x \), say, of \(Z(G) \). The conjugacy class of \(x \) in \(G \) is the coset \(xH_x \).

The key point for the existence of a central difference set in \(G \) is the parity of \(s \). The next lemma holds only when \(s \) is odd.

Lemma 1. Let \(G \) be a group of Suzuki type with \(|G| = 2^{2s}\), where \(s \) is odd. Then each hyperplane of \(Z(G) \) is equal to some \(H_x \).

Proof. We give a character-theoretic proof. Suppose that there is a hyperplane \(H \) of \(Z(G) \) not equal to any \(H_z \), where \(z \) runs over the elements of \(G \). Let \(\lambda \) be a complex linear character of \(Z(G) \) whose kernel is \(H \). Let \(x \) be any element of \(G - Z(G) \). Since \(H_x \neq H \), there is some \(y \) in \(G \) with \(\lambda([x, y]) = -1 \). Let \(\gamma \) be an irreducible complex character of \(G \) lying over \(\lambda \) and let \(R \) be a representation of \(G \) with character \(\gamma \). Since \([x, y] \in Z(G)\), we have

\[
R([x, y]) = \lambda([x, y])I = -I.
\]

It follows then that

\[
R(y)^{-1}R(x)R(y) = -R(x).
\]

Taking traces, we obtain

\[
\gamma(x) = \text{trace } R(x) = -\text{trace } R(x) = -\gamma(x).
\]

We deduce that \(\gamma(x) = 0 \) for all \(x \in G - Z(G) \). On the other hand, since \(Z(G) \) is an elementary abelian 2-group, Schur’s Lemma implies that \(\gamma(z) = \pm \gamma(1) \) for all \(z \in Z(G) \). The orthogonality relations give

\[
|G| = \sum_{x \in G} |\gamma(x)|^2 = \sum_{z \in Z(G)} |\gamma(z)|^2 = |Z(G)|\gamma(1)^2
\]

and this implies that

\[
2^s = |G : Z(G)| = \gamma(1)^2.
\]

This is a contradiction, since it implies that \(s \) is even. Thus \(H \) equals some \(H_z \), as required. \(\square \)

3. Construction of a central difference set for odd \(s \)

Here, we show the existence of a central difference set in a group \(G \) of Suzuki type and order \(2^{2s} \) whenever \(s \geq 3 \) is an odd integer. We make use of a very flexible construction due to J.F. Dillon. Let \(G \) be a group of order \(2^{2s} \), where \(s \geq 1 \). Suppose that \(G \) contains
a central elementary abelian subgroup \(H\) of order \(2^s\). Let \(x_0, \ldots, x_{2^s-1}\) be a set of coset representatives for \(H\) in \(G\), with \(x_0 \in H\). Let
\[
P_1, \ldots, P_{2^s-1}
\]
denote the \(2^s - 1\) different hyperplanes in \(H\). Then the subset \(D\) of \(G\) defined by
\[
D = \bigcup_{i=1}^{2^s-1} x_i P_i
\]
is a difference set in \(G\) [2, p. 14].

Theorem 1. Let \(s \geq 3\) be an odd integer. Let \(G\) be a group of Suzuki type with \(|G| = 2^{2s}\). Then \(G\) contains a central difference set.

Proof. Let
\[
x_1, \ldots, x_{2^s-1}
\]
be a system of representatives for those cosets of \(Z(G)\) different from \(Z(G)\), as defined above. Let \(H_i\) denote the hyperplane \(H_{x_i}\). Since any element of \(G - Z(G)\) has the form \(x_i z\) for some index \(i\) and some \(z \in Z(G)\), it follows from Lemma 1 that the hyperplanes \(H_i\), where \(1 \leq i \leq 2^s - 1\), constitute all the hyperplanes of \(Z(G)\). Thus, following Dillon’s construction:
\[
D = \bigcup_{i=1}^{2^s-1} x_i H_i
\]
is a difference set in \(G\), and it is a union of conjugacy classes, since \(x_i H_i\) is the conjugacy class of \(x_i\). We have thus constructed a central difference set in \(G\). \(\Box\)

4. Non-existence of a central difference set for even \(s\)

We intend to show in this section that, although Dillon’s construction gives many difference sets in a group \(G\) of Suzuki type, there is no *central* difference set when \(|G| = 2^{2s}\) and \(s\) is even. Thus central difference sets are not as ubiquitous as might be inferred. We employ a character-theoretic argument that we think may be capable of proving the non-existence of central difference sets in other situations.

The following result is easily proved and we omit the details.

Lemma 2. Let \(G\) be a group of Suzuki type with \(|G| = 2^{2s}\) and suppose that \(s = 2t\) is an even positive integer. Then \(G\) has at least \(2(2^{2t} - 1)/3\) irreducible complex characters \(\chi\) of degree \(2^t\) which vanish on all elements outside \(Z(G)\). The kernel of each such \(\chi\) is a hyperplane of \(Z(G)\) and different \(\chi\) have different kernels.

We can now prove our non-existence theorem for central difference sets in groups of Suzuki type when \(s\) is even.
Theorem 2. Let \(s \geq 2 \) be an even integer. Then a group \(G \) of Suzuki type with \(|G| = 2^{2s} \) contains no non-trivial central difference set.

Proof. Suppose on the contrary that \(G \) contains a non-trivial central difference set \(D \). Since the complement of \(D \) is also central, we may assume that \(|D| < |G|/2 \). Then it follows from a theorem of Mann’s that \(|D| = 2^{2s-1} - 2^{s-1} \) and the order of \(D \) is \(2^{2s-2} \) [5]. Let \(s = 2t \), where \(t \) is a positive integer and let \(\chi \) be an irreducible character of \(G \) of degree \(2^t \), whose existence is guaranteed by Lemma 2. Let \(c = |D \cap Z(G)| \) and let \(D \) be the union of \(r \) conjugacy classes \(C_1, \ldots, C_r \) of \(G \). We may assume that the classes \(C_1, \ldots, C_c \) are contained in \(Z(G) \) and the remaining classes are not contained in \(Z(G) \). Let \(g_i \) be a representative of \(C_i \) for \(1 \leq i \leq r \). Since \(\chi \) vanishes outside \(Z(G) \) and takes the value \(\pm \chi(1) \) on any element of \(Z(G) \), we have

\[
\frac{|C_i| \chi(g_i)}{\chi(1)} = \begin{cases}
\varepsilon_i = \pm 1 & \text{if } 1 \leq i \leq c, \\
0 & \text{if } i > c.
\end{cases}
\]

It follows from Theorem 12 of Liebler [4] that

\[
\varepsilon_1 + \cdots + \varepsilon_c = \pm 2^{s-1}
\]

(in the final line of the statement of Theorem 12 in [4], the order \(n \) of \(D \) should be replaced by \(\sqrt{n} \)). We note also that \(|C_i| = 2^{s-1} \) for \(i > c \). Since \(D \) is a union of conjugacy classes, it follows that \(c \) is divisible by \(2^{s-1} \). However, since \(|Z(G)| = 2^s \), we see that \(c \) is either \(2^{s-1} \) or \(2^s \). Now the equality \(c = 2^s \) implies that \(Z(G) \) is contained in \(D \). We claim that this is impossible. For suppose that \(Z(G) \) is contained in \(D \). Then, since \(Z(G) \) is not contained in the kernel of \(\chi \), elementary character theory shows that

\[
\sum_{g \in Z(G)} \chi(g) = 0
\]

and hence

\[
\varepsilon_1 + \cdots + \varepsilon_c = 0,
\]

which is a contradiction. Thus \(c = 2^{s-1} \) and we deduce that \(|D \cap Z(G)| = 2^{s-1} \).

Let \(z \) be any element of \(D \cap Z(G) \). It is clear that \(z^{-1}D \) is also a central difference set containing the identity. Replacing \(D \) by \(z^{-1}D \) if necessary, we may assume that the identity of \(G \) is in \(D \) and we may set \(C_1 \) to be the identity class. We now have

\[
\varepsilon_1 + \cdots + \varepsilon_{2^{s-1}} = \pm 2^{s-1},
\]

where each \(\varepsilon_i = \pm 1 \) and \(\varepsilon_1 = 1 \). It must be the case that each \(\varepsilon_i = 1 \) and hence \(D \cap Z(G) \) is contained in the kernel of \(\chi \). However, Lemma 2 shows that the kernel of each character \(\chi \) is a hyperplane in \(Z(G) \). Comparing orders, we deduce that \(D \cap Z(G) = \ker \chi \). Since different characters \(\chi \) have different kernels, and there are at least two different \(\chi \), by Lemma 2, we have a contradiction. Thus \(G \) has no central difference set when \(s \) is even. \(\square \)
5. Construction of central difference sets in direct products

We end this note by making a simple observation that shows how to construct further examples of central difference sets in non-abelian 2-groups. Let G_1 and G_2 be finite groups which contain Hadamard difference sets D_1 and D_2, respectively. Then

$$D = D_1(G_2 - D_2) \cup (G_1 - D_1)D_2$$

is a Hadamard difference set in $G_1 \times G_2$. See, for example, [2, p. 13]. It is easy to see that D is central if D_1 and D_2 are central. Now, any non-trivial difference set in a finite 2-group is Hadamard by Mann’s theorem. Thus, we see that the class of 2-groups possessing a central difference set is closed under direct products and we may therefore construct further central difference sets in non-abelian 2-groups using the building blocks described in Theorem 1.

References