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Abstract

It is known that the recently discovered representations of the Artin groups of typeaé\braid
groups, can be constructed via BMW algebras. We introduce similar algebras of typedDg,
which also lead to the newly found faithful representations of the Artin groups of the corresponding
types. We establish finite dimensionality of these algebras. Moreover, they have ideald I,
with I, C I7 such that the quotient with respect kpis the Hecke algebra and /I is a module
for the corresponding Artin group generalizing the Lawrence—Krammer representation. Finally we
give conjectures on the structure, the dimension and parabolic subalgebras of the BMW algebra, as
well as on a generalization of deformations to Brauer algebras for simply laced spherical type other
than A,.
0 2005 Elsevier Inc. All rights reserved.

1. Introduction

In [7], representations were given for the Artin groups of spherical type which are faith-
ful, following the construction of Krammer for braid groups [13]. (We note that [1] also
contains a proof of the faithfulness of this representation for typeafd that [9] also
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generalizes this result to arbitrary spherical types.) Faithful representations for the Artin
groups of type A, D,, and E, for m = 6,7,8 were explicitly constructed. Since each
Artin group of spherical irreducible type embeds into at least one of these, this shows each
is linear. As the representations for typg #ccur in earlier work of Lawrence [14], they

are called Lawrence—Krammer representations.

Zinno [18] observed that the Lawrence—Krammer representation of the Artin group of
type A, the braid groups on + 1 braids, factors through the BMW algebra, the Birman—
Murakami—Wenzl| algebra introduced in [2,15].

In this paper we introduce algebras similar to the BMW algebra for other types. We
associate a unique algebra with each simply laced Coxeter diabfashrank n. Here,
simply laced means that has no multiple bonds. We define the algebras by means of 2
generators and five kinds of relations. For each niodéthe diagramM we define two
generatorg; ande; withi =1, ..., n. If two nodes are connected in the diagram we write
i ~ j,with i, j the indices of the two nodes, and if they are not connected we ivitg.

We letl, x be two indeterminates.

Definition 1. Let M be a simply laced Coxeter diagram of ramkThe BMW algebra
of type M is the algebra, denoted (M) or just B, with identity element, ove®(/, x),
whose presentation is given on generaggrande; (i =1, ..., n) by the following defining
relations:

gigj = §j& Whenij, (B
8igjgi = g;gig; Wheni~ j, (B2)
me; = 1(g?+mg; —1) foralli, (D1)
giei = 17te; foralli, (RD
eigjei = le; wheni~ j, (R2)

wherem = (I — 171 /(1 - x).

The first two relations are the braid relations commonly associated with the Coxeter
diagramM . Just as for Artin and Coxeter groupsMfis the disjoint union of two diagrams
M1 and M2, then B is the direct sum of the two BMW algebraX M) and B(M>). For
the solution of many problems concerniBg this gives an easy reduction to the case of
connected diagram¥ .

In (D1) the generators; are expressed in terms of tlge and soB is in fact already
generated by, ..., g,. We shall show below that thg are invertible elements iB, so
that there is a group homomorphism from the Artin groupf type M to the groupB™
of invertible elements oB sending the'th generator; of A to g;. As we shall see at
the end of Section 6, the Lawrence—Krammer representation is a constituent of the regular
representation oB3. This generalizes Zinno’s result [18]. As a consequence of [7], the
homomorphismd — B* is injective.

The fact that the BMW algebras of typg, &oincide with those defined by Birman and
Wenzl [2] and Murakami [15] is given in Theorem 2.7.
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The Lawrence—Krammer representation of the Artin groups is based on two parameters,
in [7] denoted by andr. The two parameters and! here are related byt = —r—* and
[=1/@1r3).

Our first major result is as follows.

Theorem 1.1. The BMW algebras of simply laced spherical type are finite dimensional.

The proofis atthe end of Section 2. Some information and conjectures about dimensions
appear in Section 7.

Let I7 be the ideal ofB generated by ak;, and let/> be the ideal generated by all
productse;e; for i and; distinct and not connected M. Then clearlyl> € I;. Moreover,
it is immediate from the defining relations Bfthat B/ 11 is the Hecke algebra of typd .
The main result of this paper concerns the structurB k.

Let (W, R) be the Coxeter system of typé. We write® T for the set of positive roots of
the Coxeter system of typdd . By «g we denote its highest root, and Bythe set of nodes
j in M with («;, @g) = 0. In case A the type ofC is A,_»; in case B, itis Ay x D,_»,
in case E itis As, Dg, and & for n = 6, 7, 8, respectively. IfX is a set of nodes o#f,
we denote byWy the parabolic subgroup d¥ corresponding t&. This means thaW
is the subgroup oW generated by alt; for j € X.

Theorem 1.2. Let B be the BMW algebra of typa, (n > 1), D, (n >4),0rE, (n=

6,7, 8). ThenB/ I is semi-simple ove®(/, x). Let Zp be the Hecke algebra of tyge For

each irreducible representatighof Zg, there is a corresponding representatibm of B of
dimensiori® | dim(@) and, up to equivalence, these are the irreducible representations of
B occurring inI1/ 2. In particular, the dimension ofy /I as a vector space ovép(/, x)
equals|@t |2 |Wc¢|.

The proof of the theorem consists of two major parts. In Section 5, we provide, for
each node of M, a linear spanning set fat /I, parametrized by triples consisting of
two positive roots and an element Bf-. This shows that®*|?|Wc| is an upper bound
for the dimension of dirt/1/12). The proof that the same number is a lower bound takes
place in Section 6, where the Lawrence—Krammer representatidn studied in [7], is
generalized to a representation of the same dimension as beforgp Viz.but now over
the non-commutative ring of scalary. Up to a field extension of the scala; is well
known to be isomorphic to the group algebraid, so dim(Zp) = |W¢|.

In the final section, we discuss how the results might carry ovds tnd for I, with
r > 3. We give a conjecture for the dimension of the BMW algebras of type&:D> 4)
and E, (n =6, 7, 8). In the theory of Coxeter groups and Artin groups, there is a notion of
standard parabolic subgroups. These are subgroups generated by a/sobdet nodes
of M and have the special property that they are Coxeter, respectively, Artin groups of type
M]|;. We expect that, at least for spheridd| the subalgebra a8 generated by thg; for
J € J will be isomorphic to the BMW algebra of typ# | ;. For type A,, the Brauer alge-
bra, cf. [4], is obtained as a deformation of the BMW algebra. We conjecture that a similar
deformation exists for the spherical simply laced types, in which the ‘pictures’, forming
the monomial basis of the Brauer algebra, are indexed by a combinatorial generalization of
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the abovementioned triples. As a consequence of Theorem 1.2, these conjectures hold for
the quotient algebr&/1,. We also discuss possible extensions to other spherical types.

The properties of Artin groups needed for the study of our algebras, are mentioned in
Section 3. The subsequent section contains a discussion of ideals. We begin however by
studying direct consequences of the defining relations.

2. Preliminaries

For the duration of this section, we I&t be a simply laced Coxeter diagram of rank
and we letB be the BMW algebra of typ& overQ(, x).

The following proposition collects several identities that are useful for the proof of the
finite dimensionality ofB, Theorem 1.1. Recall that is related tox and! via

m=(1-1"/(1-x). (1)

Proposition 2.1. For each node of M, the elemeng; is invertible inB and the following
identities hold

eigi =1""e;, 2)
gi_l=gi+m—m€i, (3)
g2 =1—mg; +mi te;, 4)
el-2 = xe;. (5)

Proof. By (D1),¢; is a polynomial ing;, sog; ande; commute, so (2) is equivalent to (R1).

From (D1) we obtain the expressi@f +mg; —mi~te; = 1. Application of (R1) to
the third monomial on the left-hand side givg$g; + m — me;) = 1. SOgi_l exists and is
equal tog; + m — me;. This establishes (3).

Also by (D1), the elemengl.2 can be rewritten to a linear combination gf ¢; and 1,
which leads to (4).

As for (5), using (D1) and (R1), we find

eiz = eilm*l(gi2 +mg;i — 1) = lmil(lfze,- + mlile,- — ei) =xe;. O
Remark 2.2. (i) There is an anti-involution o® determined by
8iy " 8iy P> 8iy " &ia

on products of generatogs of B. We denote this anti-involution by x°P.
(i) The inverse ofg; can be used for a different definition of tag namely

e = l—i—m_l(g,- — gfl) foralli.

(iii) By (5), the element:—Le; is an idempotent of8 for each node of M.
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The braid relation (B2) fof and j adjacent nodes o/ can be seen as a way to rewrite
an occurrenceji of indices intojij. It turns out that there are more of these relations in
the algebra, with somes involved.

Proposition 2.3. The following identities hold for ~ j:

8j8iej =eigjgi =eiej, (6)
gjeigj =g tejg

=giejgi +mlejgi —eigj+giej —gjei) +m?(ej — ep), (7)
ejeigj =€jg,-_l =ejgi +mlej —eje), (8)
gjgiejzgi_lengiej‘Fm(ej—eiej), 9
ejeje; =ej. (10)

Proof. By (D1) and (B2),
gjgie; =g;8&i (lm_l(gjz- +mg; — 1)) =im Y (gigjgig; +mgigigi — ;&)
=1Im~Y(g?gjgi +mgigjgi — g;gi) =Im (g? +mgi —1)g;gi
=¢€8j8i,

proving the first equality in (6).
We next prove

eigigiejei = eig;ffle,' forneN, n>1 (11)

Indeed, by (B2), (R1), (R2), and the first identity of (6), which we have just established,

-1 -1 1 a-1 -1
eigjgiejei=eig; ~(eigjgiei =eig; “eigj(giei) =1""eig "eigjei =eig} "ei.

The following relation is very useful for determining relations betweerethe
eiejgieje; = (l —l—m_l)ei - m_leieje,-. (12)

To verify it, we start rewriting one factet; by means of (D1), and then use (11) witk= 2
andn = 1 as well as (R1) and (R2):

eiejgieje; =e; (lm_l(gjz- +mg; — 1))g,-eje,- :lm_l(lei + mxe; — l_le,'eje,-)
= (l —}—m_l)ei — m_leieje,-.

We next show (10). Multiplying (R2) fo¢; by the left and by the right witk;, we find
ejejgieje; =lejeje;. Using (12) we obtair(/ + mDe; — mileiejel- =le;eje;, whence
(I +m Yeieje; = (I +mYye;. Aslm # —1, we finde;eje; = e;. This proves (10).
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In order to prove the second equality of (6), we expange; by substituting the rela-
tion (10). We find
gigjei = gigjeiejei =ejgigjejei =1"ejgiejei =eje;.

The first parts of the equalities of (9) and (8) are direct consequences of (6) and (10). In
order to show the second part of (8), we use the second equality of (6) and (4):

ejeigj = (ejgigj)gj =ejgi(mltej —mg; +1)
=mej —me;gigjtejgi=m(ej —eje)+e;g.
The second part of (9) follows from this by the anti-involution of Remark 2.2(i).
For the first part of (7), as thg; andg; are invertible this ig;gje;gjgi = ¢;. By (6)
the left side iszje;e; which ise; by (10).
Finally we derive the second part of (7).
gjeigj =gjeiejeigj = (m(ej —ejej) +g,~ej)e,-gj
=mejeigj —me,-eje,'gj +giejeigj
=m(m(ej —eje;) +ejgi) —meigj+ gi(mlej —ejer) +e;jgi)
=m2€j _mzejei +m(ejgi —eigj+giej) —mgieje; + giejgi
= giejgi +m’ej —mPeje; +mlejgi — eigj + gie))
—m(m(e,- —ejei)—i—gjei)
= gie;gi +m’e; —m2e; +m(e;gi —eigj + giej — gjei). ]

The above identities suffice for a full determination of the BMW algebra associated with
the braid group on 3 braids.

Corollary 2.4. The BMW algebra of typ&, has dimensiorl5 and is spanned by the
monomials
17
gla g27 el7 62’
8182, 81€2, 8281, 82¢€1, €182, €1€2, €281, €ze1,

818281, 8§1€281.

Proof. Let B be the BMW algebra of type A Of the sixteen possible words of length 2 the
eight consisting of two elements with the same index can be reduced to words of length 1.
For, by (Dl)gl.2 can be written as a linear combinationgf ¢; and 1 and by (5)91.2 is a
scalar multiple ok;. Finally, by relation (R1) the remaining four words reduce;to
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Now consider words of length 3. By the knowledge thate; is an idempotent and
relation (10) it is clear that no words of length 3 can occur containing eslyWords
containing onlyg’s can be reduced if twg’s with the same index occur next to each other.
This leaves two possible wordgg;g; either of which can be rewritten to the other one
by (B1).

If a word containg’s andg’s, noe andg may occur next to each other having the same
index as this can be reduced by relation (R1). So the only sequences of indices allowed
here arg, j,i andj, i, j. If a g occurs in the middle, we can reduce the word by relation
(R2) or (6). This leaves the case with ain the middle. By (8), (9), and (10) these words
reduce unless both the other elementsgéseFinally by (7) the two words left, vizg;e; g;
andg;e; g;, are equal up to some terms of shorter length, so at most one is in the basis.

All words of length 4 that can be made by multiplication with a generator from the two
words left of length 3, can be reduced. First consiglgr; ;. Multiplication by ag gives,
immediately or after applying (B2), a reducilé component. Similarly, multiplication by
ane will result in a reduciblez; g; word part. This leaves us with multiples gfe;g;. As
noted above, they can be expressed as a linear combinatige;gf; and terms of shorter
length. Again, multiplication by leads to ag? component and the word can be reduced.
Multiplication by e will always enable application of relation (R2) to the constructed word
and can therefore be reduced, proving that no reduced words of length 4 o&ur in

Finally, by use of the 15 elements as a basis, one can construct an algebra satisfying all
relations of the BMW algebra, so the dimensionpois indeed 15. This is done in [17] and
later in this paper. O

Proposition 2.5. The following identities hold for  j:
e,-gj =gj€l', (13)
ejej =eje;. (14)

Proof. By (D1), thee; are defined as polynomials g and belong to the subalgebra®f
generated by;. By (B1) this subalgebra commutes wigh. O

Proposition 2.6. There is a unique semilinear automorphismpbf order 2 determined
by

giH—g,-—la e — e, [ —171 m> m.
It commutes with the opposition involution of Remark(i).

Proof. Using the identities proved above, it is readily verified that the defining relations of
B are preserved. O

We recall the definition of the BMW algebra as given in [17]; however, we take the
parameterg, r to be indeterminates over the field.
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Definition 2. Let g, r be indeterminates. The Birman—Murakami—Wenz| algebra BNBV
the algebra ove€(r, g) generated by g1, g2, . .., gxk—1, Which are assumed to be invert-
ible, subject to the relations:

8i&i+18i = 8i+18i8i+1,
gigj=gj& fli—jl=2
eigi =r e,

cigihei=r*te;,

wheree; is defined by the equatiofy — ¢~ 1)(1 —¢;) = gi — glfl.

We now show that our definition of the BMW algebra of typg @oincides with this
one.

Theorem 2.7. Letn > 2. The BMW algebraB of typeA,_1 is the Birman—Murakami—
Wenzl algebra BM\Wwherel =r andm =¢ =1 — g.

Proof. To show both definitions are of the same algebra, we take our pararheterand

m =q~1 — ¢. The first two relations for both algebras are the same. It is evident from the
definition of ¢; in both BMW, and B that g; ande; commute, so the third relation for
BMW,, is equivalent to (2) and (R1) foB. Also the relatiore; g; _1¢; = le; for BMW,,

is equivalent to (R2) foB. To see thag; ande; in B satisfyeigijlle,- =["1¢;, the final
defining relation for BMVy, observe that, for ~ j, by (3), (R2), (5), (10), and (1),

eigflei =ei(gj+m—mej)e; = (I +mx —m)e; =l_lei.
The definition ofe; follows from Remark 2.2(ii). This shows thd is a homomorphic
image of BMW,. To go the other way it is shown in [17, (4)] thai; . e; = r*1e; and so
all the relations ofB are verified for BMW, except (D1). This follows from (10) in [17]
which when corrected read§ = (¢ — ¢ 1)(gi — r~1e;) + 1. The invertibility of theg;
follows from (3). This shows the algebras are isomorphic.

Although it is not needed for our computations, there is a cubic relation which is some-
times instructive.

Proposition 2.8. The elementg; of B satisfy the cubic relation
(g,»z +mg; — 1)(gi — l_l) =0.
Proof. By (D1) and (2), we have

(giz—i-mg,- —1)(gi —l_l) =ei(gi —l_l) =0. |
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In [17, Proposition 3.2], it is shown that the algebras of type Athe so-called BMW
algebras, are finite dimensional. This uses in a crucial way that the symmetric gréup S
W (A, _1) is doubly transitive on the cosets af S. This is not true for the other algebras.
However, we provide a proof of finite dimensionality which applies to the algebras of type
A, as well.

Let (W, R) be the Coxeter system of typé and let{r1, ..., r,} = R. Assume further-
more thatM is spherical. Then the number of positive rodts;|, is the length of the
longest word in the generatorsof W. This means that any product B of g; ande; of
Ionger length can be rewritten by using the relations (B1) and (B2) until orgé qfie;,
eigi, e occurs as a subproduct for someln the Coxeter groupy; has order 2 so we
can remove the square and obtain a word of shorter length. In our algebra, we can rewrite
the four words to obtain a linear combination of words of shorter length. This leads to the
following result.

Proposition 2.9. If the diagramM is spherical, then any word in the generatorspbf
length greater thari®@ ™| in g;, gi_l, e; can be expressed as a sum of words of smaller
length by using the defining relations Bf In particular, B is finite dimensional.

Proof. We can expresgi_l by e¢; andg; to get sums of words ig; ande;. Supposev is a
word ing; ande; of length greater thaj@w *|. Consider the word in the Coxeter grouwpin
r; where eacly;, e; in w is replaced by;. Notice that ifi # j that bothr; andr; commute
and that botte; andg; commute with botte; andg;. In particular, the same changes can
be made without changing or w’. Suppose the relation (B2) is useduty rjr;r; = rirjr;.
Consider the same term in wherer; are replaced by;, or ¢; and the same for;. We
showed in the previous sections that all possible ways of replacing thedr; by e and
g elements reduces the word exceptdos g = gjgig; andgie;g; = gjeigj + w, where
w is a linear combination of monomials of degree less than 3. In fact they give words of
length 2 or, in the case]g e], length 1. If we arrive at;g; = g;e; we can replace it
by (R1) withi~ 1e, of shorter length. If we arrive ag2 we use (4) to express it as a sum
of words Wlthg replaced withe;, g;, and the identity. The same holds fg)r using the
definition. If we arrive aez we can replace it with a multiple of itself. In all cases we can
reduce the length.

It is now clear that any word ig;, ¢; can be written as a sum of the words of length at
most|®*|in g, g7, ande;. O

Proof of Theorem 1.1. This is a direct consequence of the above propositian.

3. Artin group properties

In this sectionM is a connected, simply laced, spherical Coxeter diagram. This means
M=A,n>1),D, (n>4),0rE, (nc{6,7,8}). We shall often abbreviate this condition
by writing M € ADE.

We let(A, S) be an Artin system of typ#/, that is, a pair consisting of an Artin group
of type M with distinguished generating sgt, ..., s,} corresponding to the nodes &f.
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Similarly, we let(W, R) be the Coxeter system of tyge, whereR is the set of funda-
mental reflectionsy, ..., r,. We shall write@ for the root system associated witl/, R)
and @™ for the set of positive roots with respect to simple ragfs. .., «, whose corre-
sponding reflections ara, ..., r,. There is a map,: W — A sendingx to the element
Y(x) =s;, --- 5, whenevex =r;, ---r; is an expression for as a product of elements of
R of minimal length. ForB € @, we shall denote by the reflection with roo and by
sg its imagey (rg) in A. For a subsekX of W we write /(X) to denote{y (w) | w € X}.
The mapy is a section of the morphism of groups A — W determined by; +— r;, that
is, o ¥ is the identity onw.

Let B be the BMW algebra of typ@/ over Q(, x). By means of the composition of
¥ and the morphism of group$ — B>, we find a mapW — B. We shall writew or, if
ri, ---1i, IS a reduced expression far, alsoil/n-\i, to denote the image iB* of w under
this map. In particularg; =75 =i.

Let g € A. By g~ °P we denote the anti-involution op & introduced in Remark 2.2(i)
applied to the inverse of the image gfin B, which is the same as the inverse of the
anti-involution applied tg, viewed as an element &.

Lemma 3.1. Leti, j be nodes oM. There is a unique element of minimal length¥ih
denoted by ;, such thatw j;a; = ;. It has the following properties.
0] l,f\i',iil ~ip g = is the geodesic inM from i to j, then wj; =
2011302+ - lg—1lg—2iglg—1.
(i) wit=wji.
(i) 7;°° = wj;.
(iV) u’@ei =ejei, q il = ej@.

(V) wjje; = Wjj pei =Wj; €.

Proof. Consider the grapi”™ whose nodes are the elementsdf and in which two
nodesa, B are adjacent whenever there is a nadef M such thatrya = 8. An ex-
pressionw = r;, ---r;, of an elementw of W satisfyingwa; = «; represents a path
o, 1,0, ... iy P, we; = o fromaj to e in I, Clearly, ifw is of minimal length
then this path is a geodesic. This geometric setting readily leads to a proof of (i).

A geodesic inl” from « to 8 is given by a backwards traversal of the geodesic ffom
to «. The corresponding element Bf is w1, whence (ii) and (iii).

Finally, (iv) and (v) follow by induction from (i) and, respectively, (6) and (91

For a positive roo, we write h{8) to denote its height, that is, the sum of its coeffi-
cients with respect to the;. Furthermore, the support @f notation Supgg), is the set of
k e€{1,...,n}such that the coefficient @f; in 8 is non-zero.

Proposition 3.2. For each node of M and each positive rooB there is a unique ele-
mentw € W of minimal length such thabo; = 8. This element satisfies the following
properties.
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(i) If p=«; for somej, thenw = w;;.
(i) If j is the unique node a¥ in SuppB) nearest ta, then/(w) = ht(8) + I(w;;) — 1.

Proof. Suppose first that lies in the support 0. Theng can be obtained frory; by
building up with addition of one fundamental root at a time, which corresponds to finding
an elementv of W by multiplication to the right of the fundamental reflection correspond-
ing to the newly added fundamental root. This shows that there exist$ of length at
most ht{g) — 1 such thatwe; = 8. But the height ofg is clearly at most(w) + 1, so the
minimal length of any element of W so thatwa; = 8 must be h¢g) — 1.

Next suppose thatdoes not lie in the support ¢f and letj be the nearest node tan
Sup@B). Then, withy € W as in the first paragraph with respecptand; so thatya; = 8
andl(y) = ht(8) — 1, we have thayw j;;; = g and that (yw;;) <I(w) +1(w;;) =ht(8) +
I(w;;) — 1. On the other hand, in order to transfosminto g by a chain of roots differing
by a fundamental root, we need to apply each rootitartd j on the geodesic i from
i to j at least twice (once for creation of the presence of the node in the support, and one
for making it vanish). We also need batland j at least once. Hence, in order to make
a fundamental root of Sugp) occur in the imageww; of «; of someu € W, we need
I(u) = I(w;;), with equality only ifu = w;; anduca; = «;. Notice that the fundamental
reflections inw;; except forer; do not contribute at all to the creation of the fundamental
nodes in Sup(B), so that the estimate for the fundamental roots needed to builel up
stays as before. Taking = yu we find l(w) = I(yu) =1(y) + 1) =1(y) + (w;j) =
ht(8) + I(w;;) — 1.

Next we prove uniqueness of as stated. Supposes W also satisfieg(v) = ht(8) +
I(w;;j) — 1. As argued above, we must have- v'w;; andl(v) =1(v’) +1(w};) so, without
loss of generality, we may assurne- j lies in the support of8. If /(w) = 0 then there is
nothing to show. Suppose thereféte) > 0 and apply induction ohw). Take nodeg, /
of M such that (r,w) < I(w) andi(ryv) < I(v) while r, = B — ay andry 8 = B8 — ay,.
Suchk andh exist by the wayg is built up of fundamental roots via andv, respectively.
Notice that(8, ax) = (8, o) = 1. Now considen8 — o, «y). The value equals-1 if
k=nh;1if h#k+ h;and 2 ifk ~ h. In the first case, we apply induction tg,w)o; =
B — ay = (rpv)e;, and findr,w = rpv, whencew = v.

In the non-adjacent cas@, — «;, — ay is also a root, so there is a unique minimal
u € W such thatua; = 8 — a, — ag. NOW rpriua; = = wo; = va;, SOr,we; = ryld;
andriva; = rpua;, whence, by induction, both,w = ru andryu = rpv. But thenw =
rprkd =rgrpd = v.

Finally, if k ~ h, we find (8 — oy, o) = 2, whenceB = «j, + a;. But theni must be
eitherhs or k. Assuming (without loss of generality)= i, we findw = r;, andv =r;, = r;,

a contradiction withve; = o; + ;.
This establishes that is unique, and finishes the proof of the lemmax

Definition 3.3. For a nodei of M and a positive roop we denote bywg; the unique
element (by the above proposition) of minimal lengthWhfor which wg;a; = 8. We
denote byD; the set{wg; | B € 7).
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If we D; thenwr;w™1 is a shortest expression of the reflection correspondingeto
as a conjugate of;.

Corollary 3.4. For each nodé of M, the setD; satisfies the following properties, wheje
is a node of\.

@) f rjve D; andv e W withI(r;jv) =1(v) + 1, thenv € D;.
(i) w;ij € D;.

Lemma3.5. If i and j are nodes oiV, then@ei = w;je;.

Proof. Building upw,,,; from the right, and letting the intermediate results actprwe
find a shortest path=iy ~i> ~--- ~i, = jin M fromi to j. The element;; represents

the corresponding elemen/r_l\i, e 51\3175 of B. O
Lemma 3.6. For all nodesi, j, k of M we havew;; wjxe; = wjie;.

Proof. Denote byi =iy ~i» ~ --- ~i, = k the geodesic from to k and byk = ky ~
ko ~ ... ~k, = j the geodesic front to j. Then there is am € {1, ..., g} such that
k=ki=ig~ky=iqg_1~ - ~kp =ig_ms1 andkyi1# iz_pn. Then the geodesic from
itojisi=iy~ip~ - ~ig_m~km~kpyyr~---~kp_1~k,andso
WkiWjkej = Wiieky -+ €k,
f— eil .. .eiqekl .. .ekp
— eil e eiq—m ekm coe ek—lekek—l coe ekp
= eil e eiq—m ekm cc e Ck—_1€k€Ck—1" " ekm ekm+1 “en ek,,
= eil T eiq—m ekm ekm+1 T ekp
= @ej. O
Fora, g € @ T with « < B (that is, for each, the difference of the coefficient af in 8
and the coefficient a; in « is non-negative), leg , be the (unique) shortest element of
W mappinge to B. Clearly,/(wg, 0,) = ht(8) — ht(a). Thus,wg; = w,g a, if i € Suppp).

For a positive roop, setdg = v (w,, ! ) € A. This implies that,, = d Pspdg. For a node
i such thaty; is orthogonal t8, we shall need the following Artin group element.

hpi =dg sidg. (15)

Lemma 3.7. The following relations hold for elemenis ; of the Artin groupA, where we
are always assuming thatis a positive root andey, y) =0

hpihgj=hgjhgi  ifixFj, (16)
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hgihg jhg; =hg jhgihg; ifi~j, a7
hpto;i=hpi ifirj, (18)
hpta;i =hp—qg;,j fi~j, (19)
hpoi—a;i=hpj (i~ ] (20)
hg+ai+a;.j =hpi ifi~j, (21)
he;.j =he;; ifiand;j are atdistancein M, (22)

hojk =he i iFi~j. (23)

Proof. The rules are all straightforward applications of corresponding ruledgokVe
prove (19) and (23) and leave the rest to the reader.

For rule (19), we havelg_, = sisjdp+a; in the Artin group whereas~ j, («;, B) =
—1, and(aj, ) =1, sohg_q,, ; is the Hecke algebra element corresponding to the Artin
group elemend; %, s;dsra, = %, 5% Y515 dpa, = d5, sidp-u,, AN SOU_y,
coincides withig_q ;.

We finish with (23). Itis a direct consequencevpildaj =dy;ta; = sj_ldal. and the fact
thatk is adjacent to neithernor j:

hay k= do tkdo; = disjs; sisis oy = dy sidey = hgi k. D
As before, letC be the set of nodesof M for which «; is orthogonal to the highest
rootog of @+,

Lemma 3.8. The following properties hold fof.

(i) If i isanode ofM andp € @7 satisfies(;, B) = 0, then there is a nod¢ of C such
thath,g,,» =5;.
(i) Foreachj in C there exist non-adjacent nodgsk with i, = s;.

Proof. (i) If B = o, theni is a node orthogonal tag and sohg; = s; andi belongs to
C by definition of C. We continue by induction with respect to the heighi{gofAssume
ht(8) < ht(eg). Then there is a nodg such that(e;, 8) = —1, soy = B + «; is a root,
whencedg = s;d, . If i # j, then, by (18)hg; = h, ;. Otherwise, by (21kg; =hy1q;, ;-
In both cases the expression found 4Qr; is as required by the induction hypothesis.

(i) Let j be a node inC. Thenhy, ; = j. Let B be a minimal positive root for
which there exists a node with (ax, 8) =0 andhg = j If ht(B) > 1, take a node
such that(e;, 8) = 1. By Lemma 3.7, eithei ~ k andhg_o, o, ,i = f or (o, o) =0
andhg_o, k = f Therefore, we may assume(B) = 1, and so8 = «; for somei with
(;j,ap)=0. 0O
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Lemma 3.9. If i is a nhode of\f and 8 a positive root such thaky;, 8) =0, then
SiSg = SBSi.

Proof. We proceed by induction on ¢f). If ht(8) = 1, theng = «;. As («;, ) =0, we
havei # j and sas;sg = s;5; = 5;5; = sgs; by the braid relations.

Assume now that Ig8) > 1. Let j be a node of¥ such that(a;, 8) =1, sop — «;
is a positive root. Themg = s;sp—a;s;. If j 7 i, then (e, B — «j) =0, so, by the
induction hypothesiss;sg—qo; = Sg—a;5i, WhENCESs;sg = 5iSjSp—o;S; = SjSiSp—q,;Sj =
SjSp—a;SiSj = SjSp—a;SjSi = SBSi. Otherwise,j ~ i, andy =  —a; — «; is a positive root
with (a;, y) =0 andsg = s;s;s,s;5;. By the induction hypothesis,s, = s, s;, whence
SiSB = S8iSjSiSySiSj =S8;S;SjSySiSj =75;5;5)8;8;i§; =5;8iSy8iSj8i = SpSi. O

4. Someidealsof theBMW algebra

In this section, letM be a simply laced Coxeter diagram (not necessarily spherical).
In the BMW algebraB of type M, thee; generate an ideal (by which we mean a 2-sided
ideal). Taking products of;'s for non-adjacent nodesof M, we obtain further ideals.

Definition 4.1. Let Y be a coclique oM, that is, a subset of the nodesMfin which no
two nodes are adjacent. Thdeal of typeY is the (2-sided) ideal oB generated byy,
where

ey = Hey.

yey

The elementy is well defined as the product does not depend on the order af;tire
view of (14). The idealBey B is denoted byly. By I;, for j =1,...,n, we denote the
ideal generated by ally for Y a coclique of sizg.

Since they; are scalar multiples of idempotents, so are their prodycter Y a coclique
of M.

Proposition 4.2. Let X, Y be cocliques oM.

(I) If X CY thenly C I.
(ify If {r; | j € X}isinthe saméV-orbitas{r; | j € Y} thenly = Iy.
(i) The quotient algebra /11 is the Hecke algebra of typ® over Q(/, x), with para-
meterm.

Proof. (i) is immediate from the definition afy and the commutation of thg fori € Y.

(i) For |X| =|Y| =1, sayX = {i} andY = {j}, this follows from the existence of
the invertible element;; as in Lemma 3.1(iv). More generally, by [11], there exists W
such thatb Xw 1 =Y. This impliesex ! = ey, whencely = Iy.
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(iii) By (6), invertibility of the g; and connectedness &1, the ideall; coincides with
Iij, for any node;j of M. Consequently, the quotient ring/I; is obtained by setting
e; =0 for alli. This means that the braid relations (B1) and (B2) and (D1) are the defining
relations forB /11 in terms ofg;. Now (D1) reangi2 + mg; — 1 =0, so we obtain the
defining relations of the Hecke algebrac

By (i), we have the chain of ideals
Iho>h>---DI,

wherek is the maximal coclique size d¥f. By analogy with the BMW algebra of type
A, and computer results for Pwe expect this is a strictly decreasing series of ideals.
We already know from (iii) of the above proposition thiatis properly contained irB.
Straightforward calculations for the Lawrence—Krammer representation, described in [7]
and in [16] for the non-spherical types, show that (D1), (R1), (R2) are also satisfied, so it is
arepresentation a8. Furthermore it can be seen tlatis not represented as 0 byt is
for any two distinct non-adjacent nodgs; of M. These calculations will be presented in
a more general setting later, in Section 6. As a consequerisgroperly contained itf; .
This follows also of course from Theorem 1.2.

It is also clear from the definition that; = {0} when j is bigger than the maximal
coclique size ofM. These sizes argn + 1)/2] for A,; |n/2] + 1 for D,; 3 for Eg; and 4
for both & and Es.

5. Structureof I/I>

Throughout this sectionV is a connected simply laced spherical diagram. This means
M € ADE. By B we denote the corresponding BMW algebra o@gt, x), by (A, S) the
corresponding Artin system, and By, R) the corresponding Coxeter system. Further-
more,®* is the set of positive roots associated with, R) andC the set of nodesof M
with «; orthogonal to the highest root df ™.

We now prepare for considerations Bfmodulo I>. This is indicated in the statements.
The aim is to find a linear spanning set fhr/I» of size |®*|2|W¢|. In particular, we
obtain an upper bound for dithy /I2), which by Theorem 1.2 will be an equality.

Leti be a node o and letZ; be the subalgebra (not necessarily containing the iden-
tity) of B generated by all elements of the forﬁ}\il&ﬁi‘jei for j andk non-adjacent nodes
of M. We allow for j andk to be equal, so that, in cagé = Ao, the subalgebrag; are
one-dimensional (scalar multiples ef). By Lemma 3.1(iv), (v), the generators can be
written in various ways:

e r ] —r 1 A
e,-wj,‘kwj,- =wjikwji e :wj,-kw,-je,-.

We will need an integral version &; and B. We shall work with the coefficient ring
E = Q(x)[I*] inside our fieldQ(/, x). Observen € E by (1). LetB© be the subalgebra of
B over E generated by alt; ande;, and letZ; O pe the subalgebra of; over E generated
by the same elements as taken above for genethlnTQ'henZ( 9isa subalgebra aB©@.
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Proposition 5.1. The subalgebrii(o) of B satisfies the following properties.

(i) It centralizese; and has identity element Le;.
(i) 2% =5 2wy~ for all nodes; of M.
(i) The scaled versions™te;w;;kw;; ! of the generators oZl.(O) satisfy the quadratic
relation X2 + mX — 1; = 0 mod I», wherel; stands for the identity elementle;
)
of Z;”.

Proof. (i) Sincex~1e; is an idempotent (cf. (5)), it suffices to verify that the generators of
Z; centralizee;. This follows from the following computation, in which Lemmas 3.1 and
3.6 are used.

AAA71 _/TA A_AA Afl_/\ ."/Tfl_ AAA71
Wjikwj; Te; =wjikejw;; =wjike;w;; T =wjiejkw;; T =ejwjjkwj; .
(ii) For the generatoe, w;,kwy; ~* of Z\”, where; 1 k, we have
— ] e~ P ] ] e P ] =]
wh,'ehwjhkwjh Whi :whiwjhejkwjh Whi :wj,'ejkwjh Whi
A G G, [ S e |
=wj,-kejwjh Whi =wjikejwhjwhi
A, Sy
=wjikwpjepwp = wjikwpjepwip
=W, kejwyjwip =Wwjike;w;;
=wikewn t=wiekw; t=ewikw; t
=Wjikejwji —=WjiejRWi - =W ikWji
WhencezT)EZ,(lO)@‘l C Zl.(o). The rest follows easily.
(iii) Substitutingx~te;w;;kw;; 1 for X, we find
1 —p—_1\2 1 _
(x 1e,-wj,-kwji 1) +m(x 1eiwj,-kwj,- 1)—)6 1€i
:xileiﬂ)'j\i(lgz +mk — 1)wAjfl =xfleiﬂ)'j\iekﬁ)'j\fl € BejerB C Ip. O
We recall thatwg; € W is the element of minimal length with the property that
wg o =B with «;, B € o,

Lemma5.2. Supposeé, j, andk are distinct nodes a#Z. Then

eier) if j ¢k andi #k,
Wey K€Kk J if j +kandi ~k,
eifek = @ek(f+m) —meje, if j~kandi ~ j,
War ke jkikj if j ~kandi ~k,
eiex Wik Wi if j~k, i j, andi k.

In each case the result is msz’) + L.
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Proof. In the first two cases ag k we havee; jex = ejer . If i # k, eiex is in I. If
i ~k, ejex = wy, rex. These are the only possibilities whent k.

Suppose next that~ k. In the last case; commutes withj ande; ey is in I». Suppose
theni ~ j. Of course then * k since the type is spherical. Now by (R2)

eijer = (eiejei) jer = (eiejij) jex
= e,-eji(l— mj +mlflej)ek =ejejiex —me;ejeie; +me;eje;

= eiejek(f +m) —me;ep = mek(f +m) —me;ey.

As ¢;e; € I the result follows.
Finally, if i ~ k then necessarily j, and

eifek = eieke,-fek = e,-ekfe,-ek = eieke,-fla = eiekikj/'k\i = eiekj/k;'k\j.
In each of the cases the elements areijZ,(co) + I> from the definition. O

If some ofi, j, k are equal, similar results follow from the defining relations and Propo-
sitions 2.3 and 2.5.

Lemmab5.3. Leti, j,k € {1,...,n} and lety be the shortest path fromto k. Then

Dar, keki if i ¢ any point ofy,
7wy, rex ifi = j,
Wa, kexh’ mod I ificy, i#],

1’ on the path from toj,

A h' at distance2toi in M,
IWe; k€k =1 ~— _~ . .
Wa; kekWh'kI Wih! ifidy, i~h, hey,
h#j, W ~h, and
k' on the path fronk to j,
w@,kek + mig, rex — m@ek ifi €y andi ~ j,
w@,kek ifi ¢y andi ~ j.
Also

xw/a/.?{ek ifi =j,

€y, rex =4 0modly ifi j,
—_— - . .
Wa,; %€k ifi ~ j.

In each case, the result is i, o, i Z," + mig, i 2" +mivg i 2y + I.
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Proof. Consider the shortest path=«k, ..., j fromk to j in M. If i is non-adjacent to
each element of this path, then the statement holds. Alse=ifj the statement follows
immediately. This leaves two possibilitigsis in y, ori is not iny but is adjacent to some
hiny.

Assume that occurs iny. If i ~ j, then by (9)

N N
(W kek =ieje; ek

] — — — —
=] “Wkiex = Wo;ta; kek + MWkjex — MWy;je.

Suppose, therefore, thatt j. Theniwgjer = e;---eyieeiey ---ex With b’ ~ h ~
i ~i'. Substitution of eye; = he; — mepe; + me; and use of Lemma 5.3 gives

[Wijex =ej---epiepe; - -eg =ej--~eh/(he,- — meype; +mei)e,~/-~-ek
=ej~~~eh/he,-ei/~~~ek —mwkjek+mej~~~eh/e,-~~ek

= gj ..-eh/@hei(h/-i-m)ei/ cee ek _mu/)Eek +12
=ej---epepeih’ey e +Ip=ej---eyepe;---exh’ + I

= u/J\kjekh’ + bb.

Next assumé is not iny but is adjacent to somk in . Suppose there existg ~ h
iny,so

lA'u/)\kjek =e€j-- ~eh/feh s @k
With the use ok =e¢j -+ ey - - - e = Wi e Wy, this becomes
fwAkiek = lﬁrjehrfeh e = u%feh/u/)ﬁr = @eh/f@/
= Wy Wiy ex Wy'ki Wiy = Wi ex Wyrki Wiy -
It is easy to verify thatvy, ;i we, commutes withey.
We are left with the case wheres notiny butis adjacent tg, an end node of . Then
[Wjex = z@ek = wal oot k- This ends the proof of the equalmes mvolvmgk] e.
We now considee; wyjex. If i = j, we have triviallye; wijex € wi; Z,~ . So leti # j.
If i 2 j wefinde;wyjer = eje; - - wyjex € Io. SO assume~ j.
If i occurs iny, the pathy begins withj ~ i and so
eiWjex = ejejej---ep = ej---ex = Wi ek

and ifi does not occur iy, we havee; wyjex = eje; - - - e = Wijex. O

Leti be a node ol andB € @*. We shall use the following notation.
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Geodi, B) is the set of nodes of the shortest path friota a node in the support ¢f
that are not in the support themselves. So Ge@ = ¢ if i € Supp(8).

Proj(i, B) is the node in the support @¢f nearest. So Profi, 8) =i if i € Supg).

Cg,; is the coefficient ofy; in the expression of as a linear combination of the
fundamental roots. S =), Cg ;.

Jg « is the subset of/ of all nodes; such that(cx] B =1 andjwﬂ —ajh = W I,
whereh = Proj(8, k). This set is empty only iB is a fundamental root.

Fori a node ofM, denote byi* the set of all nodes distinct and non-adjacent to

Lemma 5.4. Let B be a root and lek be a node of\f such thati = Proj(8, k) satisfies
(2, B) =0andCgp; =1.If Jg, Nit =@ then

_ 0
lu),g kex = Wk Pexwpk plw,g k€WK pZ,E ).
Proof. We only have to prove thaf wg, kOplwg x belongs toZ(O) Moreover,
exwp  Piwgk = exwixwp,; Piwg,; Wi

andJg x = Jg;, S0, by Proposition 5.1(ii), it suffices to consider the case wheté.

We prove this by induction on the height gf The smallest possible root that satisfies
the cond|t|0ns of the lemma is a root of the fos+ «; + a, With j ~i ~ h. In this case
W, = =hj j. Straightforward computations give

o~ A

elu);;, plwlgl =e;jjhihj —el]lhl] —e,w],hw,] —e,w,] phw,],

which belongs tcﬂlio) by definition.

Let B be a positive root of height at least 4 and assume that the lemma holds for all
positive roots of height less than(i). Now wg rex = wpg;e; - - - ex With noi in wg ;. Let
J € Jp.x- Then, by the hypothesi ; N i+ =@, we havei ~ j. Clearlywg,; = jwg_q;.i-
As (a;, 8) =0 andCg; =1, the sum ofCg ; for j running over the neighbors ofin M,
must be 2. Hence there are either two noglgs say, inM with Cg ; = Cg» = 1 or there
is a single nodg of M adjacent ta with Cg ; = 2. In the former case, as(ift) > 4, there
is an end nodg of g distinct from j, i, & and non-adjacent tbwith Cg , = 1, which
implies («,, B) = 1, whencep € Jg ; Nnit, a contradiction. Henceis an end node 0}8
and has a neighboi with Cg ; =2 and(al B) = 1. This implies thalwﬁ —a;i =Wy j ],
wherey = —o; —aj. As (aj,y) =0 andJ, ; njtc Jg.i nit =4y, we can apply
induction to finde jw,, ; p]w” belongs toZ( ) . Consequently,

o~

——— 0P~ —— Y —oopiy — % N —opiy — D~ 0pr o~
eiwg, Piwg; = e; jwy,;Pjijwy.; j = e jwy,;Pijiw,.;j = e; jiw, ;% jw, jij

— 0 ~ _ (0
ijizj wij=27;". O

Lemma5.5. Let 8 be aroot and let be a node withe;, 8) = 0. Then the following hold.
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(i) If jisanodein/gi N it thenfumek = ffwﬁkek.
i) If i = Proj(8, k) andCg,; = 1and Jgz x N i+ =@, thenw® iwz € 22 and
B, B, B.ktWB, k

e = w5 Per (W)
(iii) 1f i # Proj(B, k) or Cg; > 1, then, forj € Jgx \ i,
Wp ke = Ji JWh—a, —a; kek-
T — (0
In each casejwg rex € WgrZ; .

Proof. (i) Straightforward fromj = ji.

For the remainder of the proof, we can and will assume there is a rodéh
(Olj, B) = 1, Wk =TjWh—q; k andi ~ J- Then(a,-, B — aj) =1.

(ii) This follows from Lemma 5.4.
__ (iii) Here Wk = fiwlg_/a/?ai,k and the statement follows from the braid relatigh=

jij. O
Theorem 5.6. Let B be a BMW-algebra of typa/ € ADE, let 8 € @™, and leti, k be

nodes ofM.
If (@;, B) =—1, then

Whay kCk if i ¢ Geodk, B),
1Wg ek = Whta; kCk — MW K€k + Mg, rexWp if i € Geodk, B) and
h = Projk, B).

If (@;, B) =1, then

A Wh—gr kek — MWpkex +ml teqg_g rex ifi € Jgx,
iwgrex =1 ..
WB—q;,k€k ifi ¢ JB.k-

If (;, B) =0, then

wpkex(Wpy tiwpy) if i ¢ SUPRB),

JiWh_a ke if jedprnit,

i ke = | Wi Per (wOhiwpy) if Cpi =1, i = Proj(B, k),
andJg ;N it =0,

JijWe oo k€k if j €Jpx\itandi € g g -

If (a;, B) = 2, theng = o; andiwp rex =1 1w xex.
In each case, the result is i, 1 Z\” + mwpi Z” + mig 1 Z> + I, wherey = B if
B =«a; andy =r; 8 otherwise.
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Proof. By Lemma 5.3 the theorem holds for all fundamental rg®ts @T. Supposes
is a non-fundamental root i, and considefwg rex. Now («;, B) < 2, for otherwise
B =uq;. Firstlet(a;, ) =1.1f i € Jgx, then

2 ) — — -1 —
LW ek =1 Wh—q; k€k = Wh—a; k€k — MW k€L + ml € WB—q; kChk-

Assumei ¢ Jg i theni = Proj(k, 8) andCg; = 1. There must be a single nodes
SuppB) \ i+ with Cg ; =1, and the remammg nodes in the supporpaddre on the side
of j in M other thani. This meansvg =i j wa * where the elements in are on the
side of j other than’ and soi commutes withu. NOW i i j e & W, k = m]w/a\k = uwal t SO
iWpker = Wp—_q kex as required.

Next let («;, ) = 0 and assume is not in the support of8. Putx = Projk, 8) and
p= Geoo[k ,3) If i is not |np and not adjacent to an elementmftheni commutes with
w,g,k SO wﬁ,k zw,g k= l andzw,g kek = w/g k€Kl .

If i is in p or adjacent to an element pf theni commutes withiiz;, wherews; =
WphWay k- NOW

— 1~ — =1 —
Wk TWEk = Wayk Wy k-

We know thati # i S04, % iy iex € Z" by Lemma 5.3. We conclude

P [y

lu)ﬁ k€k = Wg kWB k "TWB kCk = w,g kwah k llufaﬁ(ek
= u’)ﬁ\,kek(wah,k_lfwah,k) € @Z,ﬁo).

If («;, B) =0 withi € Supfg), then the assertlon follows from Lemma 5.5.

Finally let («;, 8) = —1. Herezwﬁ ek = w,nga rer by definition if i is not in
Geodk, B). So supposé € Geodk, 8). Write h = Projk, B). Since(«;, 8) = —1, we
must havei ~ h. Thereforewg; = wgwin and wgrex = Wg hepe;---ex. The set
Suppp) \ {n} is a connected component of the Dynkin diagram connectell &md
disconnected from Geokl, 8). Henceh does not appear iwg . This means com-
mutes with wg; W - | Moreover, by definition ofwg ,, we havewg wh = w,g+a,, and so
we, 05 hwr = Wpta, k- COnsequently, by (9),

iWg pepe; - ey = umiehei coeep = uTﬂ\h(h +m(l— eh))ei cep
= wg nhWiier + mgiexwg n — mwg pepkh
—_ — — —
= Whtq,; k€k + MWk W — MWB k€. O

Corollary 5.7. Let B be a BMW-algebra of typa/ € ADE, let 8 € @*, and leti, k be
nodes ofM.

. — — — 0
0] Wg k 0P, € wg ek +m th(y)<ht(/5) wJ/»kZl(c ) + I,
(i) eiwprer € g i ZO + I,
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(i) wpker €, TykZ + Iz,
whereHg; = {8 € @ | ht(§) <ht(B)} U{B, B+ i} N DT,

Proof. We prove the statements simultaneously by induction on the heightlbfg is a
fundamental root then statement (i) holds by Lemma 3.1 and the statements (ii) and (iii)
by Lemma 5.3.

Let B € @ with ht(8) > 2 and assume the lemma holds forqjale @+ with ht(y) <
ht(8). Leti, k be nodes and considers ; ~Pey, ¢; wp ek andfumek. There is (at least
one) j such thatg = jup_q, x; then htg — a;) = ht(8) — 1. Now

Wk Per = j Mip_a,k e
2 _— e (0]
€ (s +m—me(,~)(wﬂ_aj,kek+m Z wVkalE )+12>
ht(y)<ht(B—a)

— — — N — 0
= Wgkek + MWB—_o; ke —MejWp_q; ke + M Z ]wy’kZ,i )
ht(y) <ht(8—c;)

+m? Y w1k 20 — m? > ey ZY + I

ht(y) <ht(8—e;}) ht(y) <ht(f—a;)
coratn Y wuz®+m Y ezl
ht(y)<ht(8) ht(y)<ht(8)
Caprer+m Y. WpiZ + I
ht(y)<ht(8)

To see thad ) <hi(p—a)) fuT}T,kZ,io) is contained iy, <hi(s) @Z,io), observe that
by the induction hypothesis on (iii) we have

N — — 0
JWy ek € Z wé,kZ]E ) + Io.
(SEH}/_I'

Here ht8) < ht(y)+1 < ht(8) while ht(y) < ht(8 —a;). The UMYy, s ¢ Ty k Zy
isin mz,ﬁo) by our induction hypothesis on (ii) and this gives (i) for
Now focus ore; wg rex = eifwf,a\j,kek. If i = j then, by the induction hypothesis,

— — — — 0)
eijwg e =1 leiwﬁ_aj,kek € wai,kZ,(( ) + 1.
If i ¢ j then
A I f/\Z(O) I
€ JWh—q;kek = JeiWh—q; kek € JWa; kL) + 12

and by Lemma 5.3 this is containedii, 1 Z" + Io.



A.M. Cohen et al. / Journal of Algebra 286 (2005) 107-153 129

So, for the remainder of the proof, we may (and shall) assutg. By (9), we have
eij =ejeji +mejej —me;, SO

—

e;Wp kek =€ JWh—qo; k€k = €j€jlWpq; kek +MejejWp—qg; k€k — MeWpH—q; kek-

By our induction hypothesis the last two terms areuiy Z,EO) + L. This leaves the first
term, e;ejiwg_q, xex. Becausa — a;, a;) = (B, ;) + 1 the inner product of; with
B — «j can only take values O, 1, and 2 and tHijs,; ; consists of roots with height at
most h{f — «;).

The induction hypothesis on (iii) now gives

P— 0
IW—q; kek € Z Wy kZy
yeHp—q; i

where hty) < ht(g) for all y. By applying the induction hypothesis twice we obtain

IWh—ar — ~(0 — 0 - —— (0
ciejlipa ke € Y eiejiyiZ + 2 C e 2 S WaiZy + 2.
ht(y)eHpa,.i

This establishes (ii). Finally considéms iex. If (ai, ) = —1 thenf + «; € ®* and
the statement holds by Theorem 5.6. Alsoif, 8) = 1 then Theorem 5.6 applies. Here
o kek € W i Z\Y + I by the induction hypothesis for (i

iWg—a,; kek € We; kZy  + I2 by the induction hypothesis for (ii).

For the renjainder of the proof we assufieg, 8) = 0. Again Theorem 5.6 gives an
expression foiwg rex in each of the four cases discerned. In the first cases, whgre
SuppB), the statement is immediate from this expression. By our induction hypothesis for
(iii) the second case gives an expression containgd in,, . JWy kZi + I whence in

— B—a ;i ’ .
ZyeHﬁi Wy« Zk + I. Now the fourth case goes by the sarhe argument and only the third
case remains to be verified. Above we have shown that

Wi Pec € wprex+m Y Wiz + 1
ht(y)<ht(8)

and that completes the proofo

We shall use the following lemma to derive an upper bound for(dimnfrom Theo-
rem 5.6.

Lemma 5.8. SupposeF is a field, E is a subring ofF which is a principal ideal domain.
If V is a vector space oveF and V© is an E-submodule o#/ containing a spanning
set of V, thenV© is a free E-module on a basis of . Moreover, ifa € E generates a
maximal ideal ofE, then

dimg (V) = dimg o (V@ /av©@).
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Proof. As E is a principal ideal domain, it is well known, see [10, Theorem 12.5], that each
E-module of finite rank without torsion is free. Applying this observatio {8, we letx

be a basis of th&-moduleV (@ . By the hypothesis that © spansV, it is also a basis of,

so dimg (V) = | X|. On the other hand{ maps onto a basis 8f© /aV© overE /a E (for,

it clearly maps onto a spanning set an@if .y A,x =0 modaV© for A, € E, then, as

v©® = E X, with X a basis, we have, = 0 moda for eachx € X, so the linear relation in
vV©/av© s the trivial one). This proves dip(V) = |X| = dimg £ (V© /aV©). O

Corollary 5.9. LetM < ADE and leti be anode oM. ThenD; Z; D; P is a linear spanning
set forIy/I,. Moreover, the dimension &f; is at most W¢|.

Proof. By Lemma 3.6/1 is spanned by a set of multiples ef by generatorg;, so
Iy = Be; B. According to Theorem 5.6 and Corollary 5F¢; = DiZi+ I. Applying Re-
mark 2.2, we derive from this thatB = Z; E-Op + I, (observe thaZ; and I, are invariant
under the anti-involution). Thereforé, = Be; B = Ezi EOp + D,

It remains to establish that the dimension&fmod I> is at most|W¢|. To this end
we consider the integral versioﬂéo) andB© of z; and B over E = Q(x)[/*] defined at
the beginning of Section 5, and look at the quotients modite1). Observe that, by (1),
m belongs to the idedl — 1) E.

A careful inspection of the identities in Theorem 5.6 and Corollary 5.7, shows

B(O)ei = /D\IZZ(O) + I, and eiB(O)ei = Zl(o) + I,

Since Be; is linearly spanned by the sé; Z( 9 mod Iy, it is linearly spanned b}B( De;
mod I>. Consequently,Z; = ¢;Be; is Imearly spanned by; B; © e; + I2, whence by
Z, © mod I>.

For brevity of notation, we set; =/ — 1. (The remainder of the proof would also work
for mqy =1+ 1.) SincexLe; is a central idempotent belonging Z;SO), we have

m1BO N (2 + 1) =m1eiBOe; N (20 + ) =m1 (22 + ) n (2 + )

= ml(Zi(o) + 12).

Therefore, the quotierﬂfo)/mlzi(o), viewed as a vector space ov@g(x), is isomorphic to
(Zl.(o) + mlBi(O) + 12)/(m131~(0) + I7). But this algebra is readily seen to be a quotient of a
subalgebra of the group algebra o@(x) of the stabilizer inW of the simple rooty;, for

the image of @ | w € W} modulom1B© is the groupW and the image of the algebz’éo)

is generated by the products of the elements of the fofm, w ;; for j andk distinct non-
adjacent nodes d¥/, all of which are contained in the stabilizer of ;. Consequently,
the dimension toO)/mlzi(O) overQ(x) is at mostW¢|, the order of the stabilizer i

of ag (a group conjugate to the stabilizer Wi of «;). By Lemma 5.8, applied withF =
Q(x, 1), E=QW)[*),V=2,VO= Zl.(o), anda = m1, we see thaZ; has dimension

at most|W¢| overQ(, x). O
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6. Generalized Lawrence-Krammer representations

In this section we construct the analog of the Lawrence—Krammer representation of
with coefficients inZg, the Hecke algebra of type, whereC is the parabolic of the highest
root centralizer. We show the representation factors thrdygh. By taking an irreducible
representation ofg, we find an irreducible representation Bf I>. Finally, by counting
dimensions of irreducible representations, we are able to conclude that all representations
of B/ I that do not vanish oty are of this generalized Lawrence—Krammer type, and we
can finish the proof of Theorem 1.2.

Since the construction for disconnect&tlis a direct sum of the representationsif
for the distinct connected components, we simply takéo be connected, st/ € ADE.

We let @ be the root system iR" of type M, and denote bw;, ..., «, the fundamental
roots corresponding to the reflections. .., r,, respectively. As usual, b¢ + we denote
the set of positive roots ib.

For a rootg, the set of rootgy € @ | (8, y) = 0} is also a root system. Its type can be
read off fromM as follows: the extended Dynkin diagraﬁwf the connected component
K of M involving g (i.e., having nodes in the support®f has a single nodey in addition
to those ofK ; now takeC to consist of all nodes af/ that are not connected tg. Then
the type of the roots orthogonal pis M|c¢. In fact, if 8 = «g, then{e; | i € C} is a set
of fundamental roots of the root systdme @ | (8, y) = 0}. For A, with 8 = ag this is
the diagram of type Ao on{2,...,n — 1}, for D,, it is the diagram of type £D,,_» on
{1}U{83, ..., n}, for Eg itis the diagram of type Aon{1, 3, 4, 5, 6}, for E7 it is the diagram
of type Ds on{2, 3,4, 5, 6, 7}, and for E it is the diagram of type fon {1, 2, 3,4, 5, 6, 7}.
Here we have used the labeling of [3].

Recall the coeff|C|ents dfp are inQ(/, x). We take the coefficients of our representation
in the Hecke algeer0 of type M|¢ over the subdomaif@[/*1, m] of Q(, x), where
m is defined in (1). Observe that the fraction field®€, ) coincides withQ(/, x). The
generatorg; (i € C) of Zé) satisfy the quadratic relatloré + mz; — 1= 0. For the
proof of irreducibility at the end of this section, we need however a smaller version of this
Hecke algebra, namely the subalgeﬁ@? with same generatots, but overQ[m]. Thus,
Z(O) (1)Q[I:|:l]

By Lemma 3.8, the elemerits ; of A defined in (15), wherg € @* andi is a node
with (¢;, 8) = 0, maps onto an element mél) upon substitution of; by z; ands ! by
zj +m. We shall also writé: g ; for the |mage of this element |Z01 :

We write V(©@ for the free rlghtZ module with basisiz indexed byg € @*. The
connection with [7] is given byn = r — r 1, 1 = 1/(tr3). Recall thatA™ is the positive
monoid of A.

Theorem 6.1. Let M € ADE and let A be the Artin group of type/. Then, for each

i €{1,...,n} and eachg € @*, there are element; 4 in Z(l) such that the following
map on the generators of determines a representation Afon v,

sit> 0 =1 + 17T,
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wherert; is determined by

0 if (a;, B) =2,
_ xﬁ—(x,- if (Oll', ﬂ) = 1,
%(xp) = xghg. if (i, B) =0,

Xgyo; —mxg if (o, B) =—1,

and whereT; is theZ(()O)-Iinear map onV © determined byf;xg = x,, T; g ON the genera-
tors of V(@ and byT; ,, = 1.

When tensored witfd(x, [), the representation o on V(@ becomes a representation
on the vector spac®& which factors through the quotiedt/I> of the BMW algebraB of
typeM overQ(x, /).

Throughout this section we use several properties of the elenigtslisted in
Lemma 3.7. In addition, we shall use the Hecke algebra relation for the imalg;of

; 0.
n ZO .
hgi=hgi+m. (24)

The proof of the theorem follows the lines of the proof in [7]. We shall first describe the
part moduld 1 of the representation of the Artin monaitt on v ©.

Lemma 6.2. There is a monoid homomorphisat — End(V©) determined by; > T;
G=1,....n).

Proof. We must show that, if and j are not adjacent, thent; = z;7; and, if they are
adjacent, them;;7; = t;7;7;. We evaluate the expressions on eagland show they are
equal. We begin with the case whefe= «;. Suppose first thatand j are not adjacent.
Thent;xy, =0 andtjx,, = x4, hp,j. NOW T;7;x, = 0 @andt; tjxy; = Tixe g, ; =0, SO the
result holds. Suppose next thaand j are adjacent. Thefyxy, = TjXa; =0 andzjx, =
—MXe; + Xaj+a, - Now

T,TiTixe; =7 7;(0)=0, and

TjTiTjXey = TjTi(—MXe; + Xoy+a;) = Tj (Xay+aj—a;) = TjXe; = 0.

This ends the verification for the case whgre- ;. We now divide the verifications into
the various cases depending on the inner prodiects8) and(«;, 8). By the above, we
may assume;, B), (a;, B) # 2.

First assume thaty;, o ;) = 0. The computations verifying t; = t;7; are summarized
in the following table. The last column indicates the formulas that are used.
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(o, 8) (@, p) TiTiXp =T TiXg ref.
1 1 Xp—a;—a;
1 -1 Xptaj—o; — MY
1 0 Xp—aip.j (18
0 0 xghgihg, ; (16)
0 -1 XB+a, hpi —mxghg (18
-1 -1 m2x5 —mXpta; T Xpta;) F Xpta;ta;

We demonstrate how to derive these expressions by checking the third line.
titjxp = Ti(xphp,j) = Xp—a;hp,j-

In the other order,
TjTixp = Tj(Xp—a;) = Xp—a;Np—a; -

Equality betweertg ; andhg_q,, ; follows from (18).

Suppose next thadt~ j. The same situation occurs except the computations are some-
times longer and one case does not occur. This is the case whef = («;, f) = —1.
Fortheng 4 «; is also aroot, and8 4 «;, o j) = —1— 1= —2. This meang + o; = —«;
andp is not a positive root. The table is as follows.

(o, 8) (@, p) TiTTiXg =TT TjXg ref.
1 1 0
o Xphp—oj.j = MXp—o; M. j 19
1 0 Xp—a;—a; hg, j (20
0 0 xghg ihg jhp.i a7
0 —1  Xpiajra;hpi —mxpra hpi —mxghl (2D, (24
-1 -1 does not occur

Lemma is proved. O

We next study the possibilities for the paramef&fg occurring in Theorem 6.1. Recall
that there we defined; = 7 + 1~ 17%, whereTxg = x4, Tk, . We shall introducey g as
elements of the Hecke aIgebZ*éo) of type M|c.

Proposition 6.3. SetT; ,, = 1forall i € {1, ..., n}. For o; > 7; +1~1T; to define a linear
representation of the groud on V, it is necessary and sufficient that the equations in
Tablel are satisfied for each, j =1,...,n and each8 € .

Proof. Theoy should satisfy the relations (B1), (B2). Substituting+ [~17} for oy, we
find relations for the coefficients @f* with i = 0, 1, 2, 3. The constant part involves only
the r;. It follows from Lemma 6.2 that these equations are satisfied. We shall derive all of
the equations of Table 1 below except for (39) from th&linear part and the remaining
one from the —1-quadratic part of the relations.

The coefficients of 1 lead to
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Titj=v;T; and Tjy,=vT; ifixj, (25)
‘L’jTi‘L'j~|—Tj‘L',"L'j+‘L'j‘L’,'Tj=‘L’iTj‘L’,'+T,"Ej‘Ei+‘L'iTjTi ifiNj. (26)

We focus on the consequences of these equations fdf; theFirst consider the case
wherei  j. Thentixy, = Xajhaji and so, for the various values @f;, 8) we find the
following equations

(@, B) Tjtixg =1;Tjxg equation
Xa,-Tj,ﬂhﬂ,i=Xajha_,~,i7j.ﬁ Tj,ﬁhﬂ.i=ha,z iB
1 Xa; Tj p—a; =X jha;,iTjp Jﬂ —o; =ha;iTjp
1 xa;Tj gy —m¥a;Tjp = Yo hayiTjp B+rx, —ha,, I8
2 Ozxa]ho,./’, 7B T;p

The first equation gives
T phpgi= hoz_,-,iTj,ﬂ 27)

and the second
Tjp=hyiTipar- (28)

The third case gives an equation that is equivalent to (28). The fourth equation is part of
(39) in Table 1 (namely the part wheyet i).
Next, we assume~ j. A practical rule is

TTjXy = Ti(—mxy, +Xa,-+aj) = Xg;-

We distinguish cases according to the value&®f8) and(«;, 8). Since each inner prod-
uct, for distinct roots is one of 1, 8;1, there are six cases to consider up to interchanges of
i andj. However, as in the proof of Lemma 6.2 fot- j, the cas€w;, 8) = (o), f) = —
does not occur.
For the sake of brevity, let us denote the images of the left-hand side and the right-hand
side of (26) onvg by LHS and RHS, respectively.
Case(w;, B) = (aj, B) = 1. Then(r; B,a;) = (B — o, ;) = 2,508 = a; + o j. Now

RHS= Xaj (T,ﬁ - mTj,aj) +xﬂTj,aj-

Comparison with the same expression but thamdi interchanged yields LHS. This leads
to the equationg; g = mT);, a; andT;, aj =Tig; In view of the latter, and connectedness
of the diagram there is an eIemerm Z ) such that

Ti o =2z foralli. (29)
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Consequently, the former equation reads
T, p =mz. (30)

By the requirement; o, = 1 in the hypotheses, we must have: 1.
Case(w;, B) = (aj, B) =0. This gives

RHS= xaj(Ti’/g —mT; ghg ;) + Xoj+o; Tjghpi~+xqTighg jhg.;

and LHS can be obtained from the above by interchanging the indaras;. Comparison
of each of the coefficients of;,, Xoj+ars Xa; gives

Ti’ﬁhﬁJ = Tj,ﬂhlg,,' if (a;,B) = (Otj, B) =0 and(c;, (x]') =-1 (31)

Since the other cases come down to similar computations, we only list the results.
Case(w;, B) =0, (¢, B) = —1. Here we have

RHS= xo, (=mTi ghp,i + Ti p+a;hp.i) + Xa; (—mTj ghpi + Ti ) + Xaj+a; (T}, php.i)

and
LHS = xq, (m°Ti g + Tj.p — mTi pa)
+ xa; (=mTjghgi —mTjpgia; + Tjpta;+a;)
+ Xq;+o; (=mTi g+ Ti p+a;),
which gives
Ti p+a; = Tjphpi +mTip, (32)
Tjptaj+a; = Tip +mTjpia;- (33)
Table 1
Equations forT; g
T; g condition reference
0 B=ajandi #j (39)
1 p=a (29)
m B=aita; (30)
h;i]:jTi,ﬂfaj (¢, p)=1and(e,a;) =0 (28)
Tjp-ai—a; +mTi p—a; (@, p)=0and(a;, f) =1 (34)

and(oc,-, O(j) =-1
Tjp-ajhp—ajitmlip—o; (@,f)=-1land(;,p)=1 (36)
and(a,», D[j) =-1

Tjpahys (@, p)=1and(;, f) =0 (35)
and(ai, O[j) =-1
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Case(;, B) =0, (@, f) =1.

RHS= xo; Ti,p—a;hp,i +Xa;(—mTj ghg i+ Ti p) + Xa;+o; Tj,php,i

and
LHS = -xC(l' (T],ﬁ - mT‘i,ﬁ—Otj) + -xo[j Tj,ﬂ—c(j—otl' + x(xi+aj T‘i,ﬁ—aj
whence
Ti,,B = Tj,ﬂfajfai + mTi,ﬁfozjv (34)
-1
Tjp=T.p-ajhg}- (35)
Case(w;, B) =1, (o), B) = —1. Now
RHS= xq, (Ti,p—a; hp—a;,j) + Xaj (Ti,p —mTjp—a;) + Xaj+aj (Tj,p—a;)
and
LHS = xo, (m°Ti.p — mT; paa; + Tj ) + X, (T v hprayi —mTj pay)
+ xa,‘+otj (n,ﬁ+aj - mTl,,B)
whence
Tjp="T.p-ohp—a;j+mTjp—o- (36)
Tjpra; = Tiphga, iv (37)
Tipta; =Tjp—o; +mTip. (38)

We now consider the coefficients bf? and of/—2 in Egs. (B1), (B2) fors;. We claim
that, given (28)—(38), a necessary condition for the corresponding equations to hold is

Tia, =0 ifk). (39)

To see this, note that, i  j, the coefficient of ~2 gives T T; = T; T which, applied to
Xq;, Yields (39). Ifk ~ j, note

Txtjxe, = Tk (—mxg;, + Xay+a;) =0
asTk i +a; = mz =mT q by (30). Now use the action of

TitTi+t;TiTi +TiTitj =Trtj T + T T + Ti Ttk
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onxy, . We see only the middle terms do not vanish because of the relation above and so
TjXay Tk,a_,-Z = TkXq; T} o Tk,aj .

By considering the coefficient af,, , which occurs only on the left-hand side, we see that
(39) holds.

A consequence of this is th@T; = 0 if i # j. Now all the equations for the 2 and
1~3 coefficients are easily satisfied. In the non-commuting cage%fthe first terms on
either side are O by the relation above and the other terms ar& @as- 0.

We have seen that, in order fgr— o; to determine a representation, tfigs have to
satisfy Egs. (27)—(39). This system of equations, however, is redundant. Indeed, when the
root in the index of the left-hand side of (32) is settowe obtain (36) for instead ofg.
Similarly, (33) is equivalent to (34), while (37) is equivalent to (35), and (38) is equivalent
to (34). Consequently, in order to finish the proof that Table 1 contains a sufficient set of
relations, we must show that (31) and (27) follow from those of the table. These proofs are
given in Lemmas 6.5 and 6.7 below.

It remains to establish that the matriegsare invertible. To prove this, we observe that
the linear transformatlonk + moy — 1 mapsV onto the submodule spanned ky, and
that the image ok, underoy is x4, [~ 1 This is easy to establish and will be shown in
Lemma 6.10 below. O

Corollary 6.4. If the T; g € Z((,O) satisfy the equations in Table then these obey the fol-
lowing rules.

(i) T: g =0whenevei ¢ Supp{ﬁ)
(i) If (i, B) =1, thenT; g = md sls/sdﬁ

Proof. (i) follows from (39) by use of (28) and (36). Observe that; i Supgg) and
(aj, B) =1 for somej ~ i, thenj ¢ Supfp — «;).

(i) By induction on htg). The assertion is vacuous wherigit= 1. Suppose ki) = 2
Thensg = s;s;s; for some nodg adjacent ta in M. Therefore,

md,, sﬂ s,s;;dﬁ —md 1 _l l-_ls] ls,s]sls]dﬂ —mafl8 s; lsj_lsi_lsj_ls,-sjs,-sjdﬁ =m

and, by (30)T; g = m, as required.

Now suppose ) > 2.

If jis anode distinct fromsuch thate;, ) = 1, then, necessarily,~ j (for otherwise
(o, B —aj) =2,508 =a; + «;, contradicting htg) > 2). Now (28) applies, giving

lﬂ—thl,B —a; by(28)
- md(;l_lsj—lsﬂ__laj siSp—a;sjdp by induction

=md,, sﬂ sjs, ]ls,gd,g by definition ofsg

=md;i slg s,-s,gdﬁ ass;s;j =s;si,
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as required.
Supposé is a node distinct from such that(o;, 8) = 0 andi ~ . Then (35) applies,

giving
Tip="Tip-ahy; by (35)

= mdojll(sgfai 51)Sp—a; (dp—c; dﬂ_l)sl_ldﬂ by induction

= md(;il(slsi_lsl_l)s;lslsy (slsisl_l)dﬁ by definition ofdg andsg

1.-1, -1

=md;l,lsf s, sisy, slsysflslsid/g by the braid relation

= md;ils;lsfls}flsi szsfls),slsidg by Lemma 3.9

= md‘;l_l(si_lsl_lsjjlsl_l) (sisisyssi)dg by the braid relation

= md;ilsﬁ_lsis,gdﬂ by definition ofsg,
as required. O

Lemma 6.5. The equations fop in (31) are consequences of the relations of Tabknd
those of(31) and (27) for positive roots of height less thdut(3).

Proof. The equation says thdl ghg ; = T; ghg r Whenever(o, B) = («;, 8) =0 and

k ~ j. The initial case ofg having height 1 is direct from (39). Suppose therefore,
ht(8) > 1. There exista € {1, ..., n} such thal(w,,, ) = 1. If (e, ax) = (i, ;) =0,
then, by the induction hypothesis and (18] g—o, 78, = Tk.p—amPp—cm,j =

T g—aphp—cn kTj p—anhp.i, SO, applying (28) twice, we find

-1 -1
Tic.php,j = hogom T, p—cnTtp.j = Nefom Tj p—an Ttk = T plp i

as required.
Therefore, interchanging and j if necessary, we may assume that- m, whence
k  m (as the Dynkin diagram contains no triangles). Now 8 — o, —or; andy =8 — oy
are positive roots angy, 8§) = 1, so (28) gived,, = hg,, k Tim,s, Which, by induction on
height, and (22), leads to
ag,m*J

-1 _ -1 -1 _ -1
h Ty —ham,kTm,yhy,Jhy,m = m,éhV,Jhy,w

Observing that, by straightforward application of the braid relations and the definition of
hp k, we also have

-1
hy jhy, mhp.j =hpk,
-1 -1

hswhp.j=hg—y, gk

we derive
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Tiphp,j = h;klm Tip-anhp; DY (28)
Dy, (T +mTes)hg by (34)
= m,ghy,jh;’mh,g,j + mTk’ahS_J];nhﬁ’j by the above and (27) for, §
=Tin,sTm,shpk + mTk,ahgfam’kh,g,k by the above
= (Tn,s +mTjp—a,)hpir by (35)
=T, phpr by (34)

as required. O

The relation (27) is new compared to [7]. But it is superfluous. In order to see this, we
first prove some auxiliary claims.

Lemma 6.6. Let A, k be generatorgor conjugates therepfin the Hecke algebri(o).
Then, for any € Z0 ,

() h Yt — k=t = ht — 1k,
(i) A=t +h ek Dk =1+ h k1.

Proof. (i) Expand the left-hand side and use that = z + m for every conjugate of a
generator.

(ii) By (i), tk + h~r = ht + tk~1. Multiplying both sides from the left by,~* and
pulling out a factok at the right of the left-hand side, we find the required relation.

Lemma 6.7. The equations foB in (27) are consequences of the relations of Tabknd
those of(31) and (27) for positive roots of height less thdut(3).

Proof. Suppose that the positive rogtand the distinct nodes i satisfy (¢, ) = 0 and
i 1. By Corollary 6.4(i), we know thal; g =0 if i ¢ Supf(8), so we need only consider
cases wheree Suppp).
Ifht(8) = 1, then, by (29) and (39}; s = 0 and there is nothing to prove unlebs- «;.
In the latter caséd; g =1 and

h ' Tiphps =hy he, 1 =1,
so (27) is satisfied.

If ht(8) =2, theng = «; + «; for some;j andT; g = m by (30). Asq; is orthogonal to
both 8 ande;, it must be orthogonal ta; as well. Now

-1 -1 -1.-1
ha,-,lTi:ﬂhﬂvl =mhai,lh0‘i+0‘jal =mda,- dy.dt S[deai =m,

@ Py ]

as required.
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Case (28): there is a nodewith («;, 8) =1 and(a;, ;) = 0. ThenT; g = h;l_%,. Tip—a;-
If j 1, we find '

h;:lTi,ﬁhﬁ,l = h;l hi%j T,',‘g,ajhﬁJ by (28)

il o

=hy ihy Tipahp—a;0 by (16) and (18)

= hozlj Ti p—o; by induction

=Tip by (28)

If j ~1,wefind

hoy Tiphp = hoyhg ! Tip-ashps by (28)
=hyth o Tipa;—ahps Y (28)

ai,l oy, el

= h*l 'h*l h;l:!-j ’Ti,ﬁ*aj*alhﬂ*aj*ahj by (17) and (20

o, j el

=hythy YT p—a;—a by induction

ai,jag,l

=T;p by (28) applied twice
This ends case (28).

Case (34):(o;, B) = 0 and there is a nod¢ ~ i with («;,8) = 1. ThenT; g =
Tj,ﬁ—a,-—aj +mTi,/3—aj- Now

h;i:!'lTi,ﬁhﬁ,l = h;’.:}l(Tj,ﬁ—a,- —a; tmTi g—a;)hp.
If j #1,wefind
h;ﬁ;ﬂ,ﬁhﬁ,l = ho_,i%](Tj,ﬂ—ai—aj +mT; g—a;)hps Dby (34)
= h;lz T} p—ai—a;hp—ai—a;1 + mh;,-%lTiqﬂ—a./hﬂ—ﬂt./J by (18)

=Tjp-a;—a; +mT; p—o; byinduction

=T, p by (34).
If j ~1, we claim
Tipg=Ts+ m(Tj,V + h;,lzT/yhf_s}) (40)

wherey = 8 —a; —a; — oy and wherel = y — «; are positive roots. For
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Tip= Tj’ﬁ—ai—ﬁtj + mTi.ﬂ—a/‘ by (34)
= (Tis +mTjy) +mh Tipo;—a by (34)and (28)

-1 -1
= TZ,S + mTjsV + mha;,lijyhﬂfoljfal,j by (35)
=Tis +mTjy +mh, 5 Tjyhy; by (20).

By (20), we haveig; = hg—a;—a;.j =hs.i, SO, by induction we find
h;},Tz,ahﬁ,l = (E,ah({})hﬁ,l =T15s.

So the first summand of (40) is invariant under simultaneous left multiplicatiom;ﬁy
and right multiplication byhg;. The same holds for the second summand7;, +

h;ﬁlTj,thj) by Lemma 6.6 applied with = h, ;, k = hg;, andt = T} ,,. Consequently

(27) holds forT; g4 in case (34).
Case (36):(o;, B) = —1 and there is a nodg ~ i with (a;, ) = 1. ThenT; g =
Tj,ﬁ—a_/hﬂ—ot_/,i +mTig—o,- Now
h;.:!'lTi,ﬂhﬂ,l = h;i:!'l(Tj,ﬁ—ajhﬂ—a_/,i +mT; g—a;)hp.i.
If j %1, wefind

ho ' Tphps=hy  (Tjp—a;hp—ayi+mTip_a)hps by (34)
= T pahpayihpayi +mhy Y Tipoahp—ay by (18) and (16)
=Tjp-a;hp—a;i +mTip—q; byinduction
=T,p by (34).
If j ~1, we claim
Tip = Tiyhyjhp-a;i+m(Tjyhp-api+hy i Tiy), (41)

wherey = 8 — «a; — oy is a positive root. For

Tip=Tjp-a;hp—a;i+mTip—o;, by (36)
=Tiyhy jhp—a;i+mTjy hpa,i +mh, Y Ti, by (36)and (28).

By Lemma 24, we have

1 -1/ -1.-1.-1 -1.-1 -1
hy’ihy’jhﬂ_a_/,ihﬂ,lzdﬂ (sj 5 szsj)(sj s SjS]Sj)(Sj SiSj)(Sl)dﬁ

:dﬂ_l(sj_lsi_lsj)(Sj_lsl_lsjslsj)(Sisjsi_l)(sl)dﬁ

= dglsflsflsflsjslsisjsldﬁ
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=dgtsits s

; - Usjsisysjsidg

=dﬂ_lsj_lsl_lsjs,'sj_lslsjsldg
= dﬂ_lslsj_lsl_lsislsjdﬁ
= dﬁ_lslsj_ls,-sjdﬁ
= h%jhﬂ—a_/'
Hence, using induction, we find for the first summand of (41)

o (T hy, jhp—a; gt =Tryhthy, jhg o) ihgi = Tishy jhp—a;,

proving that it is invariant under simultaneous left multiplicationltgj}%l and right multi-
plication byhg ;.

The same holds for the second summan(iTj,yh,g_a_,,i + h;ﬁlTi,y) as we shall es-
tablish next. First of all, note that, ; = hg, by (20) and that, ; = hg_o,; by (18).
Moreover, by (31) fory, we haveT; , h, ; = T}, h, ;. Substituting all this in the second
summand, we obtain

m(Tjyhp-a;i+ h;,%lTisV) =m(Tjyhyi + h;:lTi#) =m(T; yhy,j + h;:zTi,y)
=m(Tiyhp + h;,-%lTi-,V)-
Again, using Lemma 6.6 applied with= hy, ;, k = hg;, andt = T; ,,, we find the required
invariance. Consequently (27) holds frg in case (34).

Case (35):(o;, B) =1 and there is a nodg¢ ~ i with («;,8) =0. ThenT; g =
Tj p—aihy - Now

hoi Tiphp = hoy Tip—aihg gt
If j #1, we find
hoi T g = he i T p—aihg 5hps by (35)
=h " Tjp-ahp—aihg’s by (16)and (18)
= j,ﬂfail’l};]j'» by induction
=T, by(35).

If j ~1,0bservethab,, hythgi=hp o a;ih5t, h5"inviewof (18), (20), and

(17). Also,hy, 1 = hy,,; by a double application of (21). Therefore,
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ho ' Tiphpr =hy T ga—a;hgt,, hg hp by (35) twice
_h;[lT[ﬂ ooy M p—ay—ay.ih Ea,,zh,g,%/ by the above

=T, a,_%h/S T lhﬂi by induction
=T;p by (35)twice ]

The proposition enables us to describe an algorithm computing the

Algorithm 6.8. The Hecke algebra elementsg of Theorem 6.1 can be computed as
follows by using Table 1.

(i) If i ¢ SuppB), then, in accordance with (39), sEtg =0
From now on, assumiec Supfg).

(i) Ifht(B) <2, Egs. (29) and (30), that is, the second and third lines of Table 1, determine
Tip.

From now on, assume (ft) > 2. We proceed by recursion, expressifig as aZ((,O)—
bilinear combination of} ,,'s with ht(y) < ht(8).

(iii) If (c;, B) =1, in accordance with Corollary 6.4(i), s&ts = mdg sy sispdp.
From now on, assumey;, ) € {0, —1}.

(iv) Search foraj € {1,...,n} such that(o;, «;) =0 and(«;, ) = 1. If such a; exists,
theng — o € @ and (28) expresses g as a multiple off; g_q; .

(v) So, suppose there is no sughThere is g for which g — «; is aroot, sae;, 8) =1
As (v, B) # 1, we must have ~ j. According as(«;, 8) = 0 or —1, the identities
(34) or (36) expres$; g as aZ0 ) _bilinear combination of; p—o; and somd; ,, with
ht(y) < ht(B).

This ends the algorithm. Observe that all lines of Table 1 have been used, with (35) implic-
itly in (jii).

The algorithm computes a Hecke algebra element for £gg¢based on Table 1, show-
ing that there is at most one solution to the set of equations. The next result shows that the
computed Hecke algebra elements do indeed give a solution.

Proposition 6.9. The equations of Tablehave a unique solution.
Proof. We will first show that the Hecke algebra elemefitg defined by Algorithm 6.8

are well defined by the algorithm and then that they satisfy the equations of Table 1. Both
assertions are proved by induction ot the height ofs.
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If B has height 1 or 27; g is chosen in step (i) i = «; with j # i and in step (ii)
otherwise. Indeed there is a unique solution.

Now assume i) > 3. Suppose first thdf; g is determined in step (iii). This means
that(«;, ) = 1. This is unique as itis a closed form.

We now suppose théf; g is chosen in step (iv). This means there ig &or which
(o, ;) =0 and(e;, ) = 1. We must show that if there are two suglthe result is the
same. Suppose there are distif@nd ;' for which («;, g) = («;, 8) = 1 and(a;, o;) =
(ajr, ;) = 0. Then by our definitior; g = h;l_:’Lj,T;"ﬂ_aj, and we must show that

Tip=hy' Tipa;-

If j ~j’,then(ﬁ aj,oa;) =2andB =« +a; has height 2. This means we can assume

j#Jj.Then(—aj,ay)=1and(f —aj,a;)=1.1n parucularﬁ —aj isalsoa
root. Now apply (28) and the induction hypothesis to 8gg o, = h ,,3 wj—ay and
Ti p— —ay h‘ Ti p— aj_a/,and so by (16), we find
1
hmJTZﬂ a]_h tﬁ o

This shows the definitions are the same with either choice.

We may now assume thé} g was chosen in step (V). lf is the one chosen in step (v),
thenT; g was chosen to satisfy (34) or (36). Suppose now that there is another jhdex
which was used in step (v) to defifigs. For these the conditions ae;, 8) = (', B) =
land(a;, aj) = (a;,aj) = —1. Clearly j »# j' for otherwise there would be a triangle in
the Dynkin diagramM . Therefore,(a;/, 8 —a;) =1, and sof — «a; — s is a root. We
distinguish according to the two possibilities fof;, 8).

Assume first(a;, 8) =0. Then,(o;, B —aj —aj) =2,and soB = o; +a; +aj. By
using (34), with eithey or with j/, we find7; s = m?, independent of the choice gfor j’.

Next assuméc;, 8) = —1. Then(e;, B —aj —aj)=1,50y =B —a; —aj —a; IS
a root. We need to establish that the result of application of (3@) jodoes not depend
on the choicej or j. We do so by showing that the result can be expressed in an expres-
sion symmetric inj and j’. Observe thay is an expression symmetric jhand j’. The
expression of’; g obtained by applying (36) tg is

Tjp-ajhp—a;i+mTipo;. (42)
By (34), the second summand of the right-hand side equals
mTig—o; =mTj , + mzﬂ,ﬁ,aﬁaﬂ.
For the first summand of (42) we find

],B otjhﬂ a,l—/’l ]/3 a]fa,hﬁ ;i by(28)
= h;jf,,(T,-,yhy,j +mTjy)hg—a;i DY (36).
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Expanding (42) with these expressions, we find by useof; = ha i (see (21)),
hy.j=hg—a;.i (S€€ (22)), and (27),

h Ttyhyjhﬁ a,t‘*‘m(h TJyhﬁ aji Ty V)+m Tip— —aj—ay

1
ha o tai, lnvyh%/h%/’ +m(T./vV + T.I'/s)/) +m Tisﬁ‘“ﬁ‘“;"

Sinceh, ; andh, ; commute, cf. (16), the result is indeed symmetrigiiand j". This
shows that the algorithm gives unique Hecke algebra elenigpts

We now show that the relations of Table 1 all hold Tog as computed by the algorithm.

If the height ofg is one or two the values are given by (39) and (29) of the table and none
of the other relations hold as there are no applicable

We consider each of the remaining relations, one at a time, and show that each holds by
assuming the relations all hold for roots of lower height.

If («;, B) =1 the value off; g is given in step (iii). The relevant equations are (28) and
(35). The proof of Corollary 6.4(ii) shows that both equations are satisfied by the closed
formula which is the outcome of our algorithm.

We have yet to check (34) and (36) in which c&gew;) is 0 or —1. Notice (28) and
(35) require(er;, ) = 1 and do not apply here. In these ca%gg is chosen in step (iv) or
step (v).

Suppose first; g was chosen by step (iv). In this case there ig with («;/, §) = 1,

(o, ajr) = —1. AsT; g is determined by step (iv) of the algorithm,

Ti,ﬂ = h;i:!-j/Ti,ﬂ—aj/ .

We have already seen that this is independent of the choigeasfd so if there is another

Jj forwhich («;, ) = 1 with («;, ;) = 1, (28) holds. To check (34) we suppose there is a
j forwhich («;, ) = 1 with (e;, «j) = —1. We must havg » j’, for otherwise we would
again be in the height 2 case. In order to obtain (34) we must show that

h;i%j/n’ﬂ_o‘j’ =Tjp-ai—a; +mTip—q;.
As for the left-hand side( — «/, ;) = 1 and(«;, o) = —1, so by (34), we have

h;l.:!-j/Ttﬁ a/—h ]/3 a/aj—a,+mh tﬁ o —aj-

As for the right-hand side, a&;, o) = 0, we can use (28) to obtain

Tj,ﬂfoz,-fozj = h;ijzj/Tj,,Bfoljfa,'faj/ and T; B—a; = h T; B-aj—ajs
and so the right-hand side equals the left-hand sidg ify = h,, ;. But this is (23).

We have yet to consider the cage, ) = —1, whenT; g is chosen in step (iv). Suppose
j' is the choice used in step (iv). As we saw in the caseg) = 0, (28) holds for any;
with («;, B) = 1 and with(e;, o ;) = 0 by the uniqueness of the definitionZifs. We need



146 A.M. Cohen et al. / Journal of Algebra 286 (2005) 107-153

to treat the cas@y;, ) = 1 with («;, «;) = —1 and show (36) holds. In particular we need
to show

-1
hai,j/nﬁ—“j’ =Tjp-ajhp—a;i+mlip—aq,.
Use (36) on the left-hand side to get

-1 7. . -1 7
hai’j/T],ﬁ—aj/—ajhﬁ—otj—aj/,z + mha[,j/n,ﬂ—dj—aj/ .

On the right-hand side use (28) to get
T hg_o.i+mh L, T;
aj,j’ JB—aj—aytB—aj,i o, j By

The needed equation will hold providéq, ; = he; . j and h,g_aj_aj,,,- = hp—a;.i- The
firstis (23) and the second is (18).

This shows that all the equations are satisfiéll f is chosen in step (iv). Butif; g was
chosen in step (v) we have already checked any two choicggiwe the same answer for
(36) and so this equation is satisfied also. We have now shown all the relations in Table 1
hold. O

At this point we have established the existence of a linear representatiba on V(.
We need some properties of projections which have already arisen in [7]. In particular let

fi =ml~e;. The following lemma shows these elements are multiples of projections.

Lemma 6.10. The endomorphisms( f;) of V(@ satisfy

2+ ml™t — Dxy, if (i, B) =2,
I Tphp s A m 1Y if (i, B) =0,
U(ﬁ)xﬂ - l_lxol,' (T;',ﬁ+oli + l_sz,ﬂ) |f ((Xi’ '8) = —:l_7

7Y% (Tipoy + m+17HT; p)  if (i, p) =1
In particular, o (f;)xs € xo, [ 2Z5 (171 if B # a; ando (i) xa; € xoy (—=1+171Z8P[172)).

Proof. Suppose firste;, 8) = 2 in which case8 = «;. Using the definition o and (29)
giveso;xy, = l’lxai. Now o (fi)xe; = (" 24+ml™1— Dxg, .
Suppos€a;, B) = 0. Theno;xg = xghp; +1 1xq, Ti . Now

oizxﬂ :xlgh%’i +l_1xai T; ghp,i + l_zxai T .

Evaluatingo (f;) on x,; and using the Hecke algebra quadratic relationiigr gives that
the coefficient ofg is 0. Adding the other terms giveslxai T p(hgi+m +171) as stated.

Supposéa;, f) = —1. NOWo;xg = Xg1o; —MXg —i—l_lxai T; g. Applying o; again gives
Ul-leg =xg + l_lxaiTi,/ngai — mM(Xpto; — MXg + l_lxaiTi,ﬁ) + l_zxaiTi,ﬂ. Again adding
gives the result.



A.M. Cohen et al. / Journal of Algebra 286 (2005) 107-153 147

If (i, B) =1,0ixg =xp_q; +l*1xai T p. NOWoizx,g =Xg—MXg_g; —i—l’lxaiTi,ﬁ_ai +
X T; 8. ing and again using the quadratic relation gives the result.
172x4, T;, p. Adding and ag g the quadratic relation gives th It

The final statement follows from the fact that thg, andhg; belong toZél) (171 (that

is, there is nd involved). O

Proof of Theorem 6.1. In view of Proposition 6.3 we need only check (D1), (R1), (R2),
and thato (¢;e;) =0 fori ¢ j. But (D1) is just the definition. By Lemma 6.10 we know
o (ej)xg is in the space spanned by,. Now (R1) follows aso;xq, = l_lxai. Fori + j

we knowo (ejej) = o (eje;). By Lemma 6.10 this is i, Z(()O) and also inxy, Z(()O), and

so itis 0. As for (R2) agaim (e¢;)xp is a multiple ofxy,. NOW 0xy; = Xo;+a; — MmXq, -
Lemma 6.10 gives

o (fi) (X +a; — MXy;) = Xey (l_l(m + l_l)m — (12 +ml~t— l)m) =MXg,.
Now scaling to getr (e;) gives the result. We have shown that Theorem 6.1 holds.

We now show how to construct irreducible representation8 efhich havel; in the
kernel.

Lemma 6.11. For each node of M, we haver(Zi(m)xai = Xg Z(()O).

Proof. For j andi adjacent nodes, the following computation shows; xq, = x; .
(o} ija[ =0 (xa,--l-aj - mxc{,-) - xol_,' + l_l’Ti,O{[ +C{j -xﬂl,' - ml_lxai
=Xo; + l_lxaim - ml_lxai =Xq;-
By induction on the length of a path froirto k in M, this gives

o(@)xai = Xq- (43)

Therefore, forj andk distinct non-adjacent nodes of,

x 1o (wAk,-f@ei)xa[ = 0(@;))504,( = U(wAki)ijak = U(wAki)xakhak,j = xa;hak»j'
As cr(Z,.(O)) is generated by elements of the foertiwg; jwire;), it follows that

o (Zl.(o))xa,. C Xy Z(()O).

Note it follows from Lemma 6.10 that 1o (¢;) x4, = Xg; -
As for the converse, this follows from Lemma 3.8(ii), which implies tZéO[) is gener-
ated byhy, ;, fori # k, i # k. (For, by definition,Z(()O) is generated bﬁ mod/lp.) O

Supposed is any representation afp, acting on a vector spadé over K, where
K =Q(r), or an algebraic extension thereof. Then we can form a representat®oof
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the vector spac® ®z, U over K (/) which is the direct sum of vector spaceggl/ where
each is a vector space isomorphidioLet V be the representation space of Theorem 6.1.
For each define an action of; onV ®2, U by letting elements ofg act directly onU.

In particular,o;xq, u = l_lxaiu; if (a;, B) =0, theno;xgu = xg6 (hg i )u ~|—l_1xai0(Ti,,3)u;

for (a;, B) = 1 we have; (xgu) = xg_g;ut + 1 1x4,0(T; g)u and if (a;, B) = —1 we have
oixpu = xp4pu —mxpu + 17 1x4,0(T; g)u. This is a representation by Theorem 6.1. De-
note itIy.

Lemma 6.12. If ¢ is an irreducible representation cﬁtéo), then the representationy is
also irreducible. For inequivalent representatiofisd’, the resulting representationg
and Iy are also inequivalent.

Proof. SupposeV; is a proper non-trivial invariant subspace otz z, U. We show first
thato (f;) V1 = O for all nodes of M. By Lemma 6.10¢ (f;)V ®z, U is in xq,60(Z3HU
which is inx,, U. This means that (f;) V1 is in x4, U. Suppose there is a nodewith
o (fi)V1 non-zero. This means there is a non-zero element®l/ such thatyy,u € V.
In Lemma 6.11, we have seen tlﬁ}(f))xa,. = Xy, Zéo). Hence

% 0(Zu = 20 xy, < V1.
But 6 is irreducible and so all of,, U is contained irvy.

By Lemma 6.11x,, U isin Vy for all k. We show by induction on the height of a positive
root hi(8) thatxgU is in V1. Assume hig) > 2. Choose a nodg with 8 =r;(8 — «;).
By induction,xﬂ_ajU is in V1. But for eachu € U, the vectorj xg—o is a sum ofxgu
and vectors already known to be ¥ and saxgU is in V1. But this means all of/ @z, U
is in V1, contradicting tha¥; is proper. This shows ( f;) V1 = 0 for each node.

As V1 is invariant, its imager(uf,'gfjfj@*)vl under a conjugate of (f;) is also
trivial. We will derive from this thatVy is 0. To this end, choose an order &t that is
consistent with height. For eagh choose a nodg (8) in the support ofs. Notice that
Lemma 6.10 shows that the imagec(f;) is in xy, Z((JO). Let L be the matrix whose rows
and columns are indexed " in the fixed order and whosg y entry is the coefficient
of x5 in o (Wp 5 fipWp B )Xy This means the entries are elements (). As
eacho (Wp.; 5 fi(pWp 5 Vi =0, we haveLV; =0.

Observe that. can be viewed as a matrix with entries &{/~1] by interpreting the
entries fromQ(Zéo)) as submatrices ovex [/ ~1]. We claim thatL is non-singular. By the
Lawrence—Krammer action rules, tifey entry of L mod[~! is readily seen to be the
coefficient ofxy; 4 in o (fjpWp @ Dxy. If =1y, then this coefficient is equal tol
modulo/~1, and if 8 is less thany in the given order, then there is no summangd ,,
present in the expansion O’f(m)_l)xy and so theg, y coefficient of L is 0. This
meansL modulo/~1 is lower-triangular with—1 on the diagonal, whence non-singular.

Therefore, the equality V1 = 0 implies vV, = 0. We conclude that there is no invariant
subspace and the representation is irreducible.

Finally, we argue that inequivaledtlead to inequivalenfy. To this end we consider
the trace of each elemenf; zwixe; of Z; in I, wherez is in W,.. By Lemma 6.10, the
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only contributions to the trace occur for vectorscyv (Zp), and, in view of Lemma 6.11,
this contribution isn ~1(I™t +m — 171 tr(0 (dy '2d.,)). Sincedy '2d,,, for k a node ofy
andz € W1, spanZp over K (/), these values uniquely determifie O

With these results in hand we are now ready to show that the dimensirilefis at
least the dimension we need for Theorem 1.2.

Proof of Theorem 1.2. In Theorem 6.12 we have constructed irreducible representations
Iy of B/I, of dimension|®*|dimé for any irreducible representatiehof Zo. Sincel;

is not in the kernel of these representations, they are irreducible representatiapif of
Moreover,Zg, being a Hecke algebra ov&X(/, m) of spherical type, is semi-simple, so
summing the squares of the dimensions of the irreduciblegyafives din{Zg). Hence

the dimension of/1/1 is at leastj®*|2dim(Zg). By Theorem 5.6, this is also an upper
bound for the dimension, whence equality. The semisimplicity followB A&, being the
Hecke algebra of typa1, is semisimple, and the sum of the squares of the irreducible
representations af/I» is the dimension of;/l>. O

To end this section, we observe that the usual Lawrence—Krammer representation is the
representationy, whered is the linear character dfp determined by (hg ;) = r~1 for
all pairs(B,i) € @+ x M with (o;, B) =0.

7. Consequences and conjectures

This section gives some consequences of the main results of the previous sections, as
well as some of our ideas about the general structure of BMW algebras.

7.1. Global structure of BMW algebras

Indications for the validity of our theorems were first found by experimental computa-
tions in GBNP [6]. However, the sheer size of the algebras involved makes the computa-
tions difficult. For instance, the dimension &f/ I in B(Eg) is equal to 41803776 000.

Nevertheless, some experimenting wiliD4) and knowledge of the classical BMW
algebraB(A,) lead us to conjecture that, if is a coclique ofM of sizei > 1, thenl; is
an ideal properly contained if_1.

If J and K are conjugate by an elemente W, then as we have seen in Proposi-
tion 4.2(ii), the idealdl; and Ix coincide. Computations iB of type Dy show that for
J and K of size 2 but in distinct orbits, we find distinct idedls= Bey B, Ix = Bekx B.

Also the pattern that, for each cocligueof sizei, we havel;/I;11 = Be;B/li+1 =
D;Z;D;%/1;41 for a suitable seD; of coset representatives of the stabilizer{of |
j € J}in W and a subalgebrZ ; of B isomorphic to a suitable subtygg; of M. Thus,
we expect that dirfY; /1;11) is a multiple of N2 by the order of a Coxeter group of some
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subtypeC; of M, whereN is the length of the¥-orbit of {r; | j € J}. This would imply
that the dimension oB be equal to

Y ONZ|w(Cy).
J

Here J runs over theW-equivalence classes of cocliquesih including the empty set,
with Cy = M and Ny = 1, so that the contribution faf = ¢ equals|W|, the dimension of
B/1I1, the Hecke algebra of typ¥ .

The conjecture holds foB(A,). Here W is known to have a single orbit on cocliques
in M of any given size € {1,..., [n/2]}; for J ={1,3,...,2i — 1}, the typeCy is the
Coxeter type of the centralizer W of {«; | j € J}, thatis,C; = A, _»;, and

- i 1
s ,,

I X

These formulas also hold far= 0 if we write Ip = B and Ng = 1. We then find
dim(B(A,)) = Y, dim(l;/I;i+1) = (2n + 1)(2n — 1)(2n — 3)---1, which is known
from [17].

Our conjecture also holds fa#(D4). In B(Dg), there are three ideals of the fori
for J of size 2, namely for = {1, 3}, {1, 4}, {3, 4}. Each quotientl; /I3 has dimension
Nf -2, whereN; = 6. ThusCy is of type Ay, rather than AA1, the parabolic type of the
centralizer of two orthogonal roots. This means that a complication with respect to the type
A, occurs in that the typ€'; is not just the full type of the centralizer ¢&; | j € J} in
W. Similarly, Ni1,2,3)=3,C(1,23 =1, andlz = 134 has dimensiorzw{zl’z’g} -1=9.1In
conclusion,

dim(B(Da)) = |W|+ NZ|W (A3)| + 3 x N7 5| W(AD| + N34 | WD)
=192+ 12%.8+3-6%- 2+ 32 = 1569

The shrink ofC; for J of size 2 extends to all types,0or n > 4. In B(D,) (n > 5),
there are two conjugacy classes, one of which has represerfiativd, n}. In this case,
or rather, in any case wherecontains these two end nodes, the representatid(df,)
on I, factors through a representation BtA,_1). We prove this as follows. To begin,
we can take/ = {n — 1, n}. We claim thatg, acts precisely ag,_1. First of all g,e; =
[7Ye; = g,_1e;. We proceed to show,iie; = g,_1iie; by induction on the length of
u € W, n—13- Without loss of generality, we may assume D,,. . (observe thatL N
{1,....,n—1}=J1+ U{n — 1} in this case, so

—

gnaubey = agyiie b

fora,bent N{1,...,n}). But then, by known properties of the Coxeter group, we have
eitheri = g, _>0rii = g,_28,—18n—3gn—2. As allindices are ifn — 3, ..., n}, the identity
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gnitey = gn_1tiey can be verified inB(D4) (after specialization ta = 4), where it is
easily seen to hold. So in all cases, acts exactly likeg,_1, proving that theB(D,,)
representation ofy; factors through the quotient obtained by identifyggandg,—1, and

so through a BMW algebra of typB(A,—1). On the basis of observations like these, we
conjecture that the dimension 8{D,,) is equal to(2" + 1)(2n — D!! — (2"~ 1 + 1)n!

7.2. Parabolic subalgebras and restrictions

Let J be a set of nodes dff. We will discussBy, the subalgebra a8 generated by all
gj with j e J. Clearly, there is a surjective homomorphism fr&¢/), the BMW algebra
of type M|; onto B;. We conjecture however, at least fbf of spherical type, that this
map is an isomorphism. It is an easy consequence of Theorem 1.2 that this assertion holds
modulo I, in the sense thaB; /(1> N By) is isomorphic to the quotient aB(J) by its
ideal I>.

The restriction of the generalized Lawrence—Krammer representatidh éorV over
Zo to By is easy to analyze. Fer:M \ J — N, putqﬁJr ={Be® | Cpr=arforke
M\ J} and letV; , be the subspace &f generated byﬁ with 8 € CD+ Then it is easily
seen from the Lawrence—Krammer action rules thag is a B;- mvarlant subspace df,
which is isomorphic to the Lawrence—Krammer representatid®(dh, up to an extension
of scalars. Moreover, the subspate, + V; o is By-invariant for any choice of. In
view of Lemma 6.10, the action &; on the quotientV; , + V,.0)/ Vs o factors through
the Hecke algebr®; /(11 N By). We expect that the particular representationsAgron
(Via+ Vr50)/Vyo can be found by combinatorics of the root system, similar to the case
of type A,, discussed in [17].

To see how this works in a specific example we consil@,,) with n > 5 andJ =
{2,3,...,n}, sowe will consider the action &; onV;; fori =0, 1. Hereq§+0 is the set
of rootSe, :I:sj for2<i<j<n and<15+l is the set of roots; £+ ¢; for 2< j < n, where
(el)1<,<n is an orthonormal basis of Euclldeanspace .B; maps the span dfrg | 8 €

0} which is V; o, to itself by the construction foB(J) = B(D,—1). Also the Hecke
algebraZo for B(D,,—1), which is (g2) x (g4, ..., gs), can be embedded into the Hecke
algebrazg for B(D,), which is(g1) x (g3, ga, ..., gx), by mappingg> to g1 and fixing
(g4, ..., gn). Furthermore, if6,es is 0 restricted toZg for B; with this embedding, the
resulting representation & (D,—1) is Iy, As mentioned above, the action BfD,_1)
on the quotient vector spac®; 1 + V;.0)/ V.0 factors through the Hecke algebra of type
D, —1. The representation then breaks into these two actions with the action on the quotient
being a Hecke algebra action. The sgam of the xg for g € <1>J 1» Is not invariant but
using semisimplicity there is an invariant subspace giving this representation. This gives a
branching rule fronB(D,,) to B(D,,_1).

7.3. The Brauer algebra

Let E be the subrin)(x)[/*] of Q(Z, x). We conjecture that there is a subalgeBf&
of B defined ovelE containing a spanning set &f with the property that after transition
modulo(/ — 1) we obtain a monomial algebra whose basis can be described in terms of the
root system of type/. For B of type A, it is the well-known Brauer algebra, introduced



152 A.M. Cohen et al. / Journal of Algebra 286 (2005) 107-153

in [4]. We expect the conjectured basi$, D; Wc, D;° of B discussed in Section 7.1,
to be a monomial basis moH for the Brauer algebra. Its elements should correspond
to pictures, which consist of triples consisting of two sets of orthogonal roots, Weth
conjugate tda; | j € J}, and an element d (C;), a Coxeter group in a quotient of the
centralizer of/ in W. This correspondence is well known for typg.A he basis of1/1>
found in Theorem 1.2 can be used to establish the validity of this conjectuB/ fer

7.4. Conclusion

For Coxeter diagrams that are not simply laced, we expect a natural BMW algebra to ex-
ist as well. For type B, an approach is given in [12]. More generally, by means of a folding
¢:M — M’ of Coxeter diagrams, a BMW algebra of spherical tyyé could be con-
structed as the subalgebra®fM) generated by suitable productsgffor g; € ¢ ~1(a),
one for eacl: € M’, in much the same way the Artin group of typ€ is embedded into
the one of typeM, see [8]. However, further research is needed to see if this definition
is independent (up to isomorphism) of the choicesdbr fixed M’, as well as to find an
intrinsic definition of this algebra.

The BMW algebras of type Aplay a role in algebraic topology, in particular, in the the-
ory of knots. The versions of spherical type ADE are related to the topology of the quotient
space byw of the complement of the union of all reflection hyperplanes in the complexi-
fied space of the reflection representatiodf R). After all, by [5], the Artin groupA is
the fundamental group of this space. A direct relationship, for instance, a definition of the
BMW algebra in terms of this topology, would be of interest.

Brauer algebras play a role in tensor categories for the representations of classical Lie
groups, and the corresponding BMW algebras seem to play a similar role for the related
guantum groups. It is conceivable that the new BMW algebras constructed here play a
similar role for the tensor categories of representations of quantum groups for the other

types.
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