
a

nding

lly we
ebra, as
e other

faith-
lso

CORE  similar papers at core.ac.uk

Provided by Elsevier - Publisher Conne
 Journal of Algebra 286 (2005) 107–153

www.elsevier.com/locate/jalgebr

BMW algebras of simply laced type

Arjeh M. Cohena,∗, Dié A.H. Gijsbersa, David B. Walesb

a Department of Mathematics and Computer Science, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands

b Mathematics Department, Sloan Lab, Caltech, Pasadena, CA 91125, USA

Received 5 April 2004

Communicated by Michel Broué

Abstract

It is known that the recently discovered representations of the Artin groups of type An, the braid
groups, can be constructed via BMW algebras. We introduce similar algebras of type Dn and En
which also lead to the newly found faithful representations of the Artin groups of the correspo
types. We establish finite dimensionality of these algebras. Moreover, they have idealsI1 and I2
with I2 ⊂ I1 such that the quotient with respect toI1 is the Hecke algebra andI1/I2 is a module
for the corresponding Artin group generalizing the Lawrence–Krammer representation. Fina
give conjectures on the structure, the dimension and parabolic subalgebras of the BMW alg
well as on a generalization of deformations to Brauer algebras for simply laced spherical typ
than An.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

In [7], representations were given for the Artin groups of spherical type which are
ful, following the construction of Krammer for braid groups [13]. (We note that [1] a
contains a proof of the faithfulness of this representation for type An, and that [9] also
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generalizes this result to arbitrary spherical types.) Faithful representations for the
groups of type An, Dn, and Em for m = 6,7,8 were explicitly constructed. Since ea
Artin group of spherical irreducible type embeds into at least one of these, this show
is linear. As the representations for type An occur in earlier work of Lawrence [14], the
are called Lawrence–Krammer representations.

Zinno [18] observed that the Lawrence–Krammer representation of the Artin gro
type An, the braid groups onn + 1 braids, factors through the BMW algebra, the Birma
Murakami–Wenzl algebra introduced in [2,15].

In this paper we introduce algebras similar to the BMW algebra for other types
associate a unique algebra with each simply laced Coxeter diagramM of rank n. Here,
simply laced means thatM has no multiple bonds. We define the algebras by means on

generators and five kinds of relations. For each nodei of the diagramM we define two
generatorsgi andei with i = 1, . . . , n. If two nodes are connected in the diagram we w
i ∼ j , with i, j the indices of the two nodes, and if they are not connected we writei �∼ j .
We let l, x be two indeterminates.

Definition 1. Let M be a simply laced Coxeter diagram of rankn. The BMW algebra
of typeM is the algebra, denoted byB(M) or justB, with identity element, overQ(l, x),
whose presentation is given on generatorsgi andei (i = 1, . . . , n) by the following defining
relations:

gigj = gjgi wheni �∼ j, (B1)

gigjgi = gjgigj wheni ∼ j, (B2)

mei = l
(
g2

i + mgi − 1
)

for all i, (D1)

giei = l−1ei for all i, (R1)

eigj ei = lei wheni ∼ j, (R2)

wherem = (l − l−1)/(1− x).

The first two relations are the braid relations commonly associated with the Co
diagramM . Just as for Artin and Coxeter groups, ifM is the disjoint union of two diagram
M1 andM2, thenB is the direct sum of the two BMW algebrasB(M1) andB(M2). For
the solution of many problems concerningB, this gives an easy reduction to the case
connected diagramsM .

In (D1) the generatorsei are expressed in terms of thegi and soB is in fact already
generated byg1, . . . , gn. We shall show below that thegi are invertible elements inB, so
that there is a group homomorphism from the Artin groupA of typeM to the groupB×
of invertible elements ofB sending theith generatorsi of A to gi . As we shall see a
the end of Section 6, the Lawrence–Krammer representation is a constituent of the
representation ofB. This generalizes Zinno’s result [18]. As a consequence of [7],
homomorphismA → B× is injective.

The fact that the BMW algebras of type An coincide with those defined by Birman an

Wenzl [2] and Murakami [15] is given in Theorem 2.7.
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The Lawrence–Krammer representation of the Artin groups is based on two param
in [7] denoted byt andr . The two parametersm andl here are related bym = r − r−1 and
l = 1/(tr3).

Our first major result is as follows.

Theorem 1.1. The BMW algebras of simply laced spherical type are finite dimension

The proof is at the end of Section 2. Some information and conjectures about dime
appear in Section 7.

Let I1 be the ideal ofB generated by allei , and letI2 be the ideal generated by a
productseiej for i andj distinct and not connected inM . Then clearlyI2 ⊆ I1. Moreover,
it is immediate from the defining relations ofB thatB/I1 is the Hecke algebra of typeM .
The main result of this paper concerns the structure ofI1/I2.

Let (W,R) be the Coxeter system of typeM . We writeΦ+ for the set of positive roots o
the Coxeter system of typeM . By α0 we denote its highest root, and byC the set of nodes
j in M with (αj ,α0) = 0. In case An the type ofC is An−2; in case Dn, it is A1 × Dn−2,
in case En it is A5, D6, and E7 for n = 6,7,8, respectively. IfX is a set of nodes ofM ,
we denote byWX the parabolic subgroup ofW corresponding toX. This means thatWX

is the subgroup ofW generated by allrj for j ∈ X.

Theorem 1.2. Let B be the BMW algebra of typeAn (n � 1), Dn (n � 4), or En (n =
6,7,8). ThenB/I2 is semi-simple overQ(l, x). LetZ0 be the Hecke algebra of typeC. For
each irreducible representationθ of Z0, there is a corresponding representationΓθ of B of
dimension|Φ+|dim(θ) and, up to equivalence, these are the irreducible representatio
B occurring inI1/I2. In particular, the dimension ofI1/I2 as a vector space overQ(l, x)

equals|Φ+|2 |WC |.

The proof of the theorem consists of two major parts. In Section 5, we provide
each nodei of M , a linear spanning set forI1/I2 parametrized by triples consisting
two positive roots and an element ofWC . This shows that|Φ+|2|WC | is an upper bound
for the dimension of dim(I1/I2). The proof that the same number is a lower bound ta
place in Section 6, where the Lawrence–Krammer representation ofA, studied in [7], is
generalized to a representation of the same dimension as before, viz.|Φ+|, but now over
the non-commutative ring of scalarsZ0. Up to a field extension of the scalars,Z0 is well
known to be isomorphic to the group algebra ofWC , so dim(Z0) = |WC |.

In the final section, we discuss how the results might carry over toI2 and forIr with
r � 3. We give a conjecture for the dimension of the BMW algebras of types Dn (n � 4)

and En (n = 6,7,8). In the theory of Coxeter groups and Artin groups, there is a notio
standard parabolic subgroups. These are subgroups generated by a subsetJ of the nodes
of M and have the special property that they are Coxeter, respectively, Artin groups o
M|J . We expect that, at least for sphericalM , the subalgebra ofB generated by thegj for
j ∈ J will be isomorphic to the BMW algebra of typeM|J . For type An, the Brauer alge
bra, cf. [4], is obtained as a deformation of the BMW algebra. We conjecture that a s
deformation exists for the spherical simply laced types, in which the ‘pictures’, form

the monomial basis of the Brauer algebra, are indexed by a combinatorial generalization of
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the abovementioned triples. As a consequence of Theorem 1.2, these conjectures
the quotient algebraB/I2. We also discuss possible extensions to other spherical type

The properties of Artin groups needed for the study of our algebras, are mentio
Section 3. The subsequent section contains a discussion of ideals. We begin how
studying direct consequences of the defining relations.

2. Preliminaries

For the duration of this section, we letM be a simply laced Coxeter diagram of rankn,
and we letB be the BMW algebra of typeM overQ(l, x).

The following proposition collects several identities that are useful for the proof o
finite dimensionality ofB, Theorem 1.1. Recall thatm is related tox andl via

m = (
l − l−1)/(1− x). (1)

Proposition 2.1. For each nodei of M , the elementgi is invertible inB and the following
identities hold:

eigi = l−1ei, (2)

g−1
i = gi + m − mei, (3)

g2
i = 1− mgi + ml−1ei, (4)

e2
i = xei . (5)

Proof. By (D1),ei is a polynomial ingi , sogi andei commute, so (2) is equivalent to (R1
From (D1) we obtain the expressiong2

i + mgi − ml−1ei = 1. Application of (R1) to
the third monomial on the left-hand side givesgi(gi + m − mei) = 1. Sog−1

i exists and is
equal togi + m − mei . This establishes (3).

Also by (D1), the elementg2
i can be rewritten to a linear combination ofgi , ei and 1,

which leads to (4).
As for (5), using (D1) and (R1), we find

e2
i = ei lm

−1(g2
i + mgi − 1

) = lm−1(l−2ei + ml−1ei − ei

) = xei . �
Remark 2.2. (i) There is an anti-involution onB determined by

gi1 · · ·giq �→ giq · · ·gi1

on products of generatorsgi of B. We denote this anti-involution byx �→ xop.
(ii) The inverse ofgi can be used for a different definition of theei , namely

ei = 1+ m−1(gi − g−1
i

)
for all i.
(iii) By (5), the elementx−1ei is an idempotent ofB for each nodei of M .
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an occurrenceij i of indices intojij . It turns out that there are more of these relation
the algebra, with somee’s involved.

Proposition 2.3. The following identities hold fori ∼ j :

gjgiej = eigjgi = eiej , (6)

gj eigj = g−1
i ej g

−1
i

= giejgi + m(ejgi − eigj + giej − gj ei) + m2(ej − ei), (7)

ej eigj = ejg
−1
i = ejgi + m(ej − ej ei), (8)

gj eiej = g−1
i ej = giej + m(ej − eiej ), (9)

eiej ei = ei . (10)

Proof. By (D1) and (B2),

gjgiej = gjgi

(
lm−1(g2

j + mgj − 1
)) = lm−1(gigjgigj + mgigjgi − gjgi)

= lm−1(g2
i gj gi + mgigjgi − gjgi

) = lm−1(g2
i + mgi − 1

)
gjgi

= eigjgi,

proving the first equality in (6).
We next prove

eig
n
j giej ei = eig

n−1
j ei for n ∈ N, n � 1. (11)

Indeed, by (B2), (R1), (R2), and the first identity of (6), which we have just establish

eig
n
j giej ei = eig

n−1
j (eigjgi)ei = eig

n−1
j eigj (giei) = l−1eig

n−1
j eigj ei = eig

n−1
j ei .

The following relation is very useful for determining relations between theei .

eiej giej ei = (
l + m−1)ei − m−1eiej ei . (12)

To verify it, we start rewriting one factorej by means of (D1), and then use (11) withn = 2
andn = 1 as well as (R1) and (R2):

eiej giej ei = ei

(
lm−1(g2

j + mgj − 1
))

giej ei = lm−1(lei + mxei − l−1eiej ei

)
= (

l + m−1)ei − m−1eiej ei .

We next show (10). Multiplying (R2) forej by the left and by the right withei , we find
eiej giej ei = leiej ei . Using (12) we obtain(l + m−1)ei − m−1eiej ei = leiej ei , whence

(l + m−1)eiej ei = (l + m−1)ei . As lm �= −1, we findeiej ei = ei . This proves (10).
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In order to prove the second equality of (6), we expandgigj ei by substituting the rela
tion (10). We find

gigj ei = gigj eiej ei = ejgigj ej ei = l−1ejgiej ei = ej ei .

The first parts of the equalities of (9) and (8) are direct consequences of (6) and (
order to show the second part of (8), we use the second equality of (6) and (4):

ej eigj = (ej gigj )gj = ejgi

(
ml−1ej − mgj + 1

)
= mej − mejgigj + ejgi = m(ej − ej ei) + ejgi .

The second part of (9) follows from this by the anti-involution of Remark 2.2(i).
For the first part of (7), as thegi andgj are invertible this isgigj eigjgi = ej . By (6)

the left side isej eiej which isej by (10).
Finally we derive the second part of (7).

gj eigj = gj eiej eigj = (
m(ej − eiej ) + giej

)
eigj

= mejeigj − meiej eigj + giej eigj

= m
(
m(ej − ej ei) + ejgi

) − meigj + gi

(
m(ej − ej ei) + ejgi

)
= m2ej − m2ej ei + m(ejgi − eigj + giej ) − mgiej ei + giejgi

= giejgi + m2ej − m2ej ei + m(ejgi − eigj + giej )

− m
(
m(ei − ej ei) + gj ei

)
= giejgi + m2ej − m2ei + m(ejgi − eigj + giej − gj ei). �

The above identities suffice for a full determination of the BMW algebra associated
the braid group on 3 braids.

Corollary 2.4. The BMW algebra of typeA2 has dimension15 and is spanned by th
monomials:

1,

g1, g2, e1, e2,

g1g2, g1e2, g2g1, g2e1, e1g2, e1e2, e2g1, e2e1,

g1g2g1, g1e2g1.

Proof. LetB be the BMW algebra of type A2. Of the sixteen possible words of length 2 t
eight consisting of two elements with the same index can be reduced to words of len
For, by (D1)g2

i can be written as a linear combination ofgi , ei and 1 and by (5)e2
i is a
scalar multiple ofei . Finally, by relation (R1) the remaining four words reduce toei .
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Now consider words of length 3. By the knowledge thatx−1ei is an idempotent an
relation (10) it is clear that no words of length 3 can occur containing onlye’s. Words
containing onlyg’s can be reduced if twog’s with the same index occur next to each oth
This leaves two possible wordsgigjgi either of which can be rewritten to the other o
by (B1).

If a word containse’s andg’s, noe andg may occur next to each other having the sa
index as this can be reduced by relation (R1). So the only sequences of indices a
here arei, j , i andj , i, j . If a g occurs in the middle, we can reduce the word by rela
(R2) or (6). This leaves the case with ane in the middle. By (8), (9), and (10) these wor
reduce unless both the other elements areg’s. Finally by (7) the two words left, viz.giej gi

andgj eigj , are equal up to some terms of shorter length, so at most one is in the ba
All words of length 4 that can be made by multiplication with a generator from the

words left of length 3, can be reduced. First considergigjgi . Multiplication by ag gives,
immediately or after applying (B2), a reducibleg2 component. Similarly, multiplication b
ane will result in a reducibleeigi word part. This leaves us with multiples ofgiejgi . As
noted above, they can be expressed as a linear combination ofgj eigj and terms of shorte
length. Again, multiplication byg leads to ag2 component and the word can be reduc
Multiplication bye will always enable application of relation (R2) to the constructed w
and can therefore be reduced, proving that no reduced words of length 4 occur inB.

Finally, by use of the 15 elements as a basis, one can construct an algebra satisf
relations of the BMW algebra, so the dimension ofB is indeed 15. This is done in [17] an
later in this paper. �
Proposition 2.5. The following identities hold fori �∼ j :

eigj = gj ei, (13)

eiej = ej ei . (14)

Proof. By (D1), theei are defined as polynomials ingi and belong to the subalgebra ofB

generated bygi . By (B1) this subalgebra commutes withgj . �
Proposition 2.6. There is a unique semilinear automorphism ofB of order2 determined
by

gi �→ −g−1
i , ei �→ ei, l �→ −l−1, m �→ m.

It commutes with the opposition involution of Remark2.2(i).

Proof. Using the identities proved above, it is readily verified that the defining relatio
B are preserved. �

We recall the definition of the BMW algebra as given in [17]; however, we take

parametersq, r to be indeterminates over the field.
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Definition 2. Let q, r be indeterminates. The Birman–Murakami–Wenzl algebra BMWk is
the algebra overC(r, q) generated by 1, g1, g2, . . . , gk−1, which are assumed to be inve
ible, subject to the relations:

gigi+1gi = gi+1gigi+1,

gigj = gjgi if |i − j | � 2,

eigi = r−1ei,

eig
±1
i−1ei = r±1ei,

whereei is defined by the equation(q − q−1)(1− ei) = gi − g−1
i .

We now show that our definition of the BMW algebra of type An coincides with this
one.

Theorem 2.7. Let n � 2. The BMW algebraB of typeAn−1 is the Birman–Murakami–
Wenzl algebra BMWn wherel = r andm = q−1 − q.

Proof. To show both definitions are of the same algebra, we take our parametersl = r and
m = q−1 − q. The first two relations for both algebras are the same. It is evident from
definition of ei in both BMWn andB that gi and ei commute, so the third relation fo
BMWn is equivalent to (2) and (R1) forB. Also the relationeigi−1ei = lei for BMWn

is equivalent to (R2) forB. To see thatgi andei in B satisfyeig
−1
i−1ei = l−1ei , the final

defining relation for BMWn, observe that, fori ∼ j , by (3), (R2), (5), (10), and (1),

eig
−1
j ei = ei(gj + m − mej )ei = (l + mx − m)ei = l−1ei .

The definition ofei follows from Remark 2.2(ii). This shows thatB is a homomorphic
image of BMWn. To go the other way it is shown in [17, (4)] thateig

±1
i+1ei = r±1ei and so

all the relations ofB are verified for BMWn except (D1). This follows from (10) in [17
which when corrected readsg2

i = (q − q−1)(gi − r−1ei) + 1. The invertibility of thegi

follows from (3). This shows the algebras are isomorphic.�
Although it is not needed for our computations, there is a cubic relation which is s

times instructive.

Proposition 2.8. The elementsgi of B satisfy the cubic relation

(
g2

i + mgi − 1
)(

gi − l−1) = 0.

Proof. By (D1) and (2), we have

( )( ) ( )

g2

i + mgi − 1 gi − l−1 = ei gi − l−1 = 0. �
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In [17, Proposition 3.2], it is shown that the algebras of type An−1, the so-called BMW
algebras, are finite dimensional. This uses in a crucial way that the symmetric groupn

∼=
W(An−1) is doubly transitive on the cosets of Sn−1. This is not true for the other algebra
However, we provide a proof of finite dimensionality which applies to the algebras of
An as well.

Let (W,R) be the Coxeter system of typeM and let{r1, . . . , rn} = R. Assume further-
more thatM is spherical. Then the number of positive roots,|Φ+|, is the length of the
longest word in the generatorsri of W . This means that any product inB of gi andei of
longer length can be rewritten by using the relations (B1) and (B2) until one ofg2

i , giei ,
eigi , e2

i occurs as a subproduct for somei. In the Coxeter group,ri has order 2 so we
can remove the square and obtain a word of shorter length. In our algebra, we can
the four words to obtain a linear combination of words of shorter length. This leads
following result.

Proposition 2.9. If the diagramM is spherical, then any word in the generators ofB of
length greater than|Φ+| in gi , g−1

i , ei can be expressed as a sum of words of sma
length by using the defining relations ofB. In particular,B is finite dimensional.

Proof. We can expressg−1
i by ei andgi to get sums of words ingi andei . Supposew is a

word ingi andei of length greater than|Φ+|. Consider the word in the Coxeter groupw′ in
ri where eachgi , ei in w is replaced byri . Notice that ifi �∼ j that bothri andrj commute
and that bothei andgi commute with bothej andgj . In particular, the same changes c
be made without changingw or w′. Suppose the relation (B2) is used inw′, rj rirj = rirj ri .
Consider the same term inw whereri are replaced bygi , or ei and the same forrj . We
showed in the previous sections that all possible ways of replacing theri andrj by e and
g elements reduces the word except forgigjgi = gjgigj andgiejgi = gj eigj + ω, where
ω is a linear combination of monomials of degree less than 3. In fact they give wor
length 2 or, in the caseejg

±1
i ej , length 1. If we arrive ateigi = giei we can replace i

by (R1) with l−1ei of shorter length. If we arrive atg2
i we use (4) to express it as a su

of words withg2
i replaced withei , gi , and the identity. The same holds forg−2

i using the
definition. If we arrive ate2

i we can replace it with a multiple of itself. In all cases we c
reduce the length.

It is now clear that any word ingi , ei can be written as a sum of the words of length
most|Φ+| in gi , g−1

i , andei . �
Proof of Theorem 1.1. This is a direct consequence of the above proposition.�

3. Artin group properties

In this section,M is a connected, simply laced, spherical Coxeter diagram. This m
M = An (n � 1), Dn (n � 4), or En (n ∈ {6,7,8}). We shall often abbreviate this conditio
by writing M ∈ ADE.

We let(A,S) be an Artin system of typeM , that is, a pair consisting of an Artin groupA

of typeM with distinguished generating set{s1, . . . , sn} corresponding to the nodes ofM .
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Similarly, we let(W,R) be the Coxeter system of typeM , whereR is the set of funda
mental reflectionsr1, . . . , rn. We shall writeΦ for the root system associated with(W,R)

andΦ+ for the set of positive roots with respect to simple rootsα1, . . . , αn whose corre-
sponding reflections arer1, . . . , rn. There is a mapψ :W → A sendingx to the elemen
ψ(x) = si1 · · · sit wheneverx = ri1 · · · rit is an expression forx as a product of elements o
R of minimal length. Forβ ∈ Φ, we shall denote byrβ the reflection with rootβ and by
sβ its imageψ(rβ) in A. For a subsetX of W we writeψ(X) to denote{ψ(w) | w ∈ X}.
The mapψ is a section of the morphism of groupsπ :A → W determined bysi �→ ri , that
is, π ◦ ψ is the identity onW .

Let B be the BMW algebra of typeM over Q(l, x). By means of the composition o
ψ and the morphism of groupsA → B×, we find a mapW → B. We shall writeŵ or, if
ri1 · · · rit is a reduced expression forw, alsoî1 · · · it to denote the image inB× of w under
this map. In particular,gi = r̂i = î.

Let g ∈ A. By g−op we denote the anti-involution op ofB introduced in Remark 2.2(i
applied to the inverse of the image ofg in B, which is the same as the inverse of t
anti-involution applied tog, viewed as an element ofB.

Lemma 3.1. Let i, j be nodes ofM . There is a unique element of minimal length inW ,
denoted bywji , such thatwjiαj = αi . It has the following properties.

(i) If i = i1 ∼ i2 ∼ · · · ∼ iq = j is the geodesic inM from i to j , then ŵji =
î2î1î3î2 · · · îq−1îq−2îq îq−1.

(ii) w−1
ij = wji .

(iii) ŵij
op = ŵji .

(iv) ŵij ei = ej eiq−1 · · · ei2ei = ej ŵij .

(v) ŵij ei = ŵij
−opei = ŵji

−1ei .

Proof. Consider the graphΓ whose nodes are the elements ofΦ+ and in which two
nodesα, β are adjacent whenever there is a nodek of M such thatrkα = β. An ex-
pressionw = ri1 · · · rit of an elementw of W satisfying wαj = αi represents a pat
αj , rit αj , . . . , ri2 · · · rit αj ,wαj = αi from αj to αi in Γ . Clearly, ifw is of minimal length
then this path is a geodesic. This geometric setting readily leads to a proof of (i).

A geodesic inΓ from α to β is given by a backwards traversal of the geodesic fromβ

to α. The corresponding element ofW is w−1, whence (ii) and (iii).
Finally, (iv) and (v) follow by induction from (i) and, respectively, (6) and (9).�
For a positive rootβ, we write ht(β) to denote its height, that is, the sum of its coe

cients with respect to theαi . Furthermore, the support ofβ, notation Supp(β), is the set of
k ∈ {1, . . . , n} such that the coefficient ofαk in β is non-zero.

Proposition 3.2. For each nodei of M and each positive rootβ there is a unique ele
mentw ∈ W of minimal length such thatwαi = β. This element satisfies the followin

properties.
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(i) If β = αj for somej , thenw = wij .
(ii) If j is the unique node ofM in Supp(β) nearest toi, thenl(w) = ht(β) + l(wij ) − 1.

Proof. Suppose first thati lies in the support ofβ. Thenβ can be obtained fromαi by
building up with addition of one fundamental root at a time, which corresponds to fin
an elementw of W by multiplication to the right of the fundamental reflection correspo
ing to the newly added fundamental root. This shows that there existsw ∈ W of length at
most ht(β) − 1 such thatwαi = β. But the height ofβ is clearly at mostl(w) + 1, so the
minimal length of any elementw of W so thatwαi = β must be ht(β) − 1.

Next suppose thati does not lie in the support ofβ and letj be the nearest node toi in
Supp(β). Then, withy ∈ W as in the first paragraph with respect toβ andj so thatyαj = β

andl(y) = ht(β)−1, we have thatywjiαi = β and thatl(ywij ) � l(w)+ l(wij ) = ht(β)+
l(wij ) − 1. On the other hand, in order to transformαi into β by a chain of roots differing
by a fundamental root, we need to apply each root buti andj on the geodesic inM from
i to j at least twice (once for creation of the presence of the node in the support, an
for making it vanish). We also need bothi andj at least once. Hence, in order to ma
a fundamental root of Supp(β) occur in the imageuαi of αi of someu ∈ W , we need
l(u) � l(wij ), with equality only if u = wij anduαi = αj . Notice that the fundamenta
reflections inwij except forαj do not contribute at all to the creation of the fundamen
nodes in Supp(β), so that the estimate for the fundamental roots needed to buildβ
stays as before. Takingw = yu we find l(w) = l(yu) = l(y) + l(u) = l(y) + l(wij ) =
ht(β) + l(wij ) − 1.

Next we prove uniqueness ofw as stated. Supposev ∈ W also satisfiesl(v) = ht(β) +
l(wij )−1. As argued above, we must havev = v′wji andl(v) = l(v′)+ l(wji) so, without
loss of generality, we may assumei = j lies in the support ofβ. If l(w) = 0 then there is
nothing to show. Suppose thereforel(w) > 0 and apply induction onl(w). Take nodesk,h

of M such thatl(rkw) < l(w) and l(rhv) < l(v) while rkβ = β − αk andrhβ = β − αh.
Suchk andh exist by the wayβ is built up of fundamental roots viaw andv, respectively.
Notice that(β,αk) = (β,αh) = 1. Now consider(β − αk,αh). The value equals−1 if
k = h; 1 if h �= k �∼ h; and 2 if k ∼ h. In the first case, we apply induction to(rhw)αi =
β − αh = (rhv)αi , and findrhw = rhv, whencew = v.

In the non-adjacent case,β − αh − αk is also a root, so there is a unique minim
u ∈ W such thatuαi = β − αh − αk . Now rhrkuαi = β = wαi = vαi , so rhwαi = rkuαi

andrkvαi = rhuαi , whence, by induction, bothrhw = rku andrhu = rkv. But thenw =
rhrku = rkrhu = v.

Finally, if k ∼ h, we find (β − αk,αh) = 2, whenceβ = αh + αk . But theni must be
eitherh or k. Assuming (without loss of generality)i = h, we findw = rk andv = rh = ri ,
a contradiction withvαi = αi + αh.

This establishes thatw is unique, and finishes the proof of the lemma.�

Definition 3.3. For a nodei of M and a positive rootβ we denote bywβ,i the unique
element (by the above proposition) of minimal length inW for which wβ,iαi = β. We

denote byDi the set{wβ,i | β ∈ Φ+}.
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If w ∈ Di thenwriw
−1 is a shortest expression of the reflection corresponding towαi

as a conjugate ofri .

Corollary 3.4. For each nodei of M , the setDi satisfies the following properties, wherej

is a node ofM .

(i) If rj v ∈ Di andv ∈ W with l(rj v) = l(v) + 1, thenv ∈ Di .
(ii) wij ∈ Di .

Lemma 3.5. If i andj are nodes ofM , thenŵαj ,iei = ŵij ei .

Proof. Building upwαj ,i from the right, and letting the intermediate results act onαi , we
find a shortest pathi = i1 ∼ i2 ∼ · · · ∼ it = j in M from i to j . The element̂wij represents

the corresponding element̂it−1it · · · î2i3îi2 of B. �
Lemma 3.6. For all nodesi, j, k of M we havêwkiŵjkej = ŵjiej .

Proof. Denote byi = i1 ∼ i2 ∼ · · · ∼ iq = k the geodesic fromi to k and byk = k1 ∼
k2 ∼ · · · ∼ kp = j the geodesic fromk to j . Then there is anm ∈ {1, . . . , q} such that
k = k1 = iq ∼ k2 = iq−1 ∼ · · · ∼ km = iq−m+1 andkm+1 �= iq−m. Then the geodesic from
i to j is i = i1 ∼ i2 ∼ · · · ∼ iq−m ∼ km ∼ km+1 ∼ · · · ∼ kp−1 ∼ kp and so

ŵkiŵjkej = ŵkiek1 · · · ekp

= ei1 · · · eiq ek1 · · · ekp

= ei1 · · · eiq−mekm · · · ek−1ekek−1 · · · ekp

= ei1 · · · eiq−mekm · · · ek−1ekek−1 · · · ekmekm+1 · · · ekp

= ei1 · · · eiq−mekmekm+1 · · · ekp

= ŵjiej . �
Forα,β ∈ Φ+ with α � β (that is, for eachi, the difference of the coefficient ofαi in β

and the coefficient ofαi in α is non-negative), letwβ,α be the (unique) shortest element
W mappingα to β. Clearly,l(wβ,α) = ht(β) − ht(α). Thus,wβ,i = wβ,αi

if i ∈ Supp(β).
For a positive rootβ, setdβ = ψ(w−1

α0,β
) ∈ A. This implies thatsα0 = d

op
β sβdβ . For a node

i such thatαi is orthogonal toβ, we shall need the following Artin group element.

hβ,i = d−1
β sidβ. (15)

Lemma 3.7. The following relations hold for elementshγ,k of the Artin groupA, where we
are always assuming thatγ is a positive root and(αk, γ ) = 0:
hβ,ihβ,j = hβ,jhβ,i if i �∼ j, (16)
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hβ,ihβ,j hβ,i = hβ,jhβ,ihβ,j if i ∼ j, (17)

hβ+αj ,i = hβ,i if i �∼ j, (18)

hβ+αj ,i = hβ−αi ,j if i ∼ j, (19)

hβ−αi−αj ,i = hβ,j if i ∼ j, (20)

hβ+αi+αj ,j = hβ,i if i ∼ j, (21)

hαi,j = hαj ,i if i andj are at distance2 in M, (22)

hαj ,k = hαi,k if i ∼ j. (23)

Proof. The rules are all straightforward applications of corresponding rules fordβ . We
prove (19) and (23) and leave the rest to the reader.

For rule (19), we havedβ−αi
= sisj dβ+αj

in the Artin group whereasi ∼ j , (αi, β) =
−1, and(αj ,β) = 1, sohβ−αi ,j is the Hecke algebra element corresponding to the A
group elementd−1

β+αi
sj dβ+αi

= d−1
β−αj

s−1
j s−1

i sj sisj dβ−αj
= d−1

β−αj
sidβ−αj

, and sohβ−αi ,j

coincides withhβ−αj ,i .

We finish with (23). It is a direct consequence ofs−1
i dαj

= dαi+αj
= s−1

j dαi
and the fact

thatk is adjacent to neitheri nor j :

hαj ,k = d−1
αj

kdαj
= d−1

αi
sj s

−1
i sksis

−1
j dαj

= d−1
αi

skdαi
= hαi,k. �

As before, letC be the set of nodesi of M for which αi is orthogonal to the highes
rootα0 of Φ+.

Lemma 3.8. The following properties hold forC.

(i) If i is a node ofM andβ ∈ Φ+ satisfies(αi, β) = 0, then there is a nodej of C such
thathβ,i = sj .

(ii) For eachj in C there exist non-adjacent nodesi, k with hαi,k = sj .

Proof. (i) If β = α0, theni is a node orthogonal toα0 and sohβ,i = si andi belongs to
C by definition ofC. We continue by induction with respect to the height ofβ. Assume
ht(β) < ht(α0). Then there is a nodej such that(αj ,β) = −1, soγ = β + αj is a root,
whencedβ = sj dγ . If i �∼ j , then, by (18),hβ,i = hγ,i . Otherwise, by (21)hβ,i = hγ+αi ,j .
In both cases the expression found forhβ,i is as required by the induction hypothesis.

(ii) Let j be a node inC. Then hα0,j = ĵ . Let β be a minimal positive root fo
which there exists a nodek with (αk,β) = 0 andhβ,k = ĵ . If ht(β) > 1, take a nodei
such that(αi, β) = 1. By Lemma 3.7, eitheri ∼ k andhβ−αi−αk,i = ĵ , or (αi, αk) = 0
andhβ−αi ,k = ĵ . Therefore, we may assume ht(β) = 1, and soβ = αi for somei with

(αi, αk) = 0. �
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Lemma 3.9. If i is a node ofM andβ a positive root such that(αi, β) = 0, then

sisβ = sβsi .

Proof. We proceed by induction on ht(β). If ht(β) = 1, thenβ = αj . As (αi, β) = 0, we
havei �∼ j and sosisβ = sisj = sj si = sβsi by the braid relations.

Assume now that ht(β) > 1. Let j be a node ofM such that(αj ,β) = 1, soβ − αj

is a positive root. Thensβ = sj sβ−αj
sj . If j �∼ i, then (αi, β − αj ) = 0, so, by the

induction hypothesis,sisβ−αj
= sβ−αj

si , whencesisβ = sisj sβ−αj
sj = sj sisβ−αj

sj =
sj sβ−αj

sisj = sj sβ−αj
sj si = sβsi . Otherwise,j ∼ i, andγ = β −αi −αj is a positive root

with (αj , γ ) = 0 andsβ = sj sisγ sisj . By the induction hypothesis,sj sγ = sγ sj , whence
sisβ = sisj sisγ sisj = sj sisj sγ sisj = sj sisγ sj sisj = sj sisγ sisj si = sβsi . �

4. Some ideals of the BMW algebra

In this section, letM be a simply laced Coxeter diagram (not necessarily spher
In the BMW algebraB of typeM , theei generate an ideal (by which we mean a 2-sid
ideal). Taking products ofei ’s for non-adjacent nodesi of M , we obtain further ideals.

Definition 4.1. Let Y be a coclique ofM , that is, a subset of the nodes ofM in which no
two nodes are adjacent. Theideal of typeY is the (2-sided) ideal ofB generated byeY ,
where

eY =
∏
y∈Y

ey.

The elementeY is well defined as the product does not depend on the order of theey in
view of (14). The idealBeY B is denoted byIY . By Ij , for j = 1, . . . , n, we denote the
ideal generated by allIY for Y a coclique of sizej .

Since theei are scalar multiples of idempotents, so are their productseY for Y a coclique
of M .

Proposition 4.2. LetX, Y be cocliques ofM .

(i) If X ⊆ Y thenIY ⊆ IX.
(ii) If {rj | j ∈ X} is in the sameW -orbit as{rj | j ∈ Y } thenIX = IY .

(iii) The quotient algebraB/I1 is the Hecke algebra of typeM over Q(l, x), with para-
meterm.

Proof. (i) is immediate from the definition ofIY and the commutation of theei for i ∈ Y .
(ii) For |X| = |Y | = 1, sayX = {i} and Y = {j}, this follows from the existence o

the invertible element̂wij as in Lemma 3.1(iv). More generally, by [11], there existsw ∈ W
such that̂wX̂ŵ−1 = Ŷ . This impliesŵeXŵ−1 = eY , whenceIX = IY .
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(iii) By (6), invertibility of the gi and connectedness ofM , the idealI1 coincides with
I{j} for any nodej of M . Consequently, the quotient ringB/I1 is obtained by setting
ei = 0 for all i. This means that the braid relations (B1) and (B2) and (D1) are the defi
relations forB/I1 in terms ofgi . Now (D1) readsg2

i + mgi − 1 = 0, so we obtain the
defining relations of the Hecke algebra.�

By (i), we have the chain of ideals

I1 ⊃ I2 ⊃ · · · ⊃ Ik,

wherek is the maximal coclique size ofM . By analogy with the BMW algebra of typ
An and computer results for D4 we expect this is a strictly decreasing series of ide
We already know from (iii) of the above proposition thatI1 is properly contained inB.
Straightforward calculations for the Lawrence–Krammer representation, described
and in [16] for the non-spherical types, show that (D1), (R1), (R2) are also satisfied, s
a representation ofB. Furthermore it can be seen thatei is not represented as 0 buteiej is
for any two distinct non-adjacent nodesi, j of M . These calculations will be presented
a more general setting later, in Section 6. As a consequenceI2 is properly contained inI1.
This follows also of course from Theorem 1.2.

It is also clear from the definition thatIj = {0} when j is bigger than the maxima
coclique size ofM . These sizes are�(n + 1)/2
 for An; �n/2
 + 1 for Dn; 3 for E6; and 4
for both E7 and E8.

5. Structure of I1/I2

Throughout this section,M is a connected simply laced spherical diagram. This me
M ∈ ADE. By B we denote the corresponding BMW algebra overQ(l, x), by (A,S) the
corresponding Artin system, and by(W,R) the corresponding Coxeter system. Furth
more,Φ+ is the set of positive roots associated with(W,R) andC the set of nodesi of M

with αi orthogonal to the highest root ofΦ+.
We now prepare for considerations ofB moduloI2. This is indicated in the statemen

The aim is to find a linear spanning set forI1/I2 of size |Φ+|2|WC |. In particular, we
obtain an upper bound for dim(I1/I2), which by Theorem 1.2 will be an equality.

Let i be a node ofM and letZi be the subalgebra (not necessarily containing the id
tity) of B generated by all elements of the form̂wji k̂ŵij ei for j andk non-adjacent node
of M . We allow forj andk to be equal, so that, in caseM = A2, the subalgebrasZi are
one-dimensional (scalar multiples ofei ). By Lemma 3.1(iv), (v), the generators can
written in various ways:

eiŵji k̂ŵj i
−1 = ŵji k̂ŵj i

−1ei = ŵji k̂ŵij ei .

We will need an integral version ofZi andB. We shall work with the coefficient rin
E = Q(x)[l±] inside our fieldQ(l, x). Observem ∈ E by (1). LetB(0) be the subalgebra o
B overE generated by allgi andei , and letZ(0)

i be the subalgebra ofZi overE generated

by the same elements as taken above for generatingZi . ThenZ

(0)
i is a subalgebra ofB(0).
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Proposition 5.1. The subalgebraZ(0)
i of B(0) satisfies the following properties.

(i) It centralizesei and has identity elementx−1ei .

(ii) Z
(0)
i = ŵjiZ

(0)
j ŵji

−1 for all nodesj of M .

(iii) The scaled versionsx−1eiŵji k̂ŵj i
−1 of the generators ofZ(0)

i satisfy the quadratic
relation X2 + mX − 1i = 0 modI2, where1i stands for the identity elementx−1ei

of Z(0)
i .

Proof. (i) Sincex−1ei is an idempotent (cf. (5)), it suffices to verify that the generator
Zi centralizeei . This follows from the following computation, in which Lemmas 3.1 a
3.6 are used.

ŵji k̂ŵj i
−1ei = ŵji k̂ej ŵij = ŵji k̂ej ŵji

−1 = ŵjiej k̂ŵji
−1 = eiŵji k̂ŵj i

−1.

(ii) For the generatorehŵjhk̂ŵjh
−1 of Z

(0)
h , wherej ⊥ k, we have

ŵhiehŵjhk̂ŵjh
−1ŵhi

−1 = ŵhiŵjhej k̂ŵjh
−1ŵhi

−1 = ŵjiej k̂ŵjh
−1ŵhi

−1

= ŵji k̂ej ŵjh
−1ŵhi

−1 = ŵji k̂ej ŵhj ŵhi
−1

= ŵji k̂ŵhj ehŵhi
−1 = ŵji k̂ŵhj ehŵih

= ŵji k̂ej ŵhj ŵih = ŵji k̂ej ŵij

= ŵji k̂ej ŵji
−1 = ŵjiej k̂ŵji

−1 = eiŵji k̂ŵj i
−1,

whencêwhiZ
(0)
h ŵhi

−1 ⊆ Z
(0)
i . The rest follows easily.

(iii) Substitutingx−1eiŵji k̂ŵj i
−1 for X, we find

(
x−1eiŵji k̂ŵj i

−1)2 + m
(
x−1eiŵji k̂ŵj i

−1) − x−1ei

= x−1eiŵji

(
k̂2 + mk̂ − 1

)
ŵji

−1 = x−1eiŵjiekŵji
−1 ∈ Bej ekB ⊆ I2. �

We recall thatwβ,i ∈ W is the element of minimal length with the property th
wβ,iαi = β with αi,β ∈ Φ+.

Lemma 5.2. Supposei, j , andk are distinct nodes ofM . Then

ei ĵ ek =




eiekĵ if j �∼ k andi �∼ k,

ŵαi ,kekĵ if j �∼ k andi ∼ k,

ŵαi ,kek(î + m) − meiek if j ∼ k andi ∼ j,

ŵαi ,kekĵkikj if j ∼ k andi ∼ k,

eiekŵikĵ ŵki if j ∼ k, i �∼ j, andi �∼ k.
In each case the result is in̂wαi,kZ
(0)
k + I2.



A.M. Cohen et al. / Journal of Algebra 286 (2005) 107–153 123

po-
Proof. In the first two cases asj �∼ k we haveei ĵ ek = eiekĵ . If i �∼ k, eiek is in I2. If
i ∼ k, eiek = wαi,kek . These are the only possibilities whenj �∼ k.

Suppose next thatj ∼ k. In the last caseei commutes withĵ andeiek is in I2. Suppose
theni ∼ j . Of course theni �∼ k since the type is spherical. Now by (R2)

ei ĵ ek = (eiej ei)ĵ ek = (
eiej îj

)
ĵ ek

= eiej î
(
1− mĵ + ml−1ej

)
ek = eiej îek − meiej eiek + meiej ek

= eiej ek

(
î + m

) − meiek = ŵαi ,kek

(
î + m

) − meiek.

As eiek ∈ I2 the result follows.
Finally, if i ∼ k then necessarilyi �∼ j , and

ei ĵ ek = eiekei ĵ ek = eiekĵeiek = eiekei ĵ k̂i = eiek îkjki = eiekĵkikj .

In each of the cases the elements are in̂wαi,kZ
(0)
k + I2 from the definition. �

If some ofi, j , k are equal, similar results follow from the defining relations and Pro
sitions 2.3 and 2.5.

Lemma 5.3. Let i, j, k ∈ {1, . . . , n} and letγ be the shortest path fromj to k. Then

îŵαj ,kek =




ŵαj ,kek î if i �∼any point ofγ,

l−1ŵαj ,kek if i = j,

ŵαj ,kekĥ′ modI2 if i ∈ γ, i �= j,

h′ on the path fromi toj,

h′ at distance2 to i in M,

ŵαj ,kekŵh′k îŵkh′ if i /∈ γ, i ∼ h, h ∈ γ,

h �= j, h′ ∼ h, and
h′ on the path fromh to j,

ŵαi+αj ,kek + mŵαi,kek − mŵαj ,kek if i ∈ γ andi ∼ j,

ŵαi+αj ,kek if i /∈ γ andi ∼ j.

Also

eiŵαj ,kek =



xŵαj ,kek if i = j,

0 modI2 if i �∼ j,

ŵαi ,kek if i ∼ j.
In each case, the result is in̂wriαj ,kZ
(0)
k + mŵαj ,kZ

(0)
k + mŵαi,kZ

(0)
k + I2.
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Proof. Consider the shortest pathγ = k, . . . , j from k to j in M . If i is non-adjacent to
each element of this path, then the statement holds. Also ifi = j the statement follows
immediately. This leaves two possibilities,i is in γ , or i is not inγ but is adjacent to som
h in γ .

Assume thati occurs inγ . If i ∼ j , then by (9)

îŵαj ,kek = îej ei · · · ek

= ĵ−1ŵkiek = ŵαi+αj ,kek + mŵkiek − mŵkj ek.

Suppose, therefore, thati �∼ j . Then îŵkj ek = ej · · · eh′ îeheiei′ · · · ek with h′ ∼ h ∼
i ∼ i′. Substitution of̂iehei = ĥei − mehei + mei and use of Lemma 5.3 gives

îŵkj ek = ej · · · eh′ îehei · · · ek = ej · · · eh′
(
ĥei − mehei + mei

)
ei′ · · · ek

= ej · · · eh′ ĥeiei′ · · · ek − mŵkj ek + mej · · · eh′ei · · · ek

∈ ej · · · eh′ehei

(
ĥ′ + m

)
ei′ · · · ek − mŵkj ek + I2

= ej · · · eh′ehei ĥ′ei′ · · · ek + I2 = ej · · · eh′ehei · · · ekĥ′ + I2

= ŵkj ekh
′ + I2.

Next assumei is not inγ but is adjacent to someh in γ . Suppose there existsh′ ∼ h

in γ , so

îŵkj ek = ej · · · eh′ îeh · · · ek.

With the use ofeh′ = eh′ · · · ek · · · eh′ = ŵkh′ekŵh′k this becomes

îŵkj ek = ŵh′j eh′ îeh · · · ek = ŵh′j îeh′ŵkh′ = ŵh′j eh′ îŵkh′

= ŵh′j ŵkh′ekŵh′k îŵkh′ = ŵkj ekŵh′k îŵkh′ .

It is easy to verify that̂wh′k îŵkh′ commutes withek .
We are left with the case wherei is not inγ but is adjacent toj , an end node ofγ . Then

îŵkj ek = îŵαj ,kek = ŵαi+αj ,kek . This ends the proof of the equalities involvingîŵkj ek .
We now considereiŵkj ek . If i = j , we have triviallyeiŵkj ek ∈ ŵkjZ

(0)
k . So leti �= j .

If i �∼ j we findeiŵkj ek = eiej · · · ŵkj ek ∈ I2. So assumei ∼ j .
If i occurs inγ , the pathγ begins withj ∼ i and so

eiŵkj ek = eiej ei · · · ek = ei · · · ek = ŵkiek

and if i does not occur inγ , we haveeiŵkj ek = eiej · · · ek = ŵkiek . �

Let i be a node ofM andβ ∈ Φ+. We shall use the following notation.
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• Geod(i, β) is the set of nodes of the shortest path fromi to a node in the support ofβ
that are not in the support themselves. So Geod(i, β) = ∅ if i ∈ Supp(β).

• Proj(i, β) is the node in the support ofβ nearesti. So Proj(i, β) = i if i ∈ Supp(β).
• Cβ,i is the coefficient ofαi in the expression ofβ as a linear combination of th

fundamental roots. Soβ = ∑
i Cβ,iαi .

• Jβ,k is the subset ofM of all nodesj such that(αj ,β) = 1 and ĵ ŵβ−αj ,h = ŵβ,h,
whereh = Proj(β, k). This set is empty only ifβ is a fundamental root.

For i a node ofM , denote byi⊥ the set of all nodes distinct and non-adjacent toi.

Lemma 5.4. Let β be a root and letk be a node ofM such thati = Proj(β, k) satisfies
(αi, β) = 0 andCβ,i = 1. If Jβ,k ∩ i⊥ = ∅ then

îŵβ,kek = ŵβ,k
−opekŵβ,k

opîŵβ,k ∈ ŵβ,k
−opZ

(0)
k .

Proof. We only have to prove thatekŵβ,k
opîŵβ,k belongs toZ(0)

k . Moreover,

ekŵβ,k
opîŵβ,k = ekŵikŵβ,i

opîŵβ,i ŵki

andJβ,k = Jβ,i , so, by Proposition 5.1(ii), it suffices to consider the case wherek = i.
We prove this by induction on the height ofβ. The smallest possible root that satisfi

the conditions of the lemma is a root of the formαj + αi + αh with j ∼ i ∼ h. In this case
ŵβ,i = ĥj . Straightforward computations give

eiŵβ,i
opîŵβ,i = ei ĵhîĥj = ei ĵ ihij = eiŵji ĥŵij = eiŵij

opĥŵij ,

which belongs toZ(0)
k by definition.

Let β be a positive root of height at least 4 and assume that the lemma holds
positive roots of height less than ht(β). Now ŵβ,kek = ŵβ,iei · · · ek with no i in wβ,i . Let
j ∈ Jβ,k . Then, by the hypothesisJβ,k ∩ i⊥ = ∅, we havei ∼ j . Clearlywβ,i = jwβ−αj ,i .
As (αi, β) = 0 andCβ,i = 1, the sum ofCβ,j for j running over the neighbors ofi in M ,
must be 2. Hence there are either two nodesj , h say, inM with Cβ,j = Cβ,h = 1 or there
is a single nodej of M adjacent toi with Cβ,j = 2. In the former case, as ht(β) � 4, there
is an end nodep of β distinct fromj , i, h and non-adjacent toi with Cβ,p = 1, which
implies (αp,β) = 1, whencep ∈ Jβ,i ∩ i⊥, a contradiction. Hencei is an end node ofβ
and has a neighborj with Cβ,j = 2 and(αj ,β) = 1. This implies thatŵβ−αj ,i = ŵγ,j ĵ ,
whereγ = β − αi − αj . As (αj , γ ) = 0 andJγ,j ∩ j⊥ ⊆ Jβ,i ∩ i⊥ = ∅, we can apply
induction to findej ŵγ,j

opĵ ŵγ,j belongs toZ(0)
j . Consequently,

eiŵβ,i
opîŵβ,i = ei ĵ ŵγ,j

opĵ ij ŵγ,j ĵ = ei ĵ ŵγ,j
opîj iŵγ,j ĵ = ei ĵ iŵγ,j

opĵ ŵγ,j îj

∈ ŵjiZ
(0)
j ŵij = Z

(0)
i . �
Lemma 5.5. Letβ be a root and leti be a node with(αi, β) = 0. Then the following hold.
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(i) If j is a node inJβ,k ∩ i⊥ thenîŵβ,kek = ĵ îŵβ−αj ,kek .

(ii) If i = Proj(β, k) andCβ,i = 1 andJβ,k ∩ i⊥ = ∅, thenŵ
op
β,k îŵβ,k ∈ Z

(0)
k and

îŵβ,kek = ŵβ,k
−opek

(
ŵ

op
β,k îŵβ,k

)
.

(iii) If i �= Proj(β, k) or Cβ,i > 1, then, forj ∈ Jβ,k \ i⊥,

îŵβ,kek = ĵ iĵ ̂wβ−αj −αi ,kek.

In each case,̂iŵβ,kek ∈ ŵβ,kZ
(0)
k .

Proof. (i) Straightforward from̂ij = ĵ i.
For the remainder of the proof, we can and will assume there is a nodej with

(αj ,β) = 1, wβ,k = rjwβ−αj ,k andi ∼ j . Then(αi, β − αj ) = 1.
(ii) This follows from Lemma 5.4.
(iii) Here ŵβ,k = ĵ i ̂wβ−αj −αi ,k and the statement follows from the braid relation̂ij i =

ĵ ij . �
Theorem 5.6. Let B be a BMW-algebra of typeM ∈ ADE, let β ∈ Φ+, and let i, k be
nodes ofM .

If (αi, β) = −1, then

îŵβ,kek =



ŵβ+αi ,kek if i /∈ Geod(k,β),

ŵβ+αi ,kek − mŵβ,kek + mŵαi,kekŵβ,h if i ∈ Geod(k,β) and
h = Proj(k,β).

If (αi, β) = 1, then

îŵβ,kek =
{

ŵβ−αi ,kek − mŵβ,kek + ml−1eiŵβ−αi ,kek if i ∈ Jβ,k,

ŵβ−αi ,kek if i /∈ Jβ,k.

If (αi, β) = 0, then

îŵβ,kek =




ŵβ,kek(ŵβ,k
−1îŵβ,k) if i /∈ Supp(β),

ĵ iŵβ−αj ,kek if j ∈ Jβ,k ∩ i⊥,

ŵβ,k
−opek(ŵ

op
β,k îŵβ,k) if Cβ,i = 1, i = Proj(β, k),

andJβ,k ∩ i⊥ = ∅,

ĵ ij ̂wβ−αj −αi ,kek if j ∈ Jβ,k \ i⊥ andi ∈ Jβ−αj ,k.

If (αi, β) = 2, thenβ = αi and îŵβ,kek = l−1ŵβ,kek .

In each case, the result is in̂wγ,kZ
(0)
k + mŵβ,kZ

(0)
k + mŵαi,kZ

(0)
k + I2, whereγ = β if
β = αi andγ = riβ otherwise.
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Proof. By Lemma 5.3 the theorem holds for all fundamental rootsβ in Φ+. Supposeβ
is a non-fundamental root inΦ+, and consider̂iŵβ,kek . Now (αi, β) < 2, for otherwise
β = αi . First let(αi, β) = 1. If i ∈ Jβ,k , then

îŵβ,kek = î2ŵβ−αi ,kek = ŵβ−αi ,kek − mŵβ,kek + ml−1eiŵβ−αi ,kek.

Assumei /∈ Jβ,k then i = Proj(k,β) andCβ,i = 1. There must be a single nodej ∈
Supp(β) \ i⊥ with Cβ,j = 1, and the remaining nodes in the support ofβ are on the side
of j in M other thani. This meansŵβ,k = ûĵ ŵαi ,k where the elements inu are on the
side ofj other thani and soi commutes withu. Now îûĵ ŵαi ,k = ûîĵ ŵαi ,k = ûŵαj ,k so
îŵβ,kek = ŵβ−αi ,kek as required.

Next let (αi, β) = 0 and assumei is not in the support ofβ. Put h = Proj(k,β) and
ρ = Geod(k,β). If i is not inρ and not adjacent to an element ofρ, thenî commutes with
ŵβ,k soŵβ,k

−1îŵβ,k = î andîŵβ,kek = ŵβ,kek î.
If i is in ρ or adjacent to an element ofρ, then î commutes withŵβ,h whereŵβ,k =

ŵβ,hŵαh,k . Now

ŵβ,k
−1îŵβ,k = ŵαh,k

−1
îŵαh,k.

We know thati �∼ h soŵαh,k
−1

îŵαh,kek ∈ Z
(0)
k by Lemma 5.3. We conclude

îŵβ,kek = ŵβ,kŵβ,k
−1îŵβ,kek = ŵβ,kŵαh,k

−1
îŵαh,kek

= ŵβ,kek

(
ŵαh,k

−1
îŵαh,k

) ∈ ŵβ,kZ
(0)
k .

If (αi, β) = 0 with i ∈ Supp(β), then the assertion follows from Lemma 5.5.
Finally let (αi, β) = −1. Here îŵβ,kek = ŵβ+αi ,kek by definition if i is not in

Geod(k,β). So supposei ∈ Geod(k,β). Write h = Proj(k,β). Since(αi, β) = −1, we
must havei ∼ h. Thereforeŵβ,k = ŵβ,hŵkh and ŵβ,kek = ŵβ,hehei · · · ek . The set
Supp(β) \ {h} is a connected component of the Dynkin diagram connected toh and
disconnected from Geod(k,β). Henceĥ does not appear in̂wβ,h. This meanŝi com-
mutes with ŵβ,h. Moreover, by definition ofwβ,h, we haveŵβ,hĥ = ŵβ+αi ,i and so
ŵβ,hĥŵki = ŵβ+αi ,k . Consequently, by (9),

îŵβ,hehei · · · ek = ŵβ,hîehei · · · ek = ŵβ,h

(
ĥ + m(1− eh)

)
ei · · · ek

= ŵβ,hĥŵkiek + mŵkiekŵβ,h − mŵβ,hehk̂h

= ŵβ+αi ,kek + mŵk iekŵβ,h − mŵβ,kek. �
Corollary 5.7. Let B be a BMW-algebra of typeM ∈ ADE, let β ∈ Φ+, and leti, k be
nodes ofM .

(i) ŵβ,k
−opek ∈ ŵβ,kek + m

∑
ht(γ )<ht(β) ŵγ,kZ

(0)
k + I2,
(ii) eiŵβ,kek ∈ ŵαi ,kZ
(0)
k + I2,
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t

t

(iii) îŵβ,kek ∈ ∑
γ∈Hβ,i

ŵγ,kZ
(0)
k + I2,

whereHβ,i = {δ ∈ Φ+ | ht(δ) < ht(β)} ∪ {β,β + αi} ∩ Φ+.

Proof. We prove the statements simultaneously by induction on the height ofβ. If β is a
fundamental root then statement (i) holds by Lemma 3.1 and the statements (ii) an
by Lemma 5.3.

Let β ∈ Φ+ with ht(β) � 2 and assume the lemma holds for allγ ∈ Φ+ with ht(γ ) <

ht(β). Let i, k be nodes and consider̂wβ,k
−opek , eiŵβ,kek and îŵβ,kek . There is (at leas

one)j such thatŵβ,k = ĵ ŵβ−αj ,k ; then ht(β − αj ) = ht(β) − 1. Now

ŵβ,k
−opek = ĵ−1ŵβ−αj ,k

−op
ek

∈ (
ĵ + m − mej

)(
ŵβ−αj ,kek + m

∑
ht(γ )<ht(β−αj )

ŵγ,kZ
(0)
k + I2

)

= ŵβ,kek + mŵβ−αj ,kek − mej ŵβ−αj ,kek + m
∑

ht(γ )<ht(β−αj )

ĵ ŵγ,kZ
(0)
k

+ m2
∑

ht(γ )<ht(β−αj )

ŵγ,kZ
(0)
k − m2

∑
ht(γ )<ht(β−αj )

ej ŵγ,kZ
(0)
k + I2

⊆ ŵβ,kek + m
∑

ht(γ )<ht(β)

ŵγ,kZ
(0)
k + m

∑
ht(γ )<ht(β)

ej ŵγ,kZ
(0)
k + I2

⊆ ŵβ,kek + m
∑

ht(γ )<ht(β)

ŵγ,kZ
(0)
k + I2.

To see that
∑

ht(γ )<ht(β−αj ) ĵ ŵγ,kZ
(0)
k is contained in

∑
ht(γ )<ht(β) ŵγ,kZ

(0)
k , observe tha

by the induction hypothesis on (iii) we have

ĵ ŵγ,kek ∈
∑

δ∈Hγ,i

ŵδ,kZ
(0)
k + I2.

Here ht(δ) � ht(γ )+1 < ht(β) while ht(γ ) < ht(β−αj ). The sum
∑

ht(γ )<ht(β) ej ŵγ,kZ
(0)
k

is in ŵαj ,kZ
(0)
k by our induction hypothesis on (ii) and this gives (i) forβ.

Now focus oneiŵβ,kek = ei ĵ ŵβ−αj ,kek . If i = j then, by the induction hypothesis,

eiŵβ,kek = l−1eiŵβ−αj ,kek ∈ ŵαi ,kZ
(0)
k + I2.

If i �∼ j then

ei ĵ ŵβ−αj ,kek = ĵ eiŵβ−αj ,kek ∈ ĵ ŵαi ,kZ
(0)
k + I2
and by Lemma 5.3 this is contained in̂wαi,kZ
(0)
k + I2.
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So, for the remainder of the proof, we may (and shall) assumei ∼ j . By (9), we have
ei ĵ = eiej î + meiej − mei , so

eiŵβ,kek = ei ĵ ŵβ−αj ,kek = eiej îŵβ−αj ,kek + meiej ŵβ−αj ,kek − meiŵβ−αj ,kek.

By our induction hypothesis the last two terms are in̂wαi,kZ
(0)
k + I2. This leaves the firs

term, eiej îŵβ−αj ,kek . Because(β − αj ,αi) = (β,αi) + 1 the inner product ofαi with
β − αj can only take values 0, 1, and 2 and thusHβ−αj ,i consists of roots with height a
most ht(β − αj ).

The induction hypothesis on (iii) now gives

îŵβ−αj ,kek ∈
∑

γ∈Hβ−αj ,i

ŵγ,kZ
(0)
k

where ht(γ ) < ht(β) for all γ . By applying the induction hypothesis twice we obtain

eiej îŵβ−αj ,kek ∈
∑

ht(γ )∈Hβ−αj ,i

eiej ŵγ,kZ
(0)
k + I2 ⊆ eiŵαj ,kZ

(0)
k ⊆ ŵαi ,kZ

(0)
k + I2.

This establishes (ii). Finally considerîŵβ,kek . If (αi, β) = −1 thenβ + αi ∈ Φ+ and
the statement holds by Theorem 5.6. Also, if(αi, β) = 1 then Theorem 5.6 applies. He
eiŵβ−αi ,kek ∈ ŵαi ,kZ

(0)
k + I2 by the induction hypothesis for (ii).

For the remainder of the proof we assume(αi, β) = 0. Again Theorem 5.6 gives a
expression for̂iŵβ,kek in each of the four cases discerned. In the first cases, wheri /∈
Supp(β), the statement is immediate from this expression. By our induction hypothes
(iii) the second case gives an expression contained in

∑
γ∈Hβ−αj ,i

ĵ ŵγ,kZk + I2 whence in∑
γ∈Hβ,i

ŵγ,kZk + I2. Now the fourth case goes by the same argument and only the
case remains to be verified. Above we have shown that

ŵβ,k
−opek ∈ ŵβ,kek + m

∑
ht(γ )<ht(β)

ŵγ,kZ
(0)
k + I2

and that completes the proof.�
We shall use the following lemma to derive an upper bound for dim(Zi) from Theo-

rem 5.6.

Lemma 5.8. SupposeF is a field,E is a subring ofF which is a principal ideal domain
If V is a vector space overF and V (0) is an E-submodule ofV containing a spanning
set ofV , thenV (0) is a freeE-module on a basis ofV . Moreover, ifa ∈ E generates a
maximal ideal ofE, then

(
(0) (0)

)

dimF (V ) = dimE/aE V /aV .
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Proof. AsE is a principal ideal domain, it is well known, see [10, Theorem 12.5], that
E-module of finite rank without torsion is free. Applying this observation toV (0), we letX
be a basis of theE-moduleV (0). By the hypothesis thatV (0) spansV , it is also a basis ofV ,
so dimF (V ) = |X|. On the other hand,X maps onto a basis ofV (0)/aV (0) overE/aE (for,
it clearly maps onto a spanning set and if

∑
x∈X λxx = 0 modaV (0) for λx ∈ E, then, as

V (0) = E X, with X a basis, we haveλx = 0 moda for eachx ∈ X, so the linear relation in
V (0)/aV (0) is the trivial one). This proves dimF (V ) = |X| = dimE/aE(V (0)/aV (0)). �
Corollary 5.9. LetM ∈ ADE and leti be a node ofM . ThenD̂iZiD̂i

op
is a linear spanning

set forI1/I2. Moreover, the dimension ofZi is at most|WC |.

Proof. By Lemma 3.6I1 is spanned by a set of multiples ofei by generatorsgj , so
I1 = BeiB. According to Theorem 5.6 and Corollary 5.7,Bei = D̂iZi + I2. Applying Re-
mark 2.2, we derive from this thateiB = ZiD̂i

op+ I2 (observe thatZi andI2 are invariant
under the anti-involution). Therefore,I1 = BeiB = D̂iZiD̂i

op + I2.
It remains to establish that the dimension ofZi mod I2 is at most|WC |. To this end

we consider the integral versionsZ
(0)
i andB(0) of Zi andB overE = Q(x)[l±] defined at

the beginning of Section 5, and look at the quotients modulo(l − 1). Observe that, by (1)
m belongs to the ideal(l − 1)E.

A careful inspection of the identities in Theorem 5.6 and Corollary 5.7, shows

B(0)ei = D̂iZ
(0)
i + I2, and eiB

(0)ei = Z
(0)
i + I2.

SinceBei is linearly spanned by the set̂DiZ
(0)
i mod I2, it is linearly spanned byB(0)

i ei

mod I2. Consequently,Zi = eiBei is linearly spanned byeiB
(0)
i ei + I2, whence by

Z
(0)
i modI2.
For brevity of notation, we setm1 = l −1. (The remainder of the proof would also wo

for m1 = l + 1.) Sincex−1ei is a central idempotent belonging toZ(0)
i , we have

m1B
(0) ∩ (

Z
(0)
i + I2

) = m1eiB
(0)ei ∩ (

Z
(0)
i + I2

) = m1
(
Z

(0)
i + I2

) ∩ (
Z

(0)
i + I2

)
= m1

(
Z

(0)
i + I2

)
.

Therefore, the quotientZ(0)
i /m1Z

(0)
i , viewed as a vector space overQ(x), is isomorphic to

(Z
(0)
i + m1B

(0)
i + I2)/(m1B

(0)
i + I2). But this algebra is readily seen to be a quotient o

subalgebra of the group algebra overQ(x) of the stabilizer inW of the simple rootαi , for
the image of{ŵ | w ∈ W } modulom1B

(0) is the groupW and the image of the algebraZ(0)
i

is generated by the products of the elements of the formwjirkwji for j andk distinct non-
adjacent nodes ofM , all of which are contained in the stabilizer inW of αi . Consequently
the dimension ofZ(0)

i /m1Z
(0)
i overQ(x) is at most|WC |, the order of the stabilizer inW

of α0 (a group conjugate to the stabilizer inW of αi ). By Lemma 5.8, applied withF =
Q(x, l), E = Q(x)[l±], V = Zi , V (0) = Z

(0)
i , anda = m1, we see thatZi has dimension
at most|WC | overQ(l, x). �
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6. Generalized Lawrence–Krammer representations

In this section we construct the analog of the Lawrence–Krammer representatioA

with coefficients inZ0, the Hecke algebra of typeC, whereC is the parabolic of the highes
root centralizer. We show the representation factors throughB/I2. By taking an irreducible
representation ofZ0, we find an irreducible representation ofB/I2. Finally, by counting
dimensions of irreducible representations, we are able to conclude that all represen
of B/I2 that do not vanish onI1 are of this generalized Lawrence–Krammer type, and
can finish the proof of Theorem 1.2.

Since the construction for disconnectedM is a direct sum of the representations ofB

for the distinct connected components, we simply takeM to be connected, soM ∈ ADE.
We letΦ be the root system inRn of typeM , and denote byα1, . . . , αn the fundamenta
roots corresponding to the reflectionsr1, . . . , rn, respectively. As usual, byΦ+ we denote
the set of positive roots inΦ.

For a rootβ, the set of roots{γ ∈ Φ | (β, γ ) = 0} is also a root system. Its type can
read off fromM as follows: the extended Dynkin diagram̃K of the connected compone
K of M involving β (i.e., having nodes in the support ofβ) has a single nodeα0 in addition
to those ofK ; now takeC to consist of all nodes ofM that are not connected toα0. Then
the type of the roots orthogonal toβ is M|C . In fact, if β = α0, then{αi | i ∈ C} is a set
of fundamental roots of the root system{γ ∈ Φ | (β, γ ) = 0}. For An with β = α0 this is
the diagram of type An−2 on {2, . . . , n − 1}, for Dn, it is the diagram of type A1Dn−2 on
{1}∪{3, . . . , n}, for E6 it is the diagram of type A5 on{1,3,4,5,6}, for E7 it is the diagram
of type D6 on {2,3,4,5,6,7}, and for E8 it is the diagram of type E7 on {1,2,3,4,5,6,7}.
Here we have used the labeling of [3].

Recall the coefficients ofZ0 are inQ(l, x). We take the coefficients of our representat
in the Hecke algebraZ(0)

0 of type M|C over the subdomainQ[l±1,m] of Q(l, x), where
m is defined in (1). Observe that the fraction field ofQ(l,m) coincides withQ(l, x). The
generatorszi (i ∈ C) of Z

(0)
0 satisfy the quadratic relationsz2

i + mzi − 1 = 0. For the
proof of irreducibility at the end of this section, we need however a smaller version o
Hecke algebra, namely the subalgebraZ

(1)
0 with same generatorszi , but overQ[m]. Thus,

Z
(0)
0 = Z

(1)
0 Q[l±1].

By Lemma 3.8, the elementhβ,i of A defined in (15), whereβ ∈ Φ+ and i is a node
with (αi, β) = 0, maps onto an element ofZ

(1)
0 upon substitution ofsj by zj ands−1

j by
zj + m. We shall also writehβ,i for the image of this element inZ(1)

0 .
We write V (0) for the free rightZ(0)

0 module with basisxβ indexed byβ ∈ Φ+. The
connection with [7] is given bym = r − r−1, l = 1/(tr3). Recall thatA+ is the positive
monoid ofA.

Theorem 6.1. Let M ∈ ADE and let A be the Artin group of typeM . Then, for each
i ∈ {1, . . . , n} and eachβ ∈ Φ+, there are elementsTi,β in Z

(1)
0 such that the following

map on the generators ofA determines a representation ofA onV (0).
si �→ σi = τi + l−1Ti,
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whereτi is determined by

τi(xβ) =




0 if (αi, β) = 2,

xβ−αi
if (αi, β) = 1,

xβhβ,i if (αi, β) = 0,

xβ+αi
− mxβ if (αi, β) = −1,

and whereTi is theZ
(0)
0 -linear map onV (0) determined byTixβ = xαi

Ti,β on the genera-
tors ofV (0) and byTi,αi

= 1.
When tensored withQ(x, l), the representation ofA on V (0) becomes a representatio

on the vector spaceV which factors through the quotientB/I2 of the BMW algebraB of
typeM overQ(x, l).

Throughout this section we use several properties of the elementshβ,i listed in
Lemma 3.7. In addition, we shall use the Hecke algebra relation for the image ohβ,i

in Z
(0)
0 :

h−1
β,i = hβ,i + m. (24)

The proof of the theorem follows the lines of the proof in [7]. We shall first describe
part modulol−1 of the representation of the Artin monoidA+ onV (0).

Lemma 6.2. There is a monoid homomorphismA+ → End(V (0)) determined bysi �→ τi

(i = 1, . . . , n).

Proof. We must show that, ifi andj are not adjacent, thenτiτj = τj τi and, if they are
adjacent, thenτiτj τi = τj τiτj . We evaluate the expressions on eachxβ and show they are
equal. We begin with the case whereβ = αi . Suppose first thati andj are not adjacent
Thenτixαi

= 0 andτj xαi
= xαi

hβ,j . Now τj τixαi
= 0 andτiτj xαi

= τixαi
hβ,j = 0, so the

result holds. Suppose next thati andj are adjacent. Thenτixαi
= τj xαj

= 0 andτj xαi
=

−mxαi
+ xαi+αj

. Now

τiτj τixαi
= τiτj (0) = 0, and

τj τiτj xαi
= τj τi(−mxαi

+ xαi+αj
) = τj (xαi+αj −αi

) = τj xαj
= 0.

This ends the verification for the case whereβ = αi . We now divide the verifications int
the various cases depending on the inner products(αi, β) and(αj ,β). By the above, we
may assume(αi, β), (αj ,β) �= 2.

First assume that(αi, αj ) = 0. The computations verifyingτiτj = τj τi are summarized

in the following table. The last column indicates the formulas that are used.
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(αi , β) (αj ,β) τiτj xβ = τj τixβ ref.

1 1 xβ−αi−αj

1 −1 xβ+αj −αi
− mxβ−αi

1 0 xβ−αi
hβ,j (18)

0 0 xβhβ,ihβ,j (16)
0 −1 xβ+αj

hβ,i − mxβhβ,i (18)

−1 −1 m2xβ − m(xβ+αi
+ xβ+αj

) + xβ+αi+αj

We demonstrate how to derive these expressions by checking the third line.

τiτj xβ = τi(xβhβ,j ) = xβ−αi
hβ,j .

In the other order,

τj τixβ = τj (xβ−αi
) = xβ−αi

hβ−αi ,j .

Equality betweenhβ,j andhβ−αi ,j follows from (18).
Suppose next thati ∼ j . The same situation occurs except the computations are s

times longer and one case does not occur. This is the case where(αi, β) = (αj ,β) = −1.
For thenβ +αi is also a root, and(β +αi,αj ) = −1− 1= −2. This meansβ +αi = −αj

andβ is not a positive root. The table is as follows.

(αi , β) (αj ,β) τiτj τixβ = τj τiτj xβ ref.

1 1 0
1 −1 xβhβ−αi ,j

− mxβ−αi
hβ−αi ,j

(19)
1 0 xβ−αi−αj

hβ,j (20)

0 0 xβhβ,ihβ,j hβ,i (17)
0 −1 xβ+αi+αj

hβ,i − mxβ+αj
hβ,i − mxβh2

β,i
(21), (24)

−1 −1 does not occur

Lemma is proved. �
We next study the possibilities for the parametersTk,β occurring in Theorem 6.1. Reca

that there we definedσk = τk + l−1Tk , whereTkxβ = xαk
Tk,β . We shall introduceTk,β as

elements of the Hecke algebraZ
(0)
0 of typeM|C .

Proposition 6.3. SetTi,αi
= 1 for all i ∈ {1, . . . , n}. For σi �→ τi + l−1Ti to define a linear

representation of the groupA on V , it is necessary and sufficient that the equations
Table1 are satisfied for eachk, j = 1, . . . , n and eachβ ∈ Φ+.

Proof. Theσk should satisfy the relations (B1), (B2). Substitutingτk + l−1Tk for σk , we
find relations for the coefficients ofl−i with i = 0,1,2,3. The constant part involves on
theτk . It follows from Lemma 6.2 that these equations are satisfied. We shall derive
the equations of Table 1 below except for (39) from thel−1-linear part and the remainin
one from thel−1-quadratic part of the relations.
The coefficients ofl−1 lead to
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Tiτj = τjTi and Tj τi = τiTj if i �∼ j, (25)

τjTiτj + Tj τiτj + τj τiTj = τiTj τi + Tiτj τi + τiτjTi if i ∼ j. (26)

We focus on the consequences of these equations for theTi,β . First consider the cas
wherei �∼ j . Thenτixαj

= xαj
hαj ,i and so, for the various values of(αi, β) we find the

following equations

(αi , β) Tj τixβ = τiTj xβ equation

0 xαj
Tj,βhβ,i = xαj

hαj ,iTj,β Tj,βhβ,i = hαj ,iTj,β

1 xαj
Tj,β−αi

= xαj
hαj ,iTj,β Tj,β−αi

= hαj ,iTj,β

−1 xαj
Tj,β+αi

− mxαj
Tj,β = xαj

hαj ,iTj,β Tj,β+αi
= h−1

αj ,i
Tj,β

2 0= xαj
hαj ,iTj,β 0 = Tj,β

The first equation gives

Tj,βhβ,i = hαj ,iTj,β (27)

and the second

Tj,β = h−1
αj ,iTj,β−αi

. (28)

The third case gives an equation that is equivalent to (28). The fourth equation is
(39) in Table 1 (namely the part wherej �∼ i).

Next, we assumei ∼ j . A practical rule is

τiτj xαi
= τi(−mxαi

+ xαi+αj
) = xαj

.

We distinguish cases according to the values of(αi, β) and(αj ,β). Since each inner prod
uct, for distinct roots is one of 1, 0,−1, there are six cases to consider up to interchang
i andj . However, as in the proof of Lemma 6.2 fori ∼ j , the case(αi, β) = (αj ,β) = −1
does not occur.

For the sake of brevity, let us denote the images of the left-hand side and the righ
side of (26) onxβ by LHS and RHS, respectively.

Case(αi, β) = (αj ,β) = 1. Then(riβ,αj ) = (β − αi,αj ) = 2, soβ = αi + αj . Now

RHS= xαj
(Ti,β − mTj,αj

) + xβTj,αj
.

Comparison with the same expression but thenj andi interchanged yields LHS. This lead
to the equationsTi,β = mTj,αj

andTj,αj
= Ti,αi

. In view of the latter, and connectedne
of the diagram there is an elementz in Z

(0)
0 such that
Ti,αi
= z for all i. (29)
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.

Consequently, the former equation reads

Ti,β = mz. (30)

By the requirementTi,αi
= 1 in the hypotheses, we must havez = 1.

Case(αi, β) = (αj ,β) = 0. This gives

RHS= xαj
(Ti,β − mTj,βhβ,i) + xαj +αi

Tj,βhβ,i + xαi
Ti,βhβ,j hβ,i

and LHS can be obtained from the above by interchanging the indicesi andj . Comparison
of each of the coefficients ofxαi

, xαj +αi
, xαj

gives

Ti,βhβ,j = Tj,βhβ,i if (αi, β) = (αj ,β) = 0 and(αi, αj ) = −1. (31)

Since the other cases come down to similar computations, we only list the results
Case(αi, β) = 0, (αj ,β) = −1. Here we have

RHS= xαi
(−mTi,βhβ,i + Ti,β+αj

hβ,i) + xαj
(−mTj,βhβ,i + Ti,β) + xαi+αj

(Tj,βhβ,i)

and

LHS= xαi

(
m2Ti,β + Tj,β − mTi,β+αj

)
+ xαj

(−mTj,βhβ,i − mTj,β+αj
+ Tj,β+αj +αi

)

+ xαi+αj
(−mTi,β + Ti,β+αj

),

which gives

Ti,β+αj
= Tj,βhβ,i + mTi,β, (32)

Tj,β+αj +αi
= Ti,β + mTj,β+αj

. (33)

Table 1
Equations forTi,β

Ti,β condition reference

0 β = αj andi �= j (39)

1 β = αi (29)

m β = αi + αj (30)

h−1
αi ,j

Ti,β−αj
(αj ,β) = 1 and(αi , αj ) = 0 (28)

Tj,β−αi−αj
+ mTi,β−αj

(αi , β) = 0 and(αj ,β) = 1 (34)
and(αi , αj ) = −1

Tj,β−αj
hβ−αj ,i + mTi,β−αj

(αi , β) = −1 and(αj ,β) = 1 (36)
and(αi , αj ) = −1

Tj,β−αi
h−1
β,j

(αi , β) = 1 and(αj ,β) = 0 (35)
and(α ,α ) = −1
i j
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Case(αi, β) = 0, (αj ,β) = 1.

RHS= xαi
Ti,β−αj

hβ,i + xαj
(−mTj,βhβ,i + Ti,β) + xαj +αi

Tj,βhβ,i

and

LHS= xαi
(Tj,β − mTi,β−αj

) + xαj
Tj,β−αj −αi

+ xαi+αj
Ti,β−αj

whence

Ti,β = Tj,β−αj −αi
+ mTi,β−αj

, (34)

Tj,β = Ti,β−αj
h−1

β,i . (35)

Case(αi, β) = 1, (αj ,β) = −1. Now

RHS= xαi
(Ti,β−αi

hβ−αi ,j ) + xαj
(Ti,β − mTj,β−αi

) + xαi+αj
(Tj,β−αi

)

and

LHS= xαi

(
m2Ti,β − mTi,β+αj

+ Tj,β

) + xαj
(Tj,β+αj

hβ+αj ,i − mTj,β−αi
)

+ xαi+αj
(Ti,β+αj

− mTi,β)

whence

Tj,β = Ti,β−αi
hβ−αi ,j + mTj,β−αi

, (36)

Tj,β+αj
= Ti,βh−1

β+αj ,i , (37)

Ti,β+αj
= Tj,β−αi

+ mTi,β . (38)

We now consider the coefficients ofl−2 and ofl−3 in Eqs. (B1), (B2) forσi . We claim
that, given (28)–(38), a necessary condition for the corresponding equations to hold

Tk,αj
= 0 if k �= j. (39)

To see this, note that, ifk �∼ j , the coefficient ofl−2 givesTkTj = TjTk which, applied to
xαj

, yields (39). Ifk ∼ j , note

Tkτj xαk
= Tk(−mxαk

+ xαk+αj
) = 0

asTk,αk+αj
= mz = mTk,αk

by (30). Now use the action of
Tj τkTj + τjTkTj + TjTkτj = TkτjTk + τkTjTk + TkTj τk
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. We see only the middle terms do not vanish because of the relation above an

τj xαk
Tk,αj

z = τkxαj
Tj,αk

Tk,αj
.

By considering the coefficient ofxαk
, which occurs only on the left-hand side, we see t

(39) holds.
A consequence of this is thatTiTj = 0 if i �= j . Now all the equations for thel−2 and

l−3 coefficients are easily satisfied. In the non-commuting case ofl−2, the first terms on
either side are 0 by the relation above and the other terms are 0 asTjTk = 0.

We have seen that, in order forsi �→ σi to determine a representation, theTi,β have to
satisfy Eqs. (27)–(39). This system of equations, however, is redundant. Indeed, wh
root in the index of the left-hand side of (32) is set toγ , we obtain (36) forγ instead ofβ.
Similarly, (33) is equivalent to (34), while (37) is equivalent to (35), and (38) is equiva
to (34). Consequently, in order to finish the proof that Table 1 contains a sufficient
relations, we must show that (31) and (27) follow from those of the table. These proo
given in Lemmas 6.5 and 6.7 below.

It remains to establish that the matricesσk are invertible. To prove this, we observe th
the linear transformationσ 2

k + mσk − 1 mapsV onto the submodule spanned byxαk
and

that the image ofxαk
underσk is xαk

l−1. This is easy to establish and will be shown
Lemma 6.10 below. �
Corollary 6.4. If the Ti,β ∈ Z

(0)
0 satisfy the equations in Table1, then these obey the fo

lowing rules.

(i) Ti,β = 0 wheneveri /∈ Supp(β).
(ii) If (αi, β) = 1, thenTi,β = md−1

αi
s−1
β sisβdβ .

Proof. (i) follows from (39) by use of (28) and (36). Observe that, ifi /∈ Supp(β) and
(αj ,β) = 1 for somej ∼ i, thenj /∈ Supp(β − αj ).

(ii) By induction on ht(β). The assertion is vacuous when ht(β) = 1. Suppose ht(β) = 2.
Thensβ = sj sisj for some nodej adjacent toi in M . Therefore,

md−1
αi

s−1
β sisβdβ = md−1

αi
s−1
j s−1

i s−1
j sisj sisj dβ = md−1

β s−1
j s−1

j s−1
i s−1

j sisj sisj dβ = m

and, by (30)Ti β = m, as required.
Now suppose ht(β) > 2.
If j is a node distinct fromi such that(αj ,β) = 1, then, necessarily,i �∼ j (for otherwise

(αi, β − αj ) = 2, soβ = αi + αj , contradicting ht(β) > 2). Now (28) applies, giving

Ti,β = h−1
αi ,j

Ti,β−αi
by (28)

= md−1
αi

s−1
j s−1

β−αj
sisβ−αj

sj dβ by induction

= md−1
αi

s−1
β sj sis

−1
j sβdβ by definition ofsβ
= md−1
αi

s−1
β sisβdβ assisj = sj si ,
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Supposel is a node distinct fromi such that(αl, β) = 0 andi ∼ l. Then (35) applies

giving

Ti,β = Tl,β−αi
h−1

β,l by (35)

= md−1
αl

(
s−1
β−αi

sl
)
sβ−αi

(
dβ−αi

d−1
β

)
s−1
l dβ by induction

= md−1
αi

(
sls

−1
i s−1

l

)
s−1
γ slsγ

(
slsis

−1
l

)
dβ by definition ofdβ andsβ

= md−1
αi

s−1
i s−1

l sis
−1
γ slsγ s−1

i slsidβ by the braid relation

= md−1
αi

s−1
i s−1

l s−1
γ sisls

−1
i sγ slsidβ by Lemma 3.9

= md−1
αi

(
s−1
i s−1

l s−1
γ s−1

l

)
(sislsγ slsi)dβ by the braid relation

= md−1
αi

s−1
β sisβdβ by definition ofsβ,

as required. �
Lemma 6.5. The equations forβ in (31) are consequences of the relations of Table1 and
those of(31)and (27) for positive roots of height less thanht(β).

Proof. The equation says thatTk,βhβ,j = Tj,βhβ,k whenever(αk,β) = (αj ,β) = 0 and
k ∼ j . The initial case ofβ having height 1 is direct from (39). Suppose therefo
ht(β) > 1. There existsm ∈ {1, . . . , n} such that(αm,β) = 1. If (αm,αk) = (αm,αj ) = 0,
then, by the induction hypothesis and (18),Tk,β−αmhβ,j = Tk,β−αmhβ−αm,j =
Tj,β−αmhβ−αm,kTj,β−αmhβ,k , so, applying (28) twice, we find

Tk,βhβ,j = h−1
αk,m

Tk,β−αmhβ,j = h−1
αj ,mTj,β−αmhβ,k = Tj,βhβ,k,

as required.
Therefore, interchangingk and j if necessary, we may assume thatj ∼ m, whence

k �∼ m (as the Dynkin diagram contains no triangles). Nowδ = β −αm −αj andγ = δ−αk

are positive roots and(αk, δ) = 1, so (28) givesTm,γ = hαm,kTm,δ , which, by induction on
height, and (22), leads to

h−1
αk,m

Tj,γ = h−1
αm,kTm,γ hγ,j h

−1
γ,m = Tm,δhγ,j h

−1
γ,m.

Observing that, by straightforward application of the braid relations and the definiti
hβ,k , we also have

hγ,jh
−1
γ,mhβ,j = hβ,k,

h−1
δ,mhβ,j = h−1

β−αm,khβ,k,
we derive
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Tk,βhβ,j = h−1
αk,m

Tk,β−αmhβ,j by (28)

= h−1
αk,m

(Tj,γ + mTk,δ)hβ,j by (34)

= Tm,δhγ,j h
−1
γ,mhβ,j + mTk,δh

−1
δ,mhβ,j by the above and (27) forγ, δ

= Tm,δTm,δhβ,k + mTk,δh
−1
β−αm,khβ,k by the above

= (Tm,δ + mTj,β−αm)hβ,k by (35)

= Tj,βhβ,k by (34),

as required. �
The relation (27) is new compared to [7]. But it is superfluous. In order to see thi

first prove some auxiliary claims.

Lemma 6.6. Let h, k be generators(or conjugates thereof) in the Hecke algebraZ(0)
0 .

Then, for anyt ∈ Z
(0)
0 ,

(i) h−1t − tk−1 = ht − tk,
(ii) h−1(t + h−1tk−1)k = t + h−1tk−1.

Proof. (i) Expand the left-hand side and use thatz−1 = z + m for every conjugate of a
generator.

(ii) By (i), tk + h−1t = ht + tk−1. Multiplying both sides from the left byh−1 and
pulling out a factork at the right of the left-hand side, we find the required relation.�
Lemma 6.7. The equations forβ in (27) are consequences of the relations of Table1 and
those of(31)and (27) for positive roots of height less thanht(β).

Proof. Suppose that the positive rootβ and the distinct nodesl, i satisfy(αl, β) = 0 and
i �∼ l. By Corollary 6.4(i), we know thatTi,β = 0 if i /∈ Supp(β), so we need only conside
cases wherei ∈ Supp(β).

If ht(β) = 1, then, by (29) and (39),Ti,β = 0 and there is nothing to prove unlessβ = αi .
In the latter caseTi,β = 1 and

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

hαi ,l = 1,

so (27) is satisfied.
If ht(β) = 2, thenβ = αi + αj for somej andTi,β = m by (30). Asαl is orthogonal to

bothβ andαi , it must be orthogonal toαj as well. Now

h−1
αi ,l

Ti,βhβ,l = mh−1
αi ,l

hαi+αj ,l = md−1
αi

s−1
l dαi

d−1
αi

s−1
j slsj dαi

= m,
as required.
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Case (28): there is a nodej with (αj ,β) = 1 and(αi, αj ) = 0. ThenTi,β = h−1
αi ,j

Ti,β−αj
.

If j �∼ l, we find

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

h−1
αi ,j

Ti,β−αj
hβ,l by (28)

= h−1
αi ,j

h−1
αi ,l

Ti,β−αj
hβ−αj ,l by (16) and (18)

= h−1
αi ,j

Ti,β−αj
by induction

= Ti,β by (28).

If j ∼ l, we find

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

h−1
αi ,j

Ti,β−αj
hβ,l by (28)

= h−1
αi ,l

h−1
αi ,j

h−1
αi ,l

Ti,β−αj −αl
hβ,l by (28)

= h−1
αi ,j

h−1
αi ,l

h−1
αi ,j

Ti,β−αj −αl
hβ−αj −αl,j by (17) and (20)

= h−1
αi ,j

h−1
αi ,l

Ti,β−αj −αl
by induction

= Ti,β by (28) applied twice.

This ends case (28).
Case (34):(αi, β) = 0 and there is a nodej ∼ i with (αj ,β) = 1. Then Ti,β =

Tj,β−αi−αj
+ mTi,β−αj

. Now

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

(Tj,β−αi−αj
+ mTi,β−αj

)hβ,l .

If j �∼ l, we find

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

(Tj,β−αi−αj
+ mTi,β−αj

)hβ,l by (34)

= h−1
αi ,l

Tj,β−αi−αj
hβ−αi−αj ,l + mh−1

αi ,l
Ti,β−αj

hβ−αj ,l by (18)

= Tj,β−αi−αj
+ mTi,β−αj

by induction

= Ti,β by (34).

If j ∼ l, we claim

Ti,β = Tl,δ + m
(
Tj,γ + h−1

αi ,l
Tj,γ h−1

β,l

)
, (40)
whereγ = β − αi − αj − αl and whereδ = γ − αj are positive roots. For
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Ti,β = Tj,β−αi−αj
+ mTi,β−αj

by (34)

= (Tl,δ + mTj,γ ) + mh−1
αi ,l

Ti,β−αj −αl
by (34) and (28)

= Tl,δ + mTj,γ + mh−1
αi ,l

Tj,γ h−1
β−αj −αl,j

by (35)

= Tl,δ + mTj,γ + mh−1
αi ,l

Tj,γ h−1
β,l by (20).

By (20), we havehβ,l = hβ−αj −αl,j = hδ,i , so, by induction we find

h−1
αi ,l

Tl,δhβ,l = (
Tl,δh

−1
δ,i

)
hβ,l = Tl,δ.

So the first summand of (40) is invariant under simultaneous left multiplication byh−1
αi ,l

and right multiplication byhβ,l . The same holds for the second summand,m(Tj,γ +
h−1

αi ,l
Tj,γ h−1

β,l ) by Lemma 6.6 applied withh = hαi,l , k = hβ,l , andt = Tj,γ . Consequently
(27) holds forTi,β in case (34).

Case (36):(αi, β) = −1 and there is a nodej ∼ i with (αj ,β) = 1. ThenTi,β =
Tj,β−αj

hβ−αj ,i + mTi,β−αj
. Now

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

(Tj,β−αj
hβ−αj ,i + mTi,β−αj

)hβ,l .

If j �∼ l, we find

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

(Tj,β−αj
hβ−αj ,i + mTi,β−αj

)hβ,l by (34)

= h−1
αi ,l

Tj,β−αj
hβ−αj ,lhβ−αj ,i + mh−1

αi ,l
Ti,β−αj

hβ−αj ,l by (18) and (16)

= Tj,β−αj
hβ−αj ,i + mTi,β−αj

by induction

= Ti,β by (34).

If j ∼ l, we claim

Ti,β = Tl,γ hγ,j hβ−αj ,i + m
(
Tj,γ hβ−αj ,i + h−1

αi ,l
Ti,γ

)
, (41)

whereγ = β − αj − αl is a positive root. For

Ti,β = Tj,β−αj
hβ−αj ,i + mTi,β−αj

by (36)

= Tl,γ hγ,j hβ−αj ,i + mTj,γ hβ−αj ,i + mh−1
αi ,l

Ti,γ by (36) and (28).

By Lemma 24, we have

h−1
γ,ihγ,j hβ−αj ,ihβ,l = d−1

β

(
s−1
j s−1

l s−1
i slsj

)(
s−1
j s−1

l sj slsj
)(

s−1
j sisj

)
(sl)dβ

= d−1
β

(
s−1
j s−1

i sj
)(

s−1
j s−1

l sj slsj
)(

sisj s
−1
i

)
(sl)dβ
= d−1
β s−1

j s−1
i s−1

l sj slsisj sldβ
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= d−1
β s−1

j s−1
l s−1

i sj sislsj sldβ

= d−1
β s−1

j s−1
l sj sis

−1
j slsj sldβ

= d−1
β sls

−1
j s−1

l sislsj dβ

= d−1
β sls

−1
j sisj dβ

= hγ,jhβ−αj
.

Hence, using induction, we find for the first summand of (41)

h−1
αi ,l

(Tl,γ hγ,j hβ−αj ,i)hβ,l = Tl,γ h−1
γ,ihγ,j hβ−αj ,ihβ,l = Tl,δhγ,j hβ−αj

,

proving that it is invariant under simultaneous left multiplication byh−1
αi ,l

and right multi-
plication byhβ,l .

The same holds for the second summand,m(Tj,γ hβ−αj ,i + h−1
αi ,l

Ti,γ ) as we shall es
tablish next. First of all, note thathγ,j = hβ,l by (20) and thathγ,i = hβ−αj ,i by (18).
Moreover, by (31) forγ , we haveTi,γ hγ,j = Tj,γ hγ,i . Substituting all this in the secon
summand, we obtain

m
(
Tj,γ hβ−αj ,i + h−1

αi ,l
Ti,γ

) = m
(
Tj,γ hγ,i + h−1

αi ,l
Ti,γ

) = m
(
Ti,γ hγ,j + h−1

αi ,l
Ti,γ

)
= m

(
Ti,γ hβ,l + h−1

αi ,l
Ti,γ

)
.

Again, using Lemma 6.6 applied withh = hαi,l , k = hβ,l , andt = Ti,γ , we find the required
invariance. Consequently (27) holds forTi,β in case (34).

Case (35):(αi, β) = 1 and there is a nodej ∼ i with (αj ,β) = 0. Then Ti,β =
Tj,β−αi

h−1
β,j . Now

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

Tj,β−αi
h−1

β,j hβ,l .

If j �∼ l, we find

h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

Tj,β−αi
h−1

β,j hβ,l by (35)

= h−1
αi ,l

Tj,β−αi
hβ−αi ,lh

−1
β,j by (16) and (18)

= Tj,β−αi
h−1

β,j by induction

= Ti,β by (35).

If j ∼ l, observe thath−1
β−αi ,l

h−1
β,j hβ,l = hβ−αi−αj ,ih

−1
β−αi ,l

h−1
β,j in view of (18), (20), and
(17). Also,hαi,l = hαl,i by a double application of (21). Therefore,
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h−1
αi ,l

Ti,βhβ,l = h−1
αi ,l

Tl,β−αi−αj
h−1

β−αi ,l
h−1

β,j hβ,l by (35) twice

= h−1
αl,i

Tl,β−αi−αj
hβ−αi−αj ,ih

−1
β−αi ,l

h−1
β,j by the above

= Tl,β−αi−αj
h−1

β−αi ,l
h−1

β,j by induction

= Ti,β by (35) twice. �
The proposition enables us to describe an algorithm computing theTi,β .

Algorithm 6.8. The Hecke algebra elementsTi,β of Theorem 6.1 can be computed
follows by using Table 1.

(i) If i /∈ Supp(β), then, in accordance with (39), setTi,β = 0.

From now on, assumei ∈ Supp(β).

(ii) If ht (β) � 2, Eqs. (29) and (30), that is, the second and third lines of Table 1, dete
Ti,β .

From now on, assume ht(β) > 2. We proceed by recursion, expressingTi,β as aZ
(0)
0 -

bilinear combination ofTk,γ ’s with ht(γ ) < ht(β).

(iii) If (αi, β) = 1, in accordance with Corollary 6.4(ii), setTi,β = md−1
αi

s−1
β sisβdβ .

From now on, assume(αi, β) ∈ {0,−1}.

(iv) Search for aj ∈ {1, . . . , n} such that(αi, αj ) = 0 and(αj ,β) = 1. If such aj exists,
thenβ − αj ∈ Φ and (28) expressesTi,β as a multiple ofTi,β−αj

.
(v) So, suppose there is no suchj . There is aj for whichβ −αj is a root, so(αj ,β) = 1.

As (αi, β) �= 1, we must havei ∼ j . According as(αi, β) = 0 or −1, the identities
(34) or (36) expressTi,β as aZ(0)

0 -bilinear combination ofTi,β−αj
and someTj,γ with

ht(γ ) < ht(β).

This ends the algorithm. Observe that all lines of Table 1 have been used, with (35) i
itly in (iii).

The algorithm computes a Hecke algebra element for eachi, β based on Table 1, show
ing that there is at most one solution to the set of equations. The next result shows t
computed Hecke algebra elements do indeed give a solution.

Proposition 6.9. The equations of Table1 have a unique solution.

Proof. We will first show that the Hecke algebra elementsTi,β defined by Algorithm 6.8
are well defined by the algorithm and then that they satisfy the equations of Table 1

assertions are proved by induction on ht(β), the height ofβ.



144 A.M. Cohen et al. / Journal of Algebra 286 (2005) 107–153

s

me

),
ex

in

d
pres-
If β has height 1 or 2,Ti,β is chosen in step (i) ifβ = αj with j �= i and in step (ii)
otherwise. Indeed there is a unique solution.

Now assume ht(β) � 3. Suppose first thatTi,β is determined in step (iii). This mean
that(αi, β) = 1. This is unique as it is a closed form.

We now suppose thatTi,β is chosen in step (iv). This means there is aj for which
(αi, αj ) = 0 and(αj ,β) = 1. We must show that if there are two suchj the result is the
same. Suppose there are distinctj andj ′ for which (αj ,β) = (αj ′ , β) = 1 and(αj ,αi) =
(αj ′ , αi) = 0. Then by our definitionTi,β = h−1

αi ,j
′Ti,β−αj ′ and we must show that

Ti,β = h−1
αi ,j

Ti,β−αj
.

If j ∼ j ′, then(β −αj ,αj ′) = 2 andβ = αj +αj ′ has height 2. This means we can assu
j �∼ j ′. Then(β − αj ,αj ′) = 1 and(β − αj ′ , αj ) = 1. In particular,β − αj − αj ′ is also a
root. Now apply (28) and the induction hypothesis to seeTi,β−αj

= h−1
αi ,j

′Ti,β−αj −αj ′ and
Ti,β−αj ′ = h−1

αi ,j
Ti,β−αj −αj ′ , and so by (16), we find

h−1
αi ,j

Ti,β−αj
= h−1

αi ,j
′Ti,β−αj ′ .

This shows the definitions are the same with either choice.
We may now assume thatTi,β was chosen in step (v). Ifj is the one chosen in step (v

thenTi,β was chosen to satisfy (34) or (36). Suppose now that there is another indj ′
which was used in step (v) to defineTi,β . For these the conditions are(αj ,β) = (αj ′ , β) =
1 and(αi, αj ) = (αi, αj ′) = −1. Clearlyj �∼ j ′ for otherwise there would be a triangle
the Dynkin diagramM . Therefore,(αj ′ , β − αj ) = 1, and soβ − αj − αj ′ is a root. We
distinguish according to the two possibilities for(αi, β).

Assume first(αi, β) = 0. Then,(αi, β − αj − αj ′) = 2, and soβ = αi + αj + αj ′ . By
using (34), with eitherj or with j ′, we findTi,β = m2, independent of the choice ofj or j ′.

Next assume(αi, β) = −1. Then(αi, β − αj − αj ′) = 1, soγ = β − αj − αj ′ − αi is
a root. We need to establish that the result of application of (36) toTi,β does not depen
on the choicej or j ′. We do so by showing that the result can be expressed in an ex
sion symmetric inj andj ′. Observe thatγ is an expression symmetric inj andj ′. The
expression ofTi,β obtained by applying (36) toj is

Tj,β−αj
hβ−αj ,i + mTi,β−αj

. (42)

By (34), the second summand of the right-hand side equals

mTi,β−αj
= mTj ′,γ + m2Ti,β−αj −αj ′ .

For the first summand of (42) we find

Tj,β−αj
hβ−αj ,i = h−1

αj ,j ′Tj,β−αj −αj ′ hβ−αj ,i by (28)
= h−1
αj ,j ′(Ti,γ hγ,j + mTj,γ )hβ−αj ,i by (36).



A.M. Cohen et al. / Journal of Algebra 286 (2005) 107–153 145

.
none

olds by

nd
losed

r

r
is a

e

Expanding (42) with these expressions, we find by use ofhαj ,j ′ = hαj ′ ,j (see (21)),
hγ,j ′ = hβ−αj ,i (see (22)), and (27),

h−1
αj ,j ′Ti,γ hγ,j hβ−αj ,i + m

(
h−1

αj ,j ′Tj,γ hβ−αj ,i + Tj ′,γ
) + m2Ti,β−αj −αj ′

= h−1
αj +αj ′+αi ,i

Ti,γ hγ,j hγ,j ′ + m(Tj,γ + Tj ′,γ ) + m2Ti,β−αj −αj ′ .

Sincehγ,j andhγ,j ′ commute, cf. (16), the result is indeed symmetric inj andj ′. This
shows that the algorithm gives unique Hecke algebra elementsTi,β .

We now show that the relations of Table 1 all hold forTi,β as computed by the algorithm
If the height ofβ is one or two the values are given by (39) and (29) of the table and
of the other relations hold as there are no applicablej .

We consider each of the remaining relations, one at a time, and show that each h
assuming the relations all hold for roots of lower height.

If (αi, β) = 1 the value ofTi,β is given in step (iii). The relevant equations are (28) a
(35). The proof of Corollary 6.4(ii) shows that both equations are satisfied by the c
formula which is the outcome of our algorithm.

We have yet to check (34) and (36) in which case(β,αi) is 0 or−1. Notice (28) and
(35) require(αi, β) = 1 and do not apply here. In these casesTi,β is chosen in step (iv) o
step (v).

Suppose firstTi,β was chosen by step (iv). In this case there is aj ′ with (αj ′ , β) = 1,
(αi, αj ′) = −1. AsTi,β is determined by step (iv) of the algorithm,

Ti,β = h−1
αi ,j

′Ti,β−αj ′ .

We have already seen that this is independent of the choice ofj ′ and so if there is anothe
j for which (αj ,β) = 1 with (αi, αj ) = 1, (28) holds. To check (34) we suppose there
j for which (αi, β) = 1 with (αi, αj ) = −1. We must havej �∼ j ′, for otherwise we would
again be in the height 2 case. In order to obtain (34) we must show that

h−1
αi ,j

′Ti,β−αj ′ = Tj,β−αi−αj
+ mTi,β−αj

.

As for the left-hand side,(β − αj ′ , αj ) = 1 and(αi, αj ) = −1, so by (34), we have

h−1
αi ,j

′Ti,β−αj ′ = h−1
αi ,j

′Tj,β−αj ′−αj −αi
+ mh−1

αi ,j
′Ti,β−αj ′−αj

.

As for the right-hand side, as(αj ,αj ′) = 0, we can use (28) to obtain

Tj,β−αi−αj
= h−1

αj ,j ′Tj,β−αj −αi−αj ′ and Ti,β−αj
= h−1

αi ,j
′Ti,β−αj −αj ′ ,

and so the right-hand side equals the left-hand side ifhαj ,j ′ = hαi,j
′ . But this is (23).

We have yet to consider the case(αi, β) = −1, whenTi,β is chosen in step (iv). Suppos
j ′ is the choice used in step (iv). As we saw in the case(αi, β) = 0, (28) holds for anyj

with (αj ,β) = 1 and with(αi, αj ) = 0 by the uniqueness of the definition ofTi,β . We need
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to treat the case(αj ,β) = 1 with (αi, αj ) = −1 and show (36) holds. In particular we ne
to show

h−1
αi ,j

′Ti,β−αj ′ = Tj,β−αj
hβ−αj ,i + mTi,β−αj

.

Use (36) on the left-hand side to get

h−1
αi ,j

′Tj,β−αj ′−αj
hβ−αj −αj ′ ,i + mh−1

αi ,j
′Ti,β−αj −αj ′ .

On the right-hand side use (28) to get

h−1
αj ,j ′Tj,β−αj −αj ′ hβ−αj ,i + mh−1

αi ,j
′Ti,β−αj −αj

.

The needed equation will hold providedhαi,j
′ = hαj ,j ′ andhβ−αj −αj ′ ,i = hβ−αj ,i . The

first is (23) and the second is (18).
This shows that all the equations are satisfied ifTi,β is chosen in step (iv). But ifTi,β was

chosen in step (v) we have already checked any two choices ofj give the same answer fo
(36) and so this equation is satisfied also. We have now shown all the relations in T
hold. �

At this point we have established the existence of a linear representationσ of A onV (0).
We need some properties of projections which have already arisen in [7]. In particu
fi = ml−1ei . The following lemma shows these elements are multiples of projections

Lemma 6.10. The endomorphismsσ(fi) of V (0) satisfy

σ(fi)xβ =




(l−2 + ml−1 − 1)xαi
if (αi, β) = 2,

l−1xαi
Ti,β(hβ,i + m + l−1) if (αi, β) = 0,

l−1xαi
(Ti,β+αi

+ l−1Ti,β) if (αi, β) = −1,

l−1xαi
(Ti,β−αi

+ (m + l−1)Ti,β) if (αi, β) = 1.

In particular,σ(fi)xβ ∈ xαi
l−1Z

(1)
0 [l−1] if β �= αi andσ(fi)xαi

∈ xαi
(−1+ l−1Z

(1)
0 [l−1]).

Proof. Suppose first(αi, β) = 2 in which caseβ = αi . Using the definition ofσ and (29)
givesσixαi

= l−1xαi
. Now σ(fi)xαi

= (l−2 + ml−1 − 1)xαi
.

Suppose(αi, β) = 0. Thenσixβ = xβhβ,i + l−1xαi
Ti,β . Now

σ 2
i xβ = xβh2

β,i + l−1xαi
Ti,βhβ,i + l−2xαi

Ti,β .

Evaluatingσ(fi) on xαi
and using the Hecke algebra quadratic relation forhβ,i gives that

the coefficient ofxβ is 0. Adding the other terms givesl−1xαi
Ti,β(hβ,i +m+ l−1) as stated

Suppose(αi, β) = −1. Nowσixβ = xβ+αi
−mxβ + l−1xαi

Ti,β . Applyingσi again gives
σ 2

i xβ = xβ + l−1xαi
Ti,β+αi

− m(xβ+αi
− mxβ + l−1xαi

Ti,β) + l−2xαi
Ti,β . Again adding
gives the result.
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If (αi, β) = 1,σixβ = xβ−αi
+ l−1xαi

Ti,β . Nowσ 2
i xβ = xβ −mxβ−αi

+ l−1xαi
Ti,β−αi

+
l−2xαi

Ti,β . Adding and again using the quadratic relation gives the result.
The final statement follows from the fact that theTi,γ andhβ,i belong toZ(1)

0 [l−1] (that
is, there is nol involved). �
Proof of Theorem 6.1. In view of Proposition 6.3 we need only check (D1), (R1), (R
and thatσ(eiej ) = 0 for i �∼ j . But (D1) is just the definition. By Lemma 6.10 we kno
σ(ei)xβ is in the space spanned byxαi

. Now (R1) follows asσixαi
= l−1xαi

. For i �∼ j

we knowσ(eiej ) = σ(ej ei). By Lemma 6.10 this is inxαi
Z

(0)
0 and also inxαj

Z
(0)
0 , and

so it is 0. As for (R2) againσ(ei)xβ is a multiple ofxαi
. Now σjxαi

= xαi+αj
− mxαi

.
Lemma 6.10 gives

σ(fi)(xαi+αj
− mxαi

) = xαi

(
l−1(m + l−1)m − (

l2 + ml−1 − 1
)
m

) = mxαi
.

Now scaling to getσ(ei) gives the result. We have shown that Theorem 6.1 holds.�
We now show how to construct irreducible representations ofB which haveI2 in the

kernel.

Lemma 6.11. For each nodei of M , we haveσ(Z
(0)
i )xαi

= xαi
Z

(0)
0 .

Proof. For j andi adjacent nodes, the following computation showsσiσjxαi
= xαj

.

σiσjxαi
= σi(xαi+αj

− mxαi
) = xαj

+ l−1Ti,αi+αj
xαi

− ml−1xαi

= xαj
+ l−1xαi

m − ml−1xαi
= xαj

.

By induction on the length of a path fromi to k in M , this gives

σ
(
ŵik

)
xαi

= xαk
. (43)

Therefore, forj andk distinct non-adjacent nodes ofM ,

x−1σ
(
ŵki ĵ ŵikei

)
xαi

= σ
(
ŵki ĵ

)
xαk

= σ
(
ŵki

)
σjxαk

= σ
(
ŵki

)
xαk

hαk,j = xαi
hαk,j .

As σ(Z
(0)
i ) is generated by elements of the formσ(ŵki ĵ ŵikei), it follows that

σ
(
Z

(0)
i

)
xαi

⊆ xαi
Z

(0)
0 .

Note it follows from Lemma 6.10 thatx−1σ(ei)xαi
= xαi

.
As for the converse, this follows from Lemma 3.8(ii), which implies thatZ

(0)
0 is gener-

ated byhαk,i , for i �∼ k, i �= k. (For, by definition,Z(0)
0 is generated bŷC modI2.) �

Supposeθ is any representation ofZ0, acting on a vector spaceU over K , where

K = Q(r), or an algebraic extension thereof. Then we can form a representation ofB on
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the vector spaceV ⊗Z0 U overK(l) which is the direct sum of vector spacesxβU where
each is a vector space isomorphic toU . Let V be the representation space of Theorem
For eachi define an action ofσi on V ⊗Z0 U by letting elements ofZ0 act directly onU .
In particular,σixαi

u = l−1xαi
u; if (αi, β) = 0, thenσixβu = xβθ(hβ,i)u+ l−1xαi

θ(Ti,β)u;
for (αi, β) = 1 we haveσi(xβu) = xβ−αi

u + l−1xαi
θ(Ti,β)u and if (αi, β) = −1 we have

σixβu = xβ+βi
u − mxβu + l−1xαi

θ(Ti,β)u. This is a representation by Theorem 6.1. D
note itΓθ .

Lemma 6.12. If θ is an irreducible representation ofZ(0)
0 , then the representationΓθ is

also irreducible. For inequivalent representationsθ , θ ′, the resulting representationsΓθ

andΓθ ′ are also inequivalent.

Proof. SupposeV1 is a proper non-trivial invariant subspace ofV ⊗Z0 U . We show first
thatσ(fi)V1 = 0 for all nodesi of M . By Lemma 6.10,σ(fi)V ⊗Z0 U is in xαi

θ(Z
(0)
0 )U

which is in xαi
U . This means thatσ(fi)V1 is in xαi

U . Suppose there is a nodei with
σ(fi)V1 non-zero. This means there is a non-zero element ofu ∈ U such thatxαi

u ∈ V1.
In Lemma 6.11, we have seen thatZ

(0)
i xαi

= xαi
Z

(0)
0 . Hence

xαi
θ(Z

(0)
0 )u = Z

(0)
i xαi

⊆ V1.

But θ is irreducible and so all ofxαi
U is contained inV1.

By Lemma 6.11,xαk
U is inV1 for all k. We show by induction on the height of a positi

root ht(β) thatxβU is in V1. Assume ht(β) � 2. Choose a nodej with β = rj (β − αj ).
By induction,xβ−αj

U is in V1. But for eachu ∈ U , the vectorσjxβ−αj
u is a sum ofxβu

and vectors already known to be inV1 and soxβU is in V1. But this means all ofV ⊗Z0 U

is in V1, contradicting thatV1 is proper. This showsσ(fi)V1 = 0 for each nodei.
As V1 is invariant, its imageσ(ŵβ,j fj ŵβ,j

−1)V1 under a conjugate ofσ(fi) is also
trivial. We will derive from this thatV1 is 0. To this end, choose an order onΦ+ that is
consistent with height. For eachβ choose a nodej (β) in the support ofβ. Notice that
Lemma 6.10 shows that the image ofσ(fi) is in xαi

Z
(0)
0 . Let L be the matrix whose row

and columns are indexed byΦ+ in the fixed order and whoseβ,γ entry is the coefficien
of xβ in σ(ŵβ,j (β)fj (β)ŵβ,j (β)

−1
)xγ . This means the entries are elements ofθ(Z

(0)
0 ). As

eachσ(ŵβ,j (β)fj (β)ŵβ,j (β)
−1

)V1 = 0, we haveLV1 = 0.
Observe thatL can be viewed as a matrix with entries inK[l−1] by interpreting the

entries fromθ(Z
(0)
0 ) as submatrices overK[l−1]. We claim thatL is non-singular. By the

Lawrence–Krammer action rules, theβ,γ entry of L mod l−1 is readily seen to be th
coefficient ofxαj(β)

in σ(fj (β)ŵβ,j (β)
−1

)xγ . If β = γ , then this coefficient is equal to−1
modulo l−1, and if β is less thanγ in the given order, then there is no summandxαj(β)

present in the expansion ofσ(ŵβ,j (β)
−1

)xγ and so theβ,γ coefficient ofL is 0. This
meansL modulol−1 is lower-triangular with−1 on the diagonal, whence non-singular

Therefore, the equalityLV1 = 0 impliesV1 = 0. We conclude that there is no invaria
subspace and the representation is irreducible.

Finally, we argue that inequivalentθ lead to inequivalentΓθ . To this end we conside

the trace of each element̂wki ẑŵikei of Zi in Γθ , wherez is in Wk⊥ . By Lemma 6.10, the
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only contributions to the trace occur for vectors inxαθ(Z0), and, in view of Lemma 6.11
this contribution ism−1(l−1 +m− l−1) tr(θ(d−1

αk
ẑdαk

)). Sinced−1
αk

ẑdαk
, for k a node ofM

andz ∈ Wk⊥ , spanZ0 overK(l), these values uniquely determineθ . �
With these results in hand we are now ready to show that the dimension ofI1/I2 is at

least the dimension we need for Theorem 1.2.

Proof of Theorem 1.2. In Theorem 6.12 we have constructed irreducible representa
Γθ of B/I2 of dimension|Φ+|dimθ for any irreducible representationθ of Z0. SinceI1

is not in the kernel of these representations, they are irreducible representations oI1/I2.
Moreover,Z0, being a Hecke algebra overQ(l,m) of spherical type, is semi-simple, s
summing the squares of the dimensions of the irreducibles ofZ0 gives dim(Z0). Hence
the dimension ofI1/I2 is at least|Φ+|2 dim(Z0). By Theorem 5.6, this is also an upp
bound for the dimension, whence equality. The semisimplicity follows asB/I1, being the
Hecke algebra of typeM , is semisimple, and the sum of the squares of the irreduc
representations ofI1/I2 is the dimension ofI1/I2. �

To end this section, we observe that the usual Lawrence–Krammer representatio
representationΓθ , whereθ is the linear character ofZ0 determined byθ(hβ,i) = r−1 for
all pairs(β, i) ∈ Φ+ × M with (αi, β) = 0.

7. Consequences and conjectures

This section gives some consequences of the main results of the previous sect
well as some of our ideas about the general structure of BMW algebras.

7.1. Global structure of BMW algebras

Indications for the validity of our theorems were first found by experimental comp
tions in GBNP [6]. However, the sheer size of the algebras involved makes the com
tions difficult. For instance, the dimension ofI1/I2 in B(E8) is equal to 41 803 776 000.

Nevertheless, some experimenting withB(D4) and knowledge of the classical BMW
algebraB(An) lead us to conjecture that, ifJ is a coclique ofM of sizei > 1, thenIJ is
an ideal properly contained inIi−1.

If J and K are conjugate by an elementw ∈ W , then as we have seen in Propo
tion 4.2(ii), the idealsIJ andIK coincide. Computations inB of type D4 show that for
J andK of size 2 but in distinct orbits, we find distinct idealsIJ = BeJ B, IK = BeKB.
Also the pattern that, for each cocliqueJ of size i, we haveIJ /Ii+1 = BeJ B/Ii+1 =
D̂J ZJ D̂J

op
/Ii+1 for a suitable setDJ of coset representatives of the stabilizer of{rj |

j ∈ J } in W and a subalgebraZJ of B isomorphic to a suitable subtypeCJ of M . Thus,

we expect that dim(IJ /Ii+1) is a multiple ofN2 by the order of a Coxeter group of some
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subtypeCJ of M , whereN is the length of theW -orbit of {rj | j ∈ J }. This would imply
that the dimension ofB be equal to

∑
J

N2
J

∣∣W(CJ )
∣∣.

HereJ runs over theW -equivalence classes of cocliques inM , including the empty set
with C∅ = M andN∅ = 1, so that the contribution forJ = ∅ equals|W |, the dimension o
B/I1, the Hecke algebra of typeM .

The conjecture holds forB(An). HereW is known to have a single orbit on cocliqu
in M of any given sizei ∈ {1, . . . , �n/2�}; for J = {1,3, . . . ,2i − 1}, the typeCJ is the
Coxeter type of the centralizer inW of {αj | j ∈ J }, that is,CJ = An−2i , and

dim(Ii/Ii+1) = N2
i (n + 1− 2i) with Ni =

(
n + 1

2,2, . . . ,2︸ ︷︷ ︸
i ×

)
.

These formulas also hold fori = 0 if we write I0 = B and N0 = 1. We then find
dim(B(An)) = ∑

i dim(Ii/Ii+1) = (2n + 1)(2n − 1)(2n − 3) · · ·1, which is known
from [17].

Our conjecture also holds forB(D4). In B(D4), there are three ideals of the formIJ

for J of size 2, namely forJ = {1,3}, {1,4}, {3,4}. Each quotientIJ /I3 has dimension
N2

J · 2, whereNJ = 6. ThusCJ is of type A1, rather than A1A1, the parabolic type of th
centralizer of two orthogonal roots. This means that a complication with respect to th
An occurs in that the typeCJ is not just the full type of the centralizer of{αj | j ∈ J } in
W . Similarly,N{1,2,3} = 3, C{1,2,3} = ∅, andI3 = I{1,3,4} has dimensionN2{1,2,3} · 1 = 9. In
conclusion,

dim
(
B(D4)

) = |W | + N2
1

∣∣W (
A3

1

)∣∣ + 3× N2{1,3}
∣∣W(A1)

∣∣ + N2{1,3,4}
∣∣W(∅)

∣∣
= 192+ 122 · 8+ 3 · 62 · 2+ 32 = 1569.

The shrink ofCJ for J of size 2 extends to all types Dn for n � 4. In B(Dn) (n � 5),
there are two conjugacy classes, one of which has representative{n − 1, n}. In this case,
or rather, in any case whereJ contains these two end nodes, the representation ofB(Dn)

on IJ factors through a representation ofB(An−1). We prove this as follows. To begin
we can takeJ = {n − 1, n}. We claim thatgn acts precisely asgn−1. First of all gneJ =
l−1eJ = gn−1eJ . We proceed to showgnûeJ = gn−1ûeJ by induction on the length o
u ∈ W{1,...,n−1}. Without loss of generality, we may assumeu ∈ Dn⊥,n⊥ (observe thatn⊥ ∩
{1, . . . , n − 1} = J⊥ ∪ {n − 1} in this case, so

ĝnaubeJ = âĝnûeJ b̂

for a, b ∈ n⊥ ∩ {1, . . . , n}). But then, by known properties of the Coxeter group, we h

eitherû = gn−2 or û = gn−2gn−1gn−3gn−2. As all indices are in{n−3, . . . , n}, the identity
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gnûeJ = gn−1ûeJ can be verified inB(D4) (after specialization ton = 4), where it is
easily seen to hold. So in all cases,gn acts exactly likegn−1, proving that theB(Dn)

representation onIJ factors through the quotient obtained by identifyinggn andgn−1, and
so through a BMW algebra of typeB(An−1). On the basis of observations like these,
conjecture that the dimension ofB(Dn) is equal to(2n + 1)(2n − 1)!! − (2n−1 + 1)n!

7.2. Parabolic subalgebras and restrictions

Let J be a set of nodes ofM . We will discussBJ , the subalgebra ofB generated by al
gj with j ∈ J . Clearly, there is a surjective homomorphism fromB(J ), the BMW algebra
of type M|J onto BJ . We conjecture however, at least forM of spherical type, that thi
map is an isomorphism. It is an easy consequence of Theorem 1.2 that this assertio
moduloI2, in the sense thatBJ /(I2 ∩ BJ ) is isomorphic to the quotient ofB(J ) by its
idealI2.

The restriction of the generalized Lawrence–Krammer representation forB on V over
Z0 to BJ is easy to analyze. Fora : M \ J → N, put Φ+

J,a = {β ∈ Φ+ | Cβ,k = ak for k ∈
M \ J } and letVJ,a be the subspace ofV generated byxβ with β ∈ Φ+

J,a . Then it is easily
seen from the Lawrence–Krammer action rules thatVJ,0 is aBJ -invariant subspace ofV ,
which is isomorphic to the Lawrence–Krammer representation ofB(J ), up to an extension
of scalars. Moreover, the subspaceVJ,a + VJ,0 is BJ -invariant for any choice ofa. In
view of Lemma 6.10, the action ofBJ on the quotient(VJ,a + VJ,0)/VJ,0 factors through
the Hecke algebraBJ /(I1 ∩ BJ ). We expect that the particular representations forBJ on
(VJ,a + VJ,0)/VJ,0 can be found by combinatorics of the root system, similar to the
of type An, discussed in [17].

To see how this works in a specific example we considerB(Dn) with n � 5 andJ =
{2,3, . . . , n}, so we will consider the action ofBJ onVJ,i for i = 0,1. HereΦ+

J,0 is the set
of rootsεi ± εj for 2� i � j � n andΦ+

J,1 is the set of rootsε1 ± εj for 2� j � n, where
(εi)1�i�n is an orthonormal basis of Euclideann-space.BJ maps the span of{xβ | β ∈
Φ+

J,0}, which isVJ,0, to itself by the construction forB(J ) ∼= B(Dn−1). Also the Hecke
algebraZ0 for B(Dn−1), which is 〈g2〉 × 〈g4, . . . , gn〉, can be embedded into the Hec
algebraZ0 for B(Dn), which is 〈g1〉 × 〈g3, g4, . . . , gn〉, by mappingg2 to g1 and fixing
〈g4, . . . , gn〉. Furthermore, ifθres is θ restricted toZ0 for BJ with this embedding, the
resulting representation ofB(Dn−1) is Γθres. As mentioned above, the action ofB(Dn−1)

on the quotient vector space(VJ,1 + VJ,0)/VJ,0 factors through the Hecke algebra of ty
Dn−1. The representation then breaks into these two actions with the action on the q
being a Hecke algebra action. The spanVJ,1 of the xβ for β ∈ Φ+

J,1, is not invariant but
using semisimplicity there is an invariant subspace giving this representation. This g
branching rule fromB(Dn) to B(Dn−1).

7.3. The Brauer algebra

Let E be the subringQ(x)[l±] of Q(l, x). We conjecture that there is a subalgebraB(0)

of B defined overE containing a spanning set ofB with the property that after transitio
modulo(l −1) we obtain a monomial algebra whose basis can be described in terms

root system of typeM . ForB of type An it is the well-known Brauer algebra, introduced
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in [4]. We expect the conjectured basis
⋃

J D̂J ŴCJ
D̂J

op
of B discussed in Section 7.1

to be a monomial basis modE for the Brauer algebra. Its elements should corresp
to pictures, which consist of triples consisting of two sets of orthogonal roots, botW -
conjugate to{αj | j ∈ J }, and an element ofW(CJ ), a Coxeter group in a quotient of th
centralizer ofJ in W . This correspondence is well known for type An. The basis ofI1/I2
found in Theorem 1.2 can be used to establish the validity of this conjecture forB/I2.

7.4. Conclusion

For Coxeter diagrams that are not simply laced, we expect a natural BMW algebra
ist as well. For type Bn, an approach is given in [12]. More generally, by means of a fold
φ :M → M ′ of Coxeter diagrams, a BMW algebra of spherical typeM ′ could be con-
structed as the subalgebra ofB(M) generated by suitable products ofgi for gi ∈ φ−1(a),
one for eacha ∈ M ′, in much the same way the Artin group of typeM ′ is embedded into
the one of typeM , see [8]. However, further research is needed to see if this defin
is independent (up to isomorphism) of the choice ofφ for fixed M ′, as well as to find an
intrinsic definition of this algebra.

The BMW algebras of type An play a role in algebraic topology, in particular, in the th
ory of knots. The versions of spherical type ADE are related to the topology of the qu
space byW of the complement of the union of all reflection hyperplanes in the comp
fied space of the reflection representation of(W,R). After all, by [5], the Artin groupA is
the fundamental group of this space. A direct relationship, for instance, a definition
BMW algebra in terms of this topology, would be of interest.

Brauer algebras play a role in tensor categories for the representations of classi
groups, and the corresponding BMW algebras seem to play a similar role for the r
quantum groups. It is conceivable that the new BMW algebras constructed here
similar role for the tensor categories of representations of quantum groups for the
types.
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