L

View metadata, citation and similar papers at_core.ac.uk brought to you byf\‘: CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com
—e s
Electronic Notes in

i = : ‘ SCie nce Di rect Theoretical Computer

Science

ELSEVIER Electronic Notes in Theoretical Computer Science 178 (2007) 89-99
www.elsevier.com/locate/entcs

Visualization of Spatial Data Structures on
Different Levels of Abstraction

Jussi Nikander'® Ari Korhonen?®

Department of Computer Science and Engineering
Helsinki University of Technology
Espoo, Finland

Eiri Valanto® Kirsi Virrantaus®

Department of Surveying
Helsinki University of Technology
Espoo, Finland

Abstract

Spatial data structures are used to manipulate location data. The visualization of such structures faces
many challenges that are not relevant in the visualization of one-dimensional data. The visualized data
can be represented using several different types of visual metaphors. These metaphors can be divided into
several different levels of abstraction depending on the purpose of the visualization. This paper proposes
a division of data structure visualization into four levels of abstraction, and shows how these abstractions
can be taken into account in the visualization of spatial data structures.

Keywords: Visualization, spatial data algorithms, abstraction

1 Introduction

Spatial data structures are structures that store spatial data. Spatial is a term,
which is used to refer to located data, for objects positioned in any space [5]. Spatial
data is used in many areas of computer science, like Geographic Information Systems
(GIS), robotics, computer graphics, and virtual reality. Algorithms that manipulate
spatial structures are called Spatial Data Algorithms (SDA).

Email: Jussi.Nikander@tkk.fi
Email: Ari.Korhonen@tkk.fi
Email: Eiri.Valanto@tkk.fi
Email: Kirsi.Virrantaus@tkk.fi

=W N =

ot

This work was supported by the Academy of Finland under grant number 210947

1571-0661 © 2007 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2007.01.029

https://core.ac.uk/display/82506803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Jussi.Nikander@tkk.fi
file:Ari.Korhonen@tkk.fi
mailto:Eiri.Valanto@tkk.fi
mailto:Kirsi.Virrantaus@tkk.fi
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

90 J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99

Spatial Data Structures are based on regular non-spatial data structures like
arrays, lists and tree structures, as well as the algorithms that manipulate these
fundamental structures. However, much of the complexity of spatial data struc-
tures comes from the multidimensionality of the data. Two- and three dimensional
variations of efficient algorithms make algorithm development more challenging. In
the GIS literature there is a core set of fundamental as well as advanced spatial
algorithms and data structures. However, no comprehensive textbook exists on the
topic.

Spatial data and algorithms for manipulating located data are an integral part
of geoinformatics, a branch of science where information technology is applied to
cartography and geosciences. Geoinformatics is closely related to cartography, and
therefore illustrations, such as maps and other diagrams, are often used. For people
in this field of study, graphics are a familiar and natural way of illustrating the
work.

Software visualization (SV) is a branch of software engineering that aims to
use graphics and animation to illustrate the different aspects of software [10]. It
is typically divided into two subdivisions: program visualization and algorithm
visualization [8]. In both subdivisions it is important to be able to differentiate
between the various levels of abstraction in the visualization. For example, a linked
list implemented using two arrays can be visualized by showing the arrays and their
contents. Such a visualization shows the implementation-level details of the list,
but makes it hard to grasp its logical structure, which can easily be seen when the
list is visualized as nodes connected by references. In this paper we will concentrate
on the algorithm visualization (AV) side of SV.

One of the main uses for SV is in pedagogy, and numerous SV systems have
been developed for teaching. For examples, see [3,6,9]. In pedagogy, however,
visualization does not have any intrinsic value. As noted by Hundhausen [4], the
learners must be actively involved in activities where algorithm visualization is used
in order to get better learning results.

The graphic nature of spatial data algorithms and its applications makes SV
a natural tool for teaching them. The data handled by spatial algorithms is mul-
tidimensional, and therefore the natural visualization for input, output and the
solution process is a map or a diagram. Without using graphics, it is much harder
to explain spatial algorithms or data structures. Thus, we are currently extending
the TRAKLA?2 visualization system [6] to include SDA. We are focusing on the
structures and algorithms required in geoinformatics, a branch of science where in-
formation technology is applied to cartography and geosciences. We are unaware of
any other work that applies SV techniques to spatial data structures.

In this paper, we will propose a division of algorithm visualization into different
levels of abstraction and describe how these levels can be mapped into the visu-
alization of data structures in general. We will extend the category fidelity and
completeness from the taxonomy of Price et al [8] in order to give a better insight
into the various needs of pedagogical systems that “take liberties to provide sim-
pler, easier-to-understand visual explanations”. The idea is to name four different

J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99 91

levels of “visual metaphors that present the behavior of the underlying virtual ma-
chine”. We will apply these levels of abstraction in the visualization of SDA aimed
at teaching the topic to students of geoinformatics.

The rest of the paper is organized as follows. In Section 2, we introduce our
model of different levels of abstraction in visualizing data structures. In Section 3,
we discuss how this model can be applied to the visualization of spatial data struc-
tures. Finally, Section 4 discusses how the different levels of visualizations can be
used in teaching SDA.

2 Model for Data Structure Abstractions

A data structure (DS) can be defined as a collection of variables, possibly of several
different data types, connected in various ways. An abstract data type (ADT) is
a set of (abstract) items with a collection of operations defined on them. Separate
definitions for the logical (ADT) world and for the physical (DS) world are essential
for many reasons. First, these distinguish the design from the implementation.
The definition of an ADT does not specify how the data type is implemented and
implementation level details are hidden from the end user of the ADT. This hiding
of the implementation details is known as encapsulation. Second, the concept of an
ADT is an important principle used for managing complexity through abstraction.
The irrelevant implementation details can be ignored in a safe way. This is also
the way humans deal with complexity. We use metaphors to assign a label to
an assembly of concepts and then manipulate the label in place of the assembly.
Third, reusability is one of the key principles in software engineering that can be
promoted by designing general purpose data structures suitable for many tasks, i.e.,
by implementing data types suited for several algorithms.

In software visualization, we are interested in illustrating the organization of
the related data items whether they are abstract or not. The same data items
can be represented in several levels of abstraction depending on the purpose of the
visualization. However, this need for granularity is not only biased to these two
extremes (DS and ADT). For example, a binary heap is a priority queue ADT that
is implemented as an array. Between these two levels of abstractions, it has a well
known representation in which a binary heap can be visualized as a binary tree.

In the following, we will fine tune the concept of data type abstractions in or-
der to create a model that gives a deeper insight into the world of data structure
implementations and the conventional visual notations used in text books. We will
claim that only a small number of basic structures are required in order to imple-
ment any data structure. Furthermore, basic structures all have widely-accepted
visualizations, or canonical views. These views can, in turn, be used to illustrate
any data structure defined using these basic structures.

2.1 Simple example

Let us start with an example illustrated in Figure 1(a), which shows data structures
visualized on four different levels of abstraction. There are two example structures

92 J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99

Red-black —tree
Binary Heap

M= Quene —

1= - = DB T N N o PN
/ Applications * / | ‘ F\)—t{ ;HH: }—P':)
=). =] Array List
g Representations .~~~ ™. ‘ BIx]]
o Nl ~ — —
g W _ ()
‘é . E E R [
{a — — —
S Data Structures [2[3[5][7]8]9] e () () \(Y \\
- : N/ Szl A o
o '[VA .
L N ™
= Y N Y 'S k@
e - . L S A S
Basic Structures | [[| |
Tree Graph

(a) Levels of abstraction in data structure visu- (b) Canonical views of the basic structures
alization

Fig. 1. Different visualizations

shown on the figure, a binary heap on the left and a red-black-tree on the right. We
will first focus on the visualization of the binary heap.

A binary heap is typically implemented using an array. The canonical view of an
array is shown on the lowest level in the figure. An array can be used to implement
a binary heap by imposing a set of semantics to it: the child nodes of the node 7 are
in positions 2¢ and 2i4 1, and for each node the heap property “the parent is smaller
than or equal to the children” holds. An instance of a binary heap is shown on the
second-lowest level in Figure 1(a) (data structure view). On this level, the heap is
visualized as an array, and therefore the visualization accurately reflects how the
data structure is implemented. However, in the array visualization, it is quite hard
to see whether the heap property holds. The heap property is easier to see when the
data structure is shown using the binary tree representation (representation view).
Finally, a binary heap can be utilized, for example, in a network router simulation
(application view). Different packets can have different priorities, and the priority
queue could be abstracted into a black box where the internal structure is not shown
at all. The packets go in from the right, and forwarded packets come out from the
left. If packets are dropped, they are shown below the visualization.

2.2 Basic structure level

In general, a basic structure is a generic data type (a skeleton) that is used to imple-
ment a particular data structure. For example, arrays, linked lists, trees, and graphs
are basic structures. These are archetypes, reusable basic building blocks for creat-
ing structures, and all the data structures used in text books can be implemented
in terms of these archetypes. For example, an adjacency list is a composition of an
array and a number of linked lists.

The canonical views of the basic structures are commonly accepted and used, for
example, in most text books. They are simple and easily recognized visualizations,
which anyone familiar with data structures will immediately identify as a certain
type of structure. Examples of the canonical views can be seen in Figure 1(b).

The canonical view of an array is a set of boxes arranged side-by-side, with each

J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99 93

box holding a single data item. Similarly, the canonical view of a list is a group
of nodes arranged in a line, where each node has a reference (line with possibly an
arrow at the end) to its successor. The first node of the list is the leftmost one. The
canonical view of a (rooted) tree is a number of nodes arranged to levels in a top-
down-fashion, where each node has a reference to its children, and all nodes that are
from a given distance from the root node are on the same level. The canonical view
of a graph is a group of nodes, each of which has references drawn to its successors,
typically arranged using a visually pleasing and intelligible layout.

From the visualization point of view, Basic Structure Level is the lowest level of
abstraction that we are interested in presenting. This level contains the canonical
views that can be used to visualize any data structure defined using the basic
structures. Still, even these canonical views are abstractions. For example, an
array is a commonly used term in computer science to denote a contiguous block
of memory locations, where each memory location stores one fixed length, and
fixed-type variable. However, an array can also refer to a structure composed of a
(homogeneous) collection of variables, each variable identified by a particular index
number. Most programming languages do not directly support this latter form
of definition due to its abstract nature. Thus, there are possibly several different
implementations for arrays. However, the low-level abstraction behind each of them
is common for all of the implementations, and can be represented in a uniform way .

As we can see, basic structures do not have semantics. The definition of what
is an array does not dictate the data types nor the order of the items within. The
design and analysis of algorithms, however, require an organization of information
in such a way that the computing can be performed efficiently. Similarly, we need
to illustrate the actual data and other restrictions in order to come up with a
meaningful illustration. The fundamental idea behind basic structures is to reuse
them many times to represent several data structures all having different semantics.
For example, an array can be the basic building block for both hash table and binary
heap. Similarly, in visualization of these basic building blocks we can have a single
reusable representation for all data structures that utilize arrays. This makes it
possible to visualize any data structure with a handful of different representations.

2.3 Data Structure Level

At Data Structure Level we have data structures that are implementations for con-
ceptual models that encapsulate particular ADTs. This conceptual model defines
the basic structures used to implement the model, as well as the type constraints
that lay the foundation for the implementation. The corresponding data structure
is an implementation that defines also the operations needed to change the struc-
ture. For example, a red-black-tree is a data structure that has the basic structure
of binary tree, and implements an ADT called dictionary (operations search, insert,
and delete). An example tree is illustrated in Figure 1(a) (red nodes are shown with
double circles).

6 Of course, there are several ways to illustrate arrays, but the canonical visual notations commonly used
are all equal in such a way that a person can easily grasp the idea of an array from each of them.

94 J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99

On Data Structure Level, the data structures are visualized using the canon-
ical views defined in terms of the basic structures. Therefore the visualizations
accurately reflect the actual implementation of the data structure, and show all
(relevant) parts of the structure. In the visualization, we are most interested in the
layout and the question whether it satisfies the constraints of the data structure.
The concept of rotation in red-black trees, for example, can be expressed in terms
of changes in this layout (i.e., moving nodes and arcs between nodes). Of course,
the actual code can be illustrated as well, for example, as a pseudo-code.

On the data structure level the layout of the visualization can be modified in
order to give the viewer a visual hint of what kind of data structure is visualized,
or to show some additional information about the different parts of the structure.
For example, the nodes of a red-black tree are typically drawn either red or black.

2.4 Representation Level

A single data structure can often be represented in several ways. In our definition,
the Representation Level contains visualizations that do not neccessarily reflect the
actual implementation, but still show all the data stored in the structure. For
example, a binary heap can be represented as an array, which reflects its actual
implementation, or as a binary tree that better illustrates the logical structure of
the heap. Therefore, different representations form a level of abstraction where the
visualizations can be modified to hide the “physical” characteristics of the data
structure in order to make some implicit characteristics explicit. We call these
abstractions Representation level visualizations.

On representation level, the visual methaphor used to illustrate the data struc-
ture can be changed in order to bring out the desired characteristic of the structure
more clearly. For example, a red-black tree can be used to implement a B-tree [2],
and therefore it can be visualized as such as well. In Figure 1(a), a 2-3-tree represen-
tation is used for the red-black tree on Representation Level. Furthermore, on the
Representation Level, some visualizations no longer conform to any of the canon-
ical views illustrated in Figure 1(b). It should be noted, however, that any data
structure can be visualized using canonical views. Sometimes, however, customized
visualizations are better for grasping some important aspects of the structure.

Alternate visualizations are especially useful when the data stored in the struc-
ture is multidimensional. In the canonical views, there is only one dimension that
can be used for showing the relationships between the data elements: the visu-
alization of the data key values. If the elements are, for example, points in two
dimensionsional space, it is hard for the viewer to grasp the relationships among
the elements in one-dimensional visualization. If the points are drawn into two-
dimensional plane, however, it is more convenient to see the relationships (e.g.,
distance, direction) among different data points.

J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99 95

2.5 Application Level

The top level of abstraction is called Application Level. Visual metaphors, where
the information in the data structure is not fully visible, are considered to be on this
level. This is called application level since almost all applications that use graphics
to illustrate the data show only relevant data items instead of the whole dataset.
Typically only those applications that are used for software visualization can show
all the data.

Typically, on this level, we illustrate the data in domain specific ways that omit
most or all of the data structure’s details. For example, B-trees are often used
as database indexes or storage structures as illustrated by the database symbol in
Figure 1(a). This view hides all the details of the implementation Therefore, on the
Application Level, the data structure visualization is analogous to the definition of
an ADT. The interface is defined, but implementation is hidden.

2.6 Combined Levels

Software visualization techniques and tools can be utilized in many other disciplines
as well. Especially, there exist abstractions that have proved to be particularly im-
portant for many disciplines. The idea behind the categorization of these abstrac-
tions is that we can utilize the same components and concepts over and over again
and take advantage of the prior work done.

In addition, when visualization is used to illustrate a concept or a data structure,
it is often useful to have several visualizations that use different views on the same
data structure simultaneously. For example, by showing how a binary heap evolves
while new elements are added or removed in both array and binary tree visualization
simultaneously can help the viewer to see how the logical and physical structure of
the heap relate to each other.

Some application areas are intrinsically visual. For example, in GIS applica-
tions, the typical representation is a map. However, the underlying data structures
and their visual counterparts are basically the same as, for example, in software
visualization. Thus, we need to make a distinction between the application level vi-
sualization and the illustrations for the underlying data structures and algorithms.
However, no matter what kind of application we have in mind, it can be reduced to
those basic building blocks through the levels of abstraction, as we will see in the
next section.

3 Visualization of Spatial Data Algorithms

Spatial data algorithms process data which is naturally visualized as maps. In
this section, we show how the model from previous section is applied to SDA.
Specifically, we present a common geoinformatics problem, called map overlay, as
an example and describe how it can be visualized using several visualizations on
different abstraction levels.

On the application level, we typically illustrate the data in some form. In GIS

96 J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99

applications both source and result data sets can be visualized as maps of some
type. Thus, application level visualizations can give good overview of the problem,
particularly as specialists in geoscience and cartographic fields are used to handle
and understand maps. However, while visualizations in GIS applications give a
good illustration of the data, they omit all details of the data structures used.

The problem of combining two different maps to produce a new map with in-
formation from both maps’ domain is called map overlay. The interest often lies
in discovering areas where some properties coincide. For example squirrel habitat
areas could be combined to a vegetation layer to get a map presenting areas where
squirrels are found in coniferous forests. The description of map overlay as a combi-
nation of two map layers belongs to the highest abstraction level in our conceptual
framework (Figure 1(a)).

We have two maps presenting four urban municipalities in Helsinki metropolitan
area and postal code areas in the same region, respectively. Our problem is to find
which municipality each postal code area belongs to and to locate areas where postal
code areas cross municipality boundaries. Map overlay can provide a solution to
these questions. Figure 2(a) illustrates the source maps as well as the resulting
overlay.

In order to solve a problem with a computer, the problem has to be represented
formally in some way. Typically, mathematical presentations are used to store map
data. Such presentation also gives a view of the data that is independent of any
computerized data structure implementation. Even if a mathematical presentation
hides all the physical details of the data structure, it clearly shows logical connec-
tions between data elements, and therefore belongs to the representation level. In
geoinformatics, examples of mathematical presentations are Voronoi diagrams and
their dual, the Triangular Irregular Network (TIN) [7].

In GIS, data can be represented using two models: either vector or raster model.
In vector representation, data is presented as points, lines or polygon objects, which
have spatial location data associated to them. Polygons can be used to construct
polygon maps, lines can be used in graphs, and point sets can be structured into
TIN-models or Voronoi-diagrams. The advantage of TINs and Voronoi diagrams is
that discrete measured points make a structure that supports, for example, inter-
polation and visualization. A raster model utilizes a regular grid that divides the
represented area into equal sized cells. Each cell contains an associated value that
represents the values of the respective area.

The map overlay problem can be solved by applying the vector or raster model.
In our example, we use map overlay operation in vector format. In the vector
format, the areas to be overlayed are typically represented as polygons. Polygon
is an abstraction of a group of points and the references connecting them, and a
polygon map visualization of the data belongs to the Representation Level. Thus, we
have two polygon maps which are overlayed by intersecting the polygon boundaries.
The map overlay first uses some method, for example the line-sweep algorithm,
to locate intersecting lines. The intersection points are then used to create new
polygons, which form the resulting map. Figure 2(a) iv shows a detail on Helsinki

J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99 97

ex[Coordinatesfincident edg

-~ _ora¥
e
e
27 1
E7 n I —

H
3|

2 [l

- I
1

I 11

i i iii) iv

(a) Map overlay problem i) postal code areas, ii) munic-(b) DCEL structure presentation of munic-
ipality boundary source maps iii) map overlay result, iv)lpallty boundaries

detail where municipality boundary divides a postal code

area into two polygons

Fig. 2. DCEL visualizations

boundary where the map overlay divides a postal code are into two polygons. The
rectangle in Figure 2(a) iii highlights the location of the detail.

To achieve an efficient solution on a computer, a suitable data structure is needed
for storing the mathematical model. Typically, there are several possible data struc-
tures that can be used to store each model. The model itself defines an abstract data
type of sorts: it tells how the data can be manipulated and how it is structured, but
does not define how the data structure is to be implemented. The data structure
used to implement a mathematical model therefore has a well-established set of
semantics and thus is a conceptual model that encapsulates a particular ADT. For
map overlay, one possible data structure is Doubly Connected Edge List (DCEL) [1].

The DCEL consists of vertices, polygon faces and half-edges that connect ver-
tices. Each vertex has a location and connection to a edge that originates at the
vertex. Every polygon face has information of a half-edge on its outer boundary
and a list containing each hole in the face. Each edge is divided to two half-edges.
A half-edge has information of its origin vertex and twin. Destination is not needed
because it is the same vertex as twin’s origin. In addition, a next and a previous
half-edge is connected to each half-edge as well as the incident polygon face.

Figure 2(b) shows the simplified municipality boundaries as DCELs. On the
left is a visualization of a (partial)structure shown as a graph and on the right as
a group of arrays. For a DCEL structure a graph visualization can be considered a
Representation Level visualization, since it hides a lot of the relations between the
data items. For example, each half-edge knows its successor and predecessor edges,
but these edges are typically not explicitly shown in a graph visualization. Since a
DCEL structure contains spatial data, the best graph visualization for showing its
logical structure takes the coordinates of the data items into account. Therefore,
the different points and half-edges are drawn in their correct coordinates.

Using DCEL map overlay is solved by first combining both map layer’s DCEL
structures into an invalid DCEL. This is then examined and modified to form a
valid structure.

Finally, the basic structures used for the implemntation of DCEL are visualized
on the right in Figure 2(b). A DCEL contains three types objects: vertices, faces

98 J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99

and half-edges. Therefore, DCEL implementation requires at least three structures
for storing the data. A natural way to build a DCEL is by using three arrays contain-
ing the corresponding information. On the Data Structure Level, basic canonical
representations used to visualize spatial data structures are identical to canonical
views of any other data structure.

4 Discussion

In this paper, we have described how data structure visualizations can be divided
into four distinct levels of abstraction, how these levels differ from each other, and
how they can be applied to visualization of different kinds of data structures. Espe-
cially, we have shown how visualization on different levels can be applied to spatial
data structures and algorithms.

Our example, map overlay, was from the field of geoinformatics which, as a
discipline, is very visual in nature. Most geoinformatics problems involve graphical
views in the description, solution, and the solution process. For the people in the
field, visualizations are a natural and extremely common way for processing and
representing data. Therefore visualizations are also a very good tool for teaching
aspects of geoinformatics, including SDA.

Since spatial data structures contain two-dimensional data, traditional algorithm
visualization techniques can be sub-par. Traditionally, the focus of the visualization
has been to show the composition of the data structures. A graph visualization, for
example, shows the vertices and edges in a visually appealing fashion, and a tree
visualization is optimized to show the relations between tree nodes. When the data
stored in the structure is one-dimensional (like numbers or strings), this also shows
the relation between the data elements.

When the data is two-dimensional, however, the relations between different parts
of the structure do not typically give a comprehensive view of the relations between
data items. DCEL, for example, is typically used to represent vector maps in geoin-
formatics. Depending on the level of abstraction used and the type of visualization
selected, the information one can gain from a DCEL varies a lot. When viewed
as arrays, the visualization is good for understanding the minute details of the im-
plementation, but does not give a very good overview of the data it represents. If
viewed as a graph such as in Figure 2(b), the visualization gives a good view of the
data being represented, but omits many of the implementation-level details.

In order to effectively visualize some SDAs, we clearly need several visualiza-
tions simultaneously. One visualization to show the inner composition of the data
structure in question, and another to give an easily understood view of the data
being represented. This effectively expands the multiple views category of [8], which
measures the degree of multiple synchronized views the visualization can provide.
The taxonomy discusses views of different granularity. We, on the other hand, re-
quire views that use different graphical metaphors to show the data and thus make
different aspects of the logical structure explicit.

J. Nikander et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 89-99 99

References

[1] de Berg, M., M. V. Kreveld, M. Overmars and O. Schwarzkopf, “Computational Geometry: Algorithms
and Applications,” Springer, 2000 pp. 29-33.

[2] Guibas, L. J. and R. Sedgewick, A dichromatic framework for balanced trees, in: Proceedings of the 19th
Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1978, pp. 8-21.

[3] Hundhausen, C. and S. A. Douglas, SALSA and ALVIS: A language and system for constructing and
presenting low fidelity algorithm visualizations, in: Visual Languages, 2000, pp. 67—68.
URL http://citeseer.ist.psu.edu/hundhausen0Osalsa.html

[4] Hundhausen, C. D., S. A. Douglas and J. T. Stasko, A meta-study of algorithm wvisualization
effectiveness, Journal of Visual Languages & Computing 13 (2002), pp. 259-290.

[5] Laurini, R. and D. Thompson, “Fundamentals of spatial information systems,” Academic Press, 1992.

[6] Malmi, L., V. Karavirta, A. Korhonen, J. Nikander, O. Seppald and P. Silvasti, Visual algorithm
stmulation ezxercise system with automatic assessment: TRAKLAZ2, Informatics in Education 3 (2004),
pp. 267 — 288.

[7] Okabe, A., B. Boots, K. Sugihara and S. N. Chiu, “Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams,” John Wiley & Sons, 2000.

[8] Price, B. A., R. M. Baecker and I. S. Small, A principled tazonomy of software visualization, Journal
of Visual Languages and Computing 4 (1993), pp. 211-266.

[9] RoBling, G., M. Schiiler and B. Freisleben, The ANIMAL algorithm animation tool, in: Proceedings
of the 5th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science
Education, ITiCSE’00 (2000), pp. 37—40.

[10] Stasko, J. T., J. B. Domingue, M. H. Brown and B. A. Price, “Software Visualization: Programming
as a Multimedia Experience,” MIT Press, Cambridge, MA, 1998.

http://citeseer.ist.psu.edu/hundhausen00salsa.html

	Introduction
	Model for Data Structure Abstractions
	Simple example
	Basic structure level
	Data Structure Level
	Representation Level
	Application Level
	Combined Levels

	Visualization of Spatial Data Algorithms
	Discussion
	References

