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Direct correlation of molecular conformation with local structure is critical to studies of protein– and peptide–
membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or
disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, follow-
ing folding dynamics, and characterizing reactions.While tremendous advances have beenmade in improving
the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of
scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measure-
ment probe that researchers have been able to obtain sub-diffraction limit IR spectra. This reviewwill examine
the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of mo-
lecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these
platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue
entitled: FTIR in membrane proteins and peptide studies.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in high-resolution correlated imaging tools have
provided tremendous new insights into protein structure, dynamics,
and interactions, often in real-time, and under physiologically rele-
vant conditions. These efforts have gained significant impetus through
the introduction, development, and now optimization of super-
resolution optical techniques such as STORM, STED, PALM, FIONA,
among others [1–13]. These approaches build on innovative strategies
related to fluorophore design, illumination strategies, and post-
acquisition image analysis and processing, as in the case of SOFI and
fluctuation analysis [14–18]. The net result of these advances has
embrane proteins and peptide
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been a suite of platforms that enable optical resolution well beyond
the conventional far-field diffraction limit and depending on the tech-
nique can achieve localization precision to within a few nanometers.

However, there remain numerous key challenges and caveats
underscoring these admittedly powerful strategies, including selec-
tion of a fluorophorewith appropriate excitation and emission charac-
teristics, photobleaching and other photophysical effects, and in the
case of extrinsic labeling, considerations of the effect of site mutation
on native conformation, interactions, and dynamics. Indeed, the addi-
tion of an extrinsic fluorophore has been shown to dramatically influ-
ence the spatial distribution of membrane-associated proteins [19].
Such effects have certainly driven interest in the use of combinatorial
tools and techniques that enable simultaneous acquisition of multi-
parameter data, ideally on the same length scale. These include coupled
and correlated optical-scanning probe microscopy (SPM) [20–32].
These approaches allow one to map structural changes with specific
molecular phenomena, such as domain localization and restructuring
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[33], while we and others used this strategy to follow enzymatic pro-
cesses at membrane surfaces [20,21,34,35]. Fluorescence-based ap-
proaches have certainly been used successfully to interrogate changes
in molecular conformation, lipid-induced secondary structure changes
and/or alterations to lipid structure or packing. However, these are
largely indirect strategies requiring careful provisioning of appropriate
controls and consideration of many of the key points described above.
This is particularly true in the case of using extrinsic dyes to report on
local changes to domain structure or lipid structure and chemistry
where it has been shown that reliance on fluorescence alone can
lead to erroneous conclusions regarding lipid domain composition
and interactions [19]. Correlated fluorescence-SPM approaches are
particularly well-suited for examining protein aggregates and fibrils,
including membrane-induced nucleation and growth, often in the
context of diseases such as Parkinson's, and Alzheimer's. However,
often these approaches rely on binding of extrinsic dyes, such as
Congo Red or thiaflavin T, and changes in their emission characteris-
tics or photophysical behavior in order to provide insights into their
local environment and by extension, changes in the protein's sec-
ondary structure [36–40].

In contrast, infrared spectroscopy does not rely on an extrinsic label
and can provide direct insights into local secondary structure. Its po-
tential for tracking protein and peptide conformation and aggrega-
tion is well known [41–44], with recent advances in two-dimensional
and ultra-fast approaches heralding a new generation of IR tools for
biophysicists [45–52]. A particularly useful technique for examining
peptide–membrane interactions, lipid dynamics, and membrane pro-
tein conformation is attenuated total reflection infrared spectroscopy
(ATR-IR) [53,54]. Studies of membrane-associated [55–58] and mem-
branolytic peptides [59–64], along with fusion peptides and trans-
membrane proteins [65–67] clearly illustrate the power of this in situ
approach. Polarized ATR-IR has proven to be a powerful means of in-
vestigating, for instance, electric field-induced reorientation of lipid
headgroups [68], the role of lipid type on the conformation of trans-
membrane receptors [69,70], insulin fibril formation [71], protein as-
sociation with lipid bilayers [72], lipid bilayer formation [73,74],
protein orientation at solid surfaces [75], and peptide–lipid interactions
[76–83]. Related to this approach for characterizing protein–membrane
interactions are reflectance-absorbance strategies (IRRAS), including
polarizationmodulation (PM-IRRAS), as exemplified by the outstanding
work of the Mendelsohn and Lipkowski labs, among others [72,84–96].
Providing a two-dimensional map of spectral intensity, conventional
far-field FT-IR microscopy is a particularly powerful approach for pro-
viding spatially resolved spectra of surfaces, structures, and more re-
cently, tissues, tumors, and single cells [97–106]. With the advent of
focal-planedetection, stronger light sources, and innovative approaches
for post-acquisition data analysis and processing, significant strides
have been made to improve the spatial and temporal resolution, and
scope of application for IR microspectroscopy [106–112].

However, as in the case of conventional fluorescence microscopy,
far-field FT-IRmicroscopy remains diffraction-limited and it was argu-
ably with the introduction of scanned probe microscopy that the op-
portunity of acquiring super-resolved IR spectra arose. In scanning
probe microscopy (SPM), interactions between a raster-scanning
sharp tip and a surface of interest are used to generate interaction sur-
face maps with nanometer-scale resolution. The power of this tool lies
in its ability to acquire these images under a wide range of operating
conditions. Numerous reviews have detailed the capabilities of this
platform technique for examining biological samples and in particular
membrane dynamics and structures with near-molecular scale spatial
resolution [113–118]. There remains however a fundamental chal-
lenge with SPM-based imaging, namely that conclusions are inferred
from morphological or topographical features. It is conventionally
very difficult to use SPM to confirm specific molecular conformation,
especially in the case of protein–membrane interactions. In this case,
a protein may undergo subtle conformational changes upon insertion
in the membrane that may be critical to its function. SPM lacks the
ability to directly measure such conformational changes and can, ar-
guably, only resolve features that are topographically distinct. This
has led to a surge of interest in the development of hybrid SPM plat-
forms that integrate other spectroscopic and characterization ap-
proaches. These include the aforementioned optical spectroscopies
along with electrochemical and ion conductance measurement mo-
dalities [30,119–121].

Given the relative ease with which the SPM can be integrated with
complementary techniques, it would seem reasonable to consider a
hybrid of vibrational spectroscopy and SPM. Such a systemwould pro-
vide a compelling approach for tracking, simultaneously, conforma-
tional changes, not resolvable by in situ SPM, with topographical
details that are not readily identified by conventional diffraction-
limited vibrational spectroscopy. It will facilitate investigations into
the relationship between physical shape and size and functional activ-
ity of integral membrane and membrane-associated protein com-
plexes. Coupling these two techniques so that they can be applied
simultaneously could in principle allow one to investigate [1] how
protein assembly at the surface of a cell-mimicking lipid bilayer is fa-
cilitated by changes in molecular conformation; [2] how changes in
lipid membrane surface topography, induced by pH, temperature, or
soluble factors, can be directly correlatedwith changes in lipid confor-
mation and packing; [3] how binding of a soluble ligand to a trans-
membrane receptor, as determined by changes in the shape/size/
orientation of the ligand–receptor complex, result in conformational
changes in the membrane receptor that are consistent with its activa-
tion; [4] how the morphology – linear fibers/helical fibers/sheets/
amorphous “blobs” – of protein aggregates correlates with specific
molecular conformations. This would represent a powerful platform
for investigating protein–protein, protein–lipid, and protein–surface
interactions that combines the spatial resolution of SPM with the
spectral information available from infrared spectroscopy. In princi-
ple, there are several approaches for integrating vibrational spectros-
copy with SPM, each presenting its own set of advantages, potential
scope of use, and challenges. These will each be described in turn, ex-
ploring the potential advantages and disadvantages of each approach,
and their relative ease of implementation.

2. Coupled ATR-IR and SPM

In what is likely the most straightforward implementation, hybrid
infrared spectroscopy–SPM platforms have been constructed by a
number of groups by simply physically mating the SPM scanner with
an ATR crystal holder thereby enabling simultaneous acquisition of to-
pographic details by SPM and infrared absorption spectra by ATR
[122,123] (Fig. 1). This is a particularly convenient physical configura-
tion since the ATR crystal serves as both the sample support and the
spectral sensing element [123,124]. All of the key advantages of ATR
spectroscopy are retained, including the ability to characterize sam-
ples in fluid, which is critical for biophysical research, while retaining
the SPM's ability to acquire nanometer-scale topographical data of
adsorbed materials on the ATR crystal itself. As was demonstrated in
the work by both the Mizakoff and Yip labs, this platform is very
well-suited for studying phase transitions in materials adsorbed, or
grown, on the ATR crystal surface. Uniquely, the SPM provides de-
tailed insights into conformational changes in the absorbedmolecules,
and also resolves structural differences in the absorbed molecules.

Since this is simply a physical marriage of the two platforms, the
IR spectra are necessarily collected over a large area and the tacit as-
sumption is made that the SPM image and IR spectra are spatially cor-
related. While this may generally be reasonable, there are certainly
numerous examples where the scanning action of the SPM tip serves
to enhance convective mass transfer into (or out of) the imaging field
of view. Whether this is manifested in the IR spectra would be diffi-
cult to assess, especially since the SPM field of view comprises such
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Fig. 1. Schematic representation of coupled ATR-IR with SPM.

2274 J.J. Li, C.M. Yip / Biochimica et Biophysica Acta 1828 (2013) 2272–2282
a small portion of the IR sampling window in the context of a multi-
bounce ATR internal reflection element. Possible approaches to allevi-
ate these concerns include using a single bounce ATR element and/or
sampling multiple regions of interest within the sampling area of the
IR beam itself. Another key consideration for this ATR-based approach
is the necessity of using an IR-transmissive substrate as the support.
This is conventionally Ge, ZnSe, or Si, although diamond has also
been used successfully. Since the sample necessarily needs to be in
physical contact with the ATR crystal itself, the sample's interactions
with the crystal itself need to be carefully considered. These include
the available spectral window as well as the effect of surface rough-
ness and/or chemistry on the absorbed species. It is certainly well ap-
preciated by surface chemistry and/or structure can dramatically
affect the orientation, conformation, and indeed assembly of proteins
and peptides [125]. Indeed, the ease of forming a coherent intact sup-
ported lipid bilayer on an ATR crystal can be both lipid- and ATR
crystal-dependent [123,126].
3. Near-field scanning infrared microscopy

Alternatively, confining the IR sampling to the region immediately
under the scanning SPM tip by either using the tip as the source or de-
tectorwould provide spatially correlated SPM and IR spectra. This con-
cept of near-field vibrational spectroscopy was first reported by Knoll
and Keilman and others over a decade ago [124,127–134]. Based on
scattering of infrared radiation by a metal-coated SPM tip as it scans
over a surface, the primary application of near-field vibrational mi-
croscopy has been for chemical mapping studies of thin films. While
the original work by Knoll and Keilman illustrated the use of this ap-
proach for examining physical blends of immiscible polymers (PS/
PMMA) [135], recently, Mueller and others studied phase separation
in PS–PMMAdiblock-copolymer thin films using ANSIM (Apertureless
Near-field Scanning Infrared Microscopy) [136] building on earlier
work by Akhremitchev, Pollack, and Walker [137–139]. Remarkably,
they were able to demonstrate spatial resolution of the spectral signal
well below the diffraction limit. This work is particularly notable as it
not only demonstrated proof-of-concept for the application of ANSIM
but also provided a compelling set of models to explain the basis for
Sample

Fig. 2. Schematic representa
the infrared contrast mechanism, including the effect of topography
(Fig. 2).

This latter component is particularly important since the tip is si-
multaneously acting as the infrared radiation scattering center and
providing topographical contrast. By implementing an innovative
homodyne referencing scheme, the authors' ANSIM approach com-
pensates for the effect of topography thus allowing the SPM topogra-
phy and near-field infrared signals to be acquired simultaneously.
This is notable since many of the correlated tip-based strategies,
such as magnetic and electric forcemicroscopy, often require an inter-
leaved scanning strategy. This approach typically involves a first-pass
scan to acquire a topographical data set followed by a repeat scanwith
the SPM tip “lifted” a few nanometers away from the surface. During
the repeat scan, changes in the cantilever's resonant frequency are
plotted as a function of x–y position and then correlated against the
topographical signal [140–142].

Romanov andWalker elegantly demonstrated the high spatial and
spectral resolution of ANSIM in their study of di-iron nanocarbonyl
particles wherein they realized single vibrational mode resolution of
isolated aggregates on gold [143]. Interestingly, they found that the
near-field scattering spectra were shifted in wavelength relative to
the conventional far-field IR spectra and that these shifts could be rea-
sonably explained by an angular dependence and phase shift of the
back-scattered signal. While this close correspondence was taken as
proof that the ANSIM strategy is capable of acquiring high spatially re-
solved chemical information, it remained unclear as to whether the
lateral resolution reflected inter-particle/inter-aggregate spacing or
an isolated individual particle. This was further complicated by the
observation that the near-field IR scattering signal was found to be
feature height-dependent, consistent with the general premise that
for these near-field systems, the spatial resolution was highly depen-
dent on the size and shape of the object in question. These approaches
are clearly critically dependent on the actual physical size, shape, and
aspect ratio of the SPM tip itself; however, the model representations
tacitly assume a spherically symmetric scattering center. This certain-
ly raises the question regarding themodels themselves are sufficiently
robust to account for deviations from an ideal scattering center or
whether other correction factors may be required to more accurately
model the ensuing near-field IR spectra. Nevertheless, this work
Absorption 
Spectrum

tion of ANSIM platform.
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provides provocative support of the potential of ANSIM for super-
resolved chemical mapping by infrared spectroscopy.

While its potential is clear for polymer thin films andmaterials sci-
ence applications, to date, the applications of ANSIM in biology and
biophysics have been limited. Recently, Paulite et al. applied ANSIM
to examine the secondary structure of β2-microglobulin fibrils [144].
This is a particularly exciting report since the direct characterization
of protein aggregation and specifically, the role of conformational
changes in nucleation and growth has tremendous implications for
the studies of diseases such as diabetes, Alzheimer's, and Parkinson's
for which protein misfolding and fibril formation are key hallmarks.
While there have been extensive studies of these self-assembly and
misfolding processes by in situ SPM, fluorescence spectroscopy and
microscopy, solid-state NMR, and indeed conventional infrared spec-
troscopy [145–165], these approaches are challenged by the inabil-
ity to directly correlate morphological details, as determined by
techniques such as SPM, with secondary structure changes, as may
be resolved by the other spectroscopic approaches. In many cases, in-
direct inferences are made regarding the local structure and confor-
mation of the fibrils, including the potential of polymorphism. This is
further complicated by keen interest in the dynamics of aggregate for-
mation and the role of substrates or initiators in facilitating conforma-
tional changes associated with fibril or oligomer nucleation. Studies of
these assembly pathways would be substantially enhanced if it were
possible to directly image individual protein aggregates and directly
correlate morphologies with secondary structure, including the criti-
cal size and/or local environments associated with specific confor-
mational states [165]. In their work, Paulite et al. applied ANSIM to
study mature β2-microglobulin fibrils, obtaining remarkable ~30 nm
spatially resolved IR spectra. What was quite compelling about this
workwas the good correspondence between the experimentally mea-
sured near field IR signal and the calculated scattering signal based on
a far-field IR absorption spectrum using a coupled dipoles model. No-
tably, the authors also interpreted the intensity of specific spectral fea-
tures in terms of the fibril twist angle and the polarization of the IR
laser, in effect mapping fibril orientation on the substrate. This is a
powerful demonstration of the ability of IR spectroscopy in general
to provide insights into molecular conformation and orientation at
surfaces when polarization is taken into account. Furthermore, in
this particular context, resolving individual fibril twist and orientation
both topographically and spectroscopically portends the use of ANSIM
for tracking more complex aggregation phenomena. Despite these
encouraging results, it is worth noting that this effort was directed
at mapping changes in the Amide I 1600–1700 cm−1 wavenumber
range and specifically β-sheet content, and while in principle there
is no reason to not be examining other regions of the mid-IR, there
are several practical considerations that need to be reconciled.

Since ANSIM relies on near-field scattering of a tunable IR laser,
repeat imaging must be performed at each wavelength of interest in
order to generate a reasonable approximation of the absorbance
spectrum for each location in the field of view. This would suggest
that acquiring spectra with sub-wavenumber resolution, as would
be commonly obtained using conventional far field approaches,
would be a time-intensive process and indeed, the authors only
provided data for a few selected wavenumbers. This also raises the
rather vexing issue of examining dynamic phenomena using this ap-
proach. Clearly understanding aggregation requires that one be able
to probe the dynamic events associated with nucleation and growth,
including putative conformational changes, as may be the case when
a soluble protein associates with a surface or membrane and then
undergoes a secondary structure change that encourages fibril
growth. Such dynamics have certainly been probed using tools such
as stopped-flow fluorescence, circular dichroism, and time-resolved
infrared spectroscopy [157,166–169]. It remains unclear as to wheth-
er the ANSIM approach would be, at present, capable of resolving fast
dynamics.
A recent report by Huth et al., described the use of a coherent con-
tinuum source based on the super-position of two femto-second
near-infrared laser pulses in a Michelson interferometer geometry
[170]. Unlike the tunable approach described previously, this strategy
provides a continuous source that spans the so-called molecular
fingerprint range of 700–2100 cm−1 yielding excellent agreement be-
tween the near-field scattering and conventional far-field FT-IR ab-
sorption spectra. In this proof-of-concept effort, they were able to
provide 20 nm spatially resolved spectra of 90 nm thick films of
PMMA on Si wherein the spatial resolution was solely determined by
the radius of the scanning tip with spectral acquisition times and res-
olution comparable to that for conventional FT-IR. While the authors
provided a strong theoretical basis for this agreement, their model as-
sumptions included a spectrally flat background and no tip-induced
resonances.

While these technical implementations do certainly represent a
critical advance for the field of super-resolution IR spectroscopy,
and the inherent potential for examining structures such as protein
aggregates and fibrils is significant, a number of key questions regard-
ing the use of tip-scattering near-field approaches for biophysical re-
search remain. These include whether they are appropriate for use in
fluid as the acquisition of IR spectra in fluid would certainly yield
more relevant insights into the effect of pH and soluble agents, and
whether it will be possible to directly interrogate the dynamics of
protein– and peptide–membrane interactions, rather than simply ex
situ, post-facto analysis of individual structures.

In a related approach, a number of groups have advanced the con-
cept of near field scanning optical microscopy using an IR source
(IR-Scanning Near-Field Optical Microscopy: IR-SNOM). This platform
uses an IR-compatible optical fiber tip in place of a conventional SPM
tip [171]. The tip is raster-scanned over a surface that is illuminated
by an IR beam, either separately, or through the optical fiber itself.
Measuring the IR light that is reflected back into the optical fiber can
then be used to create an IR absorbance map of the surface. In direct
analogy to the ANSIM approach, a spectrally resolved image would
be generated by sequentially illuminating the sample with the IR
wavelength of interest. Unlike the ANSIM approach however, which
uses the conventional deflection feedback mechanism for the SPM,
in the SNOM strategy, the topographical data are collected using a
shear-force feedback scheme. Building off proof-of-concept work in
the materials and polymer science field [172–174], the Piston group
at Vanderbilt has demonstrated the feasibility of this approach for
chemically mapping cells in fluid [175,176]. This work was quickly
followed by tantalizing images of lipid multilayers on gold substrates
wherein images acquired at specific IR wavelengths revealed struc-
tural details ascribed to local order and clustering [177,178]. Interest-
ingly, the images revealed regions that could be identified as having
strong\CH2\ and PO2

− absorbances that were, for themost part, spa-
tially correlated. This would certainly seem reasonable since the spa-
tial resolution of this aperture-based approach is ~100 nm, which,
while below the diffraction limit, would not be sufficient to distin-
guish any in-plane shift of the lipid headgroups relative to their tails.
In a rather interesting correlative study, Generosi and others used
IR-SNOM to identify receptor clusters in neuronal cells [179,180].
By labeling the AMPA receptor with the extrinsic fluorophore
Alexa-488, they were able to identify clusters on the surface of the
cells that bore the unique IR signature of the fluorophore. Remarkably
they were able to demonstrate localization of the dye's unique IR sig-
nature to specific regions of the neuronal cells with a lateral resolution
of ~350 nm. Although ideally, onewould rather not have to rely on ex-
trinsic probes, this does provide a unique opportunity of performing a
multimodal correlated fluorescence-IR–SPM imaging experiment on
live cells. It is worth noting that unlike the ANSIM approach, the
SNOM strategy is perhaps better suited for imaging in fluid media;
however, it is clear that it cannot provide comparable spatial resolu-
tion to the scattering-based approaches such as ANSIM. It does share
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the same challenges as ANSIM in terms of acquisition times, tip shape
and characteristics, and the need for repeat scans at each wavelength
of interest, which could be particularly challenging for probing
real-time phenomena. Indeed, most of the cell work by SNOM-IR has
been performed on fixed, rather than live cells.

4. AFMIR–photothermal induced resonance (PTIR)

Thus far, we have considered two approaches that considered the
integration of scanning probe microscopy with FT-IR spectroscopy.
The first, which integrated a scanned probe microscope with a conven-
tional ATR-FTIR platform, does not afford super-resolved IR spectra
but does enable imaging and spectral acquisition in fluid media. The
second enables super-resolved spectroscopy with simultaneous acqui-
sition of topographical data on the nanometer length scale using a
near-field tip-based scattering strategy. Complementing these ap-
proaches, Dazzi et al., recently introduced a new SPM-based approach
for super-resolved IR spectroscopy that exploits a photothermal acous-
tic effect for chemical mapping [181–183]. In this strategy termed
AFMIR (or photothermal induced resonance (PTIR)), a samplemounted
on a ZnSe crystal is illuminated by a pulse of infrared light while being
imaged by the SPM in contact mode (Fig. 3).

The orientation is such that the IR pulse is directed in a total inter-
nal reflection geometry within the ZnSe crystal itself. Absorption of ps
pulses of infrared light by the sample results in a thermal–mechanical
expansion of the sample, which in turn induces a transient excitation
of the SPM tip. By sampling a range of spectral wavelengths, an ab-
sorption spectrum can then be recreated from an FFT analysis of the
cantilever tip's response. Remarkably, the authors were able to theo-
retically demonstrate that this effect is due not to the actual thermal
expansion of the sample, associated with absorption of specific IR
wavelengths, but rather the expansion rate [184]. As in the case of
ANSIM, the initial proof of concept studies emphasized the application
of PTIR for materials science applications with a dramatic illustration
of its potential in mapping of an individual, isolated semiconductor
quantum dot buried within a host matrix [185]. Using a 200 nm Au-
coated SPM tip operating in contact, the authors were able to acquire
mid-IR spectra of n-doped InAs/GaAs with ~λ/150 nm spatial resolu-
tion using an excitationwavelength of ~9.6 μm. Despite challenges as-
sociated with slight shifts in the apparent spectra that were attributed
to topographical roughness and doping levels, this work was certainly
encouraging and has led to in-depth investigations into not only po-
tential applications of PTIR, including its suitability for examining
Sample

Fig. 3. Schematic representatio
polymer blends but also the underlying technical challenges and op-
portunities [186–189].

Since the SPM tip is serving as the IR detector in the PTIR platform,
understanding how to best optimize its response to the PT signal has
been a key priority. In recent work, Kjoller et al., examined how
changes to the SPM cantilever itself can result in improved response,
sensitivity, and resolution [190]. As with all spectroscopic approaches,
improving signal to noise necessitates co-averaging a large number of
scans. In the case of the PTIR approach, as opposed to conventional
far-field IR, this can result in a reduction in the spatial resolution of
the technique itself as sample heating can become a significant issue
upon repeated IR pulses. By redesigning the SPM cantilever itself so
that it retains its topographical sensitivity, the authors were able to
improve the signal to noise ratio and significantly reduce the time re-
quired to acquire a spectrum by almost an order of magnitude. This
creative approach involved physically etching away part of the canti-
lever itself to create what the authors describe as “an internal paddle”.
This mechanical alteration changes the vibrational characteristics of
the cantilever, resulting in an extended temporal response to the ps
excitation IR pulse, and a concomitant improvement in the cantilever's
quality factor. This is a remarkably innovative approach that does not
appear to compromise the SPM's ability to provide high spatial (topo-
graphical) resolution.

While these technical advances are certainly encouraging for the
future of PTIR, a number of underlying questions or considerations
remain. These include the thermal conductivity and diffusivity of the
sample or materials under study, the presence of phase or domain
boundaries, and the degree of structural/chemical heterogeneity, all
of which could conspire to affect the spatial resolution of the PTIR
spectra. Recent work by Felts et al., has started to address some of
the questions in their study of thermoplastic nanostructures created
by tip-based deposition [191]. Using the SPM tip as a fabrication tool,
well-defined lines of PE (polyethylene), PS (polystyrene) and PDDT
(poly(3-dodecylthiophene-2,5-diyl)) were patterned onto the ZnSe
prism. By depositing lines of varying width, thickness, and spacing,
as well as overlapping PE and PS lines, the authors elegantly demon-
strated that the spatial sensitivity of this approach is more a conse-
quence of tip sensitivity, and less limited by local heat transfer.
Moreover, the authors were able to demonstrate the spectral sensitiv-
ity of this approach by resolving not only major backbone vibrational
modes in the polymers themselves but also relativelyweak scissor and
ring modes. This raises the interesting question of correlating absor-
bance intensity as detected by the SPM cantilever with sample size
Absorption
Spectrum
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or more specifically thickness. While conventional FT-IR relies simply
on differences in the relative absorbance as a function of wavelength,
in the case of the PTIR approach, the detection and back-calculation
to a relative absorbance measurement are coupled with a transfer
function associated with photothermal conversion and thermo-
mechanical expansion of the sample. What is the threshold sensitiv-
ity of the SPM cantilever to this thermomechanical effect and how
does that correlate to the amount of material being sampled? What
is the lower limit (i.e. minimum amount of sample that has to be
present in order to generate a real signal)? This is particularly
important when one is considering performing spatially super-
resolved IR on individual molecular species. As has been clearly
shown by Paulite et al., the tip-scattering based approach can readily
resolve the spectra and structure of individual molecular fibrils
(i.e. 5–8 nm thick fibrils) whereas in this PTIR work, the thinnest
nanostructure was ~100 nm, a substantially thicker (and thus more
strongly absorbing) feature [192]. Is there, for example, sufficient
sensitivity (or response of the sample) for the PTIR approach to
work on isolated individual ~5.5 nm thick membrane patches? This
question certainly remains open and a tangible example of the criti-
cal challenges that remain.

During development of the PTIR platform, its relevance to the fields
of materials and polymer science was quite clear. What was not as
evidentwas its potential for biology and biophysical characterizations.
In proof-of-concept work using the PTIR approach, Dazzi and others
were able to acquire spatially resolved wavelength-dependent IR
absorbance data on isolated bacteria [183,193–195].While their initial
work clearly demonstrated the ability of this approach to provide spa-
tially resolved IR spectra, with strong absorbances at the Amide I and II
bands present on the periphery of the bacteria, these data were
convolved with tip geometry and field scattering effects within the
sample itself. Moreover, while there was a clear correspondence
between the IR data and the physical topography of the individual
bacteria, there was no clear explanation as to why certain regions of
the bacteria were devoid of Amide I and II absorption bands. It is not
unreasonable to expect that the Amide I and II absorbances would
be spatially ubiquitous in a biological sample and it is possible that
some of these spatial variations may be artifactual. Given this consid-
eration, scanning formore distinctive IR signatures would bemore ap-
propriate and this was the approach taken when the PTIR platform
was used to examine bacteriophage-containing Escherichia coli [193].
Remarkably, in this work, the authors used the PTIR in a more quanti-
tative fashion by focusing on regions of high IR absorbance, ~1050–
1100 cm−1 that are unique to DNA. Since bacteria lack a defined nu-
cleus, their DNA is nominally homogeneously distributed throughout
the cell body itself. This was nicely demonstrated in control images
that clearly revealed a nominally uniform ~1050–1100 cm−1 absor-
bance across the cell itself. When the cells were infected with phage,
they were able to resolve a redistribution of the DNA-associated ab-
sorbances within the cell, and occasionally, isolated regions of higher
intensity absorbance. These spatial differences were ascribed to the
infection process itself, including cellular damage, and indeed the au-
thors reported good correlations between the physical topography as
mapped by the SPM, and spatial variations in absorbances. They also
occasionally resolved localized absorbance intensities that they attrib-
uted to isolated phage particles.While these data are certainly illustra-
tive of the ability of this platform to provide localized IR spectra using
the SPM tip as effectively the detector, the spatial resolution remains
somewhat suspect and indeed the authors were able to show compu-
tationally that the apparent physical width of the structures resolved
spectroscopically is highly dependent on their location within the
sample. In effect, the lateral resolution of the SPM-based spectral de-
tection is now reflective of the local thermal characteristics. Since
the SPM tip is arguably indirectly detecting the IR signature of the
sample by measuring changes in the deflection response of the canti-
lever, heat dissipation within the sample itself will conspire to reduce
the lateral resolution of this approach for examining structures buried
within the sample.

Recently, Mayet et al., used this approach to examine a photosyn-
thetic bacterium that naturally produces granules of polyhydroxy-
butyrate (PHB) [194]. In a remarkable series of experiments, the
authors were able to demonstrate that the PTIR approach can spatially
resolve sub-micron sized granules within bacteria and, more impor-
tantly, identify spectral differences that were attributed to different
solid-state arrangements of PHBwithin the bacteria, as well as size ef-
fects. Indeed, the authors suggested that a ~7 cm−1 shift in the char-
acteristic ester C_O bond absorbance reflected the fact that PHB in
the bacteria was in an amorphous rather than in crystalline form.
This observation provides a compelling approach for investigating
the physical and chemical changes that underpin the nucleation and
growth of organized assemblies from their molecular constituents. In
the context of cellular phenomena, it provides a particularly powerful
strategy for examining bio-inspired crystallization and how living sys-
tems are able to template the formation of novel nanoscale structures
and assemblies. Remarkably the authors were able to use the PTIR ap-
proach to now directly estimate the size of the nanogranules, finding
that indeed they were similar in size to what they had previously
seen by TEM.What was particularly intriguing about the PTIR strategy
and which clearly illustrates the merits of a local, spatially resolved,
measurement, was the authors' observation of a dramatic difference
in the relative intensities of the PHB C_O band at ~1740 cm−1 and
the protein Amide I band at 1660 cm−1 whenmeasured by PTIR com-
pared with conventional FTIR spectroscopy. Since the PTIR provides a
more localized measurement, sampling over an isolated PHB granule
in the bacterium itself yielded a much stronger PHB band compared
to the protein Amide I band. This can be compared with conventional
FT-IR spectroscopy wherein spectra are acquired over numerous bac-
teria and averaged. It is therefore not unreasonable to expect that at
low PHB concentrations, it would become quite difficult to resolve
the PHB C_O absorbance against a high background signal associated
with the protein Amide I bond, which would reflect a low PHB to pro-
tein ratio in the bacteria (as a whole). Nevertheless, these results are
clear evidence of the PTIR approach to provide sub-cellular chemical
identification, and the ability to rapidly acquire spectra for structures
that are well below the optical diffraction limit.

A clear advantage of IR spectroscopy over fluorescence is that it is
a label-free approach, relying entirely on bond-specific energy absorp-
tion; however, this also presents a challenge in the sheer ubiquity of
certain bonds (i.e. Amide I, Amide II), especially in biology. This raises
the tantalizing possibility of introducing compounds that would have
unique IR signatures and using the PTIR approach to map the location
of these compounds within a cell or other biological structure. This
was the approach recently reported by Policar et al., in which PTIR
was used to track the distribution of a metal-carbonyl ligand in the
cell [195]. Judicious selection of the metal-carbonyl bond allowed
the authors to tune the PTIR system to a region of the IR spectrum
that could be considered spectrally quiet. In this way, any spectral fea-
tures that are seen clearly originate from the chosen ligand. In this
case, the authors used a Re-tricarbonyl compound that has character-
istic absorbances in the 2200–1800 cm−1 range, well outside those
associated with Amide I and II modes. By selecting specific regions of
interest in the cell, and then scanning wavelengths of interest with
the SPM tip on that location, PTIR nanoscopy can be performed and a
full spectrum for that region can be generated. The authors presented
a comprehensive strategy for localizing thesemetal-carbonyl ligands by
selecting key IR absorbances and generating a “heat map” of these ab-
sorbances mapped against the physical shape and topography of the
cell, as generated by the SPM simultaneously. Once “hot” spots were lo-
cated, the SPM tipwas placed on those specific regions and then amore
detailed spectral scan acquired. Remarkably in this work, the authors
were able to [1] map the location of the nucleus by scanning for regions
of higher phosphate (PO2

−) and amide absorbances; and [2] demonstrate
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co-localization of the metal-carbonyl bond with these same regions.
These data provided compelling evidence that the metal-carbonyl li-
gand was localized to the nucleus of the cell and portends the future
use of this instrumentation platform in sub-cellular ligand imaging. Al-
though onemight argue that this is not really a truly label-free approach
since one is necessarily adding a prosthetic group, this does raise the in-
triguing possibility of exploiting probes with unique IR signatures to
track structures and interactions in live cells.

While these examples suggest that the PTIR approach has a
number of key advantages, in the context of membrane proteins or
protein–membrane interactions, a question remains as to whether
there is sufficient absorption of IR energy in a single bilayer to afford
a corresponding response in the SPM tip. It is also worth noting that
much of the PTIR work has been done in air, rather than in fluid
media. However, in a challenging proof of concept study, PTIR was
applied successfully to afford IR spectra of individual living fungi
in water [196]. In this work, the authors found that the response of
the cantilever to the IR absorption differed substantially when im-
mersed inwater, reflecting largely the interactionswith the surround-
ing media. Similar effects are well known for conventional SPM
imaging in fluid media where changes in the mechanical response of
the cantilever can be attributed to viscous damping effects. Since the
PTIR approach relies on identifying and tracking the time-dependent
response of the cantilever to the IR pulse, it is critical that the frequen-
cy response characteristics of the cantilever be clearly resolvable.
While this is certainly the case when the cantilever is in air, once in
liquid media, the amplitude of the frequency response can be damped
significantly. Nevertheless, in this work, the authors found that
the fundamental resonant frequency of the cantilever was a function
of the surface that the cantilever was contacting with a shift of
~12 kHz for the cantilever immersed in water when it was in contact
with the fungi versus the supporting ZnSe prism. This is particularly
interesting since by simply tracking the cantilever response at either
resonant frequency, it then becomes possible to clearly separate out
IR absorbances due to the sample compared with bulk water. In this
way, the authorswere able to report a clearly resolvable IR absorbance
at ~1080 cm−1 for the glycogen absorption band for the cell wall.
What is quite impressive about this approach is that by the IR sensi-
tivity of the PTIR approach is directly tied to the cantilever's inherent
mechanical response. If the SPM tip response is measured “off-reso-
nance”, scanning the IR spectrum and monitoring the tip response
result in largely featureless spectral maps. It is only when one is mea-
suring the “on-resonance” response that spectral contrast is achieved.
The authors concluded by providing a compelling argument that there
is no significant loss in either spectral sensitivity or topographical res-
olution when PTIR is performed in water.

A particularly compelling potential enhancement for the PTIR
approachwould be to exercise control over the polarization of the IR ra-
diation. This would provide an exciting opportunity for determining
molecular orientation and conformation, as has been applied in conven-
tional polarization modulation-based techniques such as PM-IRRAS
[92,197–199]. Such an implementation could be readily incorporated
into the coupled ATR-IR/SPM geometry but would be more challenging
in the context of the ANSIM platform.

5. Summary

The innovative integration of scanning probe microscopy with
FT-IR spectroscopy has provided exciting new insights into the local
structure, both chemical and topographical, of materials and biological
samples. In this review, we have described three different ap-
proaches that have been used to date to provide this integration. The
first focused on the physical mating of the two platform technologies.
While this may be the simplest and most straightforward, affording
full independent access to each platform's capabilities, it does not
yet afford super-resolved IR spectra wherein the IR spectrum itself is
co-localized to specific topographical features identified by the SPM.
It does, however, provide much more ready access to the entire spec-
tral range of interest, from near- through mid- to far-IR largely be-
cause of the low cost of the broadband IR sources and beamsplitters
themselves. The ANSIM approach, which uses near field tip-based
scattering, has shown tremendous potential for providing coupled
super-resolved IR spectroscopy of individual protein fibrils, including
tantalizing glimpses into local secondary structure. This approach
certainly provides a strong complement to tip-enhanced Raman spec-
troscopy (TERS) [200,201]. It has tremendous potential for tracking
protein– and peptide–membrane interactions including potentially
identifying conformational changes upon membrane insertion. There
remain however key challenges with the implementation of the
ANSIM strategy, not the least of which relates to the appropriate selec-
tion of the IR light source. To date, only tunable IR lasers have been
employed in ANSIM platforms and this necessarily limits the available
spectral range. It is also unclear howwell this platformwill function in
fluid media as to date, the applications of the tip-based scattering ap-
proaches (ANSIM, TERS) have been largely either in air or vacuum.

While still in its infancy, the PTIR hybrid approach to super-
resolved IR spectra has generated considerable excitement in the
community. With recent advances in tip design for increased sensitiv-
ity, its demonstrated ability to work in fluid media, and the potential
of extrinsic probes with unique IR signatures, a wealth of opportuni-
ties exist for which this platform may prove ideal, including live cell
mapping and characterization of extended surfaces. There are howev-
er key questions that remain including the sensitivity of the technique
for true single molecule analysis, since the spectra are arguably gener-
ated indirectly through analysis of the cantilever's motion. The IR
cross-section or absorptionmust be sufficiently large to yield a resolv-
able change in the cantilever's response. Whether this can be accom-
modated within a single molecule remains to be seen. As is the case
with the ANSIM approach, the spectral range accessible to the system
is limited by the characteristics of the laser itself and thus scanning a
broad spectral range may require a complex laser combiner system.
It is worth noting however that, as in the case of the coupled ATR-IR/
SPM platform, the PTIR approach necessarily requires a supporting
ATR crystal element, typically ZnSe. The surface roughness and chem-
istry of the crystal itself may adversely affect the structure and confor-
mation of the adsorbed species. This may be a significant concern in
the case of individual lipid bilayers or proteins adsorbed directly to
the crystal surface. Indeed, for the PTIR studies of live cells, it was nec-
essary to treat the ZnSe crystal appropriately to facilitate cell adhesion
[196]. These considerations are less of an issue for the ANSIM ap-
proach since it requires an IR reflective substrate such as gold, which
can be prepared as an atomically flat surface, ideal for SPM imaging,
and readily modified with thiols and/or lipids as necessary.

This review has examined the potential that underpins the func-
tional marriage of scanning probe microscopy with infrared spectros-
copy. Arguably still in its infancy in terms of routine application in
biophysics, it is clear that there is tremendous opportunity for novel
insights that may be derived from the direct measurements of local
molecular structure and topography that can be provided by these
emerging platforms.
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