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SUMMARY

We screened a panel of mouse and human mono-
clonal antibodies (MAbs) against chikungunya virus
and identified several with inhibitory activity against
multiple alphaviruses. Passive transfer of broadly
neutralizing MAbs protected mice against infection
by chikungunya, Mayaro, and O’nyong’nyong alpha-
viruses. Using alanine-scanning mutagenesis, loss-
of-function recombinant proteins and viruses, and
multiple functional assays, we determined that
broadly neutralizing MAbs block multiple steps in
the viral lifecycle, including entry and egress, and
bind to a conserved epitope on the B domain of the
E2 glycoprotein. A 16 Å resolution cryo-electron mi-
croscopy structure of a Fab fragment bound to
CHIKV E2 B domain provided an explanation for its
neutralizing activity. Binding to the B domain was
associated with repositioning of the A domain of E2
that enabled cross-linking of neighboring spikes.
Our results suggest that B domain antigenic determi-
nants could be targeted for vaccine or antibody ther-
apeutic development against multiple alphaviruses
of global concern.

INTRODUCTION

Alphaviruses are arthropod-transmitted single-stranded posi-

tive-sense-enveloped viruses of the Togaviridae family and

cause disease worldwide. The two surface glycoproteins on

the mature virion, E2 and E1, facilitate binding and entry through

receptor-mediated endocytosis and low-pH-mediated fusion

within endosomes (Lescar et al., 2001; Smith et al., 1995). Alpha-

virus virions have T = 4 quasi-icosahedral symmetry, with 240
C

copies of the E2-E1 heterodimer assembling into 80 trimeric

spikes on the viral surface (Cheng et al., 1995). Twenty of these

spikes (‘‘i3’’) are coincident with the icosahedral 3-fold axes, and

60 are in general positions at quasi 3-fold axes (‘‘q3’’). X-ray crys-

tallographic structures have been determined of the E1 glyco-

protein, the p62-E1 precursor, the E2-E1 heterodimer, and the

(E1-E2)3 trimer (Lescar et al., 2001; Li et al., 2010; Roussel

et al., 2006; Voss et al., 2010). The mature E2 protein contains

three domains: an A domain, which is located centrally on the

surface of the spike and possesses the putative receptor binding

site; the B domain, located on the distal end of the spike,

covering the fusion loop on E1; and the C domain, at the proximal

end of the spike. The E1 protein is a type II membrane fusion pro-

tein containing three b-barrel domains. Domain I is located

spatially between domains II and III, with the fusion peptide lying

at the distal end of domain II (Lescar et al., 2001; Voss et al.,

2010). The E1 protein lies at the base of the trimeric spike with

E2 positioned on top of it.

Chikungunya virus (CHIKV) is transmitted to humans by Aedes

species of mosquitoes and causes a debilitating infection char-

acterized by fever, rash, myositis, and arthritis, with joint disease

lasting in some individuals for several years (Schilte et al., 2013).

CHIKV historically caused outbreaks in Africa and Asia. In 2013,

transmission of CHIKV occurred in theWestern Hemisphere, and

in just 18months, CHIKV has causedmore than 1.4million cases

in the Americas in more than 40 countries, including locally ac-

quired infections in Florida (Kendrick et al., 2014). In comparison,

other arthritogenic alphaviruses (e.g., Ross River [RRV], Semliki

Forest [SFV], Mayaro [MAYV], and Sindbis [SINV] viruses) circu-

late with more limited global distribution, with outbreaks in Oce-

ania, Africa, and South America.

Although currently there are no available licensed vaccines

or therapies for CHIKV or any other alphavirus, studies have

demonstrated the importance of antibody-mediated protection

(Kam et al., 2012; Lum et al., 2013). Passive transfer of g-globulin

purified from the plasma of CHIKV-immune patients to mice
ell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc. 1095
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Table 1. Cross-Reactivity of Mouse and Human MAbs against Different Alphavirusesa

Antibody CHIKV ONNV RRV MAYV SFV UNAV BEBV GETV MIDV BFV

% E2 Identity 83.0 56.6 56.2 57.6 54.5 56.4 54.3 51.3 41.8

CHK-48 ++ ++ ++ ++ ++ ++

CHK-65 ++ ++ ++ ++ ++

CHK-77 ++ ++ ++ ++ ++ ++ ++

CHK-88 ++ ++ ++ ++ ++ ++

CHK-96 ++ ++ ++ ++

CHK-98 ++ ++ ++

CHK-105 ++ ++ ++

CHK-124 ++ ++ ++ ++ ++ ++

CHK-187 ++ ++ ++ ++ ++ ++ ++ ++

CHK-265 ++ ++ ++ ++ ++ ++ ++ ++

1I9 ++ ++ ++ ++ ++ ++ ++

2C2 ++ ++ ++ ++ ++

2D12 ++ ++ ++ ++ ++ ++ ++ ++

2H1 ++ ++ ++

4B8 ++ ++ ++

5F10 ++ ++ ++ ++

8I4 ++ ++ ++ ++ ++ ++

9D14 ++ ++ ++ ++ ++ ++ ++ ++ ++

CHIKV, Chikungunya virus; ONNV, O’nyong’nyong virus; RRV, Ross River virus; SFV, Semliki Forest virus; MAYV, Mayaro virus; UNAV, Una virus;

GETV, Getah virus; BEBV, Bebaru virus; MIDV, Middelburg virus; and BFV, Barmah Forest virus. See also Figures S1 and S2.
a‘‘++’’ denotes positive staining, and an absence of a symbol denotes negative staining by flow cytometry on infected cells.
prevented mortality following a lethal CHIKV infection (Couderc

et al., 2009). Analogously, monoclonal antibodies (MAbs)

neutralize CHIKV infection in vitro and protect against disease

in mice and non-human primates (Fong et al., 2014; Fric

et al., 2013; Goh et al., 2013; Pal et al., 2013, 2014; Smith

et al., 2015).

One goal of vaccine and therapeutic efforts against viruses is

the development of broadly neutralizing antibodies that inhibit

most strains within a genetically diverse virus family. Broadly

neutralizing MAbs have been described for human immunodefi-

ciency (HIV), influenza A (IAV), dengue (DENV), and hepatitis C

(HCV) viruses (reviewed in Corti and Lanzavecchia, 2013).

Although broadly neutralizing MAbs against alphaviruses have

not been described, polyclonal antibodies (induced by a CHIKV

vaccine candidate) protected against O’nyong’nyong virus

(ONNV) infection (Partidos et al., 2012) and convalescent serum

from RRV-infected mice protected against CHIKV pathogenesis

(Gardner et al., 2010). Earlier reports described cross-protection

between different alphaviruses using hyperimmune serum (Wust

et al., 1987). These studies suggest that conserved epitopes

exist across different alphaviruses that are recognized by pro-

tective antibodies.

We screened a panel of murine and human MAbs against

CHIKV (Pal et al., 2013; Smith et al., 2015) for neutralization of

different alphaviruses. We identified ten MAbs that neutralized

at least two different alphaviruses and showed that these

MAbs blocked multiple steps in the viral lifecycle, including entry

and egress. Two broadly neutralizing MAbs, CHK-187 and CHK-

265, protected in vivo against CHIKV, ONNV, and MAYV. Ge-
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netic analyses established that broadly neutralizing anti-alphavi-

rus MAbs recognized an epitope centered on the B domain of

the E2 protein. Cryo-electron microscopic studies showed

that binding of CHK-265 to the B domain on CHIKV was associ-

ated with repositioning of the A domain away from its native

position in the E2-E1 heterodimer, which facilitated interaction

with an edge of the A domain and cross-linking of adjacent E2

protein spikes. Overall, these studies describe a class of broadly

neutralizing antibodies with protective activity that inhibit entry

and egress of distantly related viruses within the alphavirus

genus.

RESULTS

Anti-CHIKV MAbs Cross-Neutralize Related
Arthritogenic Alphaviruses
Previously, we identified a panel of neutralizing mouse and hu-

man MAbs that inhibited infection of multiple CHIKV strains

(Pal et al., 2013; Smith et al., 2015). As a first step toward evalu-

atingwhetherMAbs against CHIKV had inhibitory activity against

distinct alphaviruses with envelope protein amino acid identities

ranging from 42.2% to 86.3% (Figure S1), we assessed immuno-

reactivity by flow cytometry (Figure S2). From the panel of 60

neutralizing anti-CHIKV MAbs, ten mouse MAbs and eight

human MAbs bound to three or more different viruses (Table 1).

However, these cross-reactive MAbs did not bind to cells in-

fected with Venezuelan equine encephalitis virus (data not

shown), which is more divergent (45.3% amino acid identity

with CHIKV).



Figure 1. Murine and Human Anti-CHIKV MAbs Neutralize Infection of MAYV, RRV, ONNV, and SFV

(A–G) MAbs were incubated with 102 FFU of (A, F, G) CHIKV, (B, F, G) Mayaro, (C, F, G) Ross River, (D) O’nyong’nyong, or (E, F, G) Semliki Forest viruses for 1 hr at

37�C followed by addition of MAb-virus mixture to Vero cells for 18 hr. Virally infected foci were stained and counted. Wells containing MAb were compared to

wells containing no MAb to determine the relative infection. DENV1-E98 was included as an isotype control MAb.

(H). EC50 values were determined by non-linear regression and are shown as ng/ml (95%CI). Each graph represents themean and standard deviation (SD) from at

least two independent experiments.

See also Figure S1.
We evaluated the neutralization potential of the cross-reactive

MAbs against alphaviruses that are closely (ONNV) or distantly

(MAYV, RRV, and SFV) related to CHIKV. As anticipated, each

of the MAbs neutralized CHIKV infection efficiently (Figures 1A

and 1H), as reported previously (Pal et al., 2013; Smith et al.,

2015). Of the ten cross-reactive mouse MAbs tested, eight

neutralized MAYV, seven neutralized SFV, six neutralized

ONNV, and three neutralized RRV (Figures 1B-1E and 1H). Unex-

pectedly, cross-neutralization of MAYV was greater than ONNV

even though the latter virus is more closely related to CHIKV (Fig-

ure S1). Three MAbs (CHK-48, CHK-187, and CHK-265) neutral-

ized all alphaviruses tested, with CHK-187 and CHK-265

showing the greatest potency (Figure 1H). Of the eight cross-
C

reactive human MAbs tested, only two (2H1 and 8I4) cross-

neutralized MAYV, RRV, and/or SFV (Figure 1F and 1G). The

sequences of humanMAb 8I4 antibody variable geneswere con-

ventional; it used the most commonly expressed VH gene (VH3-

23), had a high level of identity with germline sequences (99%

[278 of 282 nucleotides] with VH3-23*04 and 90% [45 of 50 nu-

cleotides] with JH5*02), and had an HCDR3 length of 18.

Broadly Neutralizing MAbs Protect In Vivo against
Multiple Alphaviruses
We assessed the efficacy of CHK-187 and CHK-265 in vivo

against CHIKV using an arthritis model in wild-type (WT) mice

(Morrison et al., 2011). A single 100 mg dose of CHK-187,
ell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc. 1097



CHK-265, or an isotype control MAb was administered 1 day

prior to infection with 103 FFU of CHIKV in the footpad. Treat-

ment with CHK-187 or CHK-265 reduced ankle joint swelling

to nearly baseline at 3 days after infection when compared to

the isotype control MAb (Figure 2A). CHK-187 diminished the

CHIKV burden in the ipsilateral ankle and prevented virus

dissemination, whereas CHK-265 reduced spread to the contra-

lateral ankle joint (Figure 2B).

Since the greatest cross-neutralization by CHK-265 or CHK-

187 was against MAYV, we assessed the protective efficacy of

these two MAbs in vivo against MAYV infection. To do this, we

developed a new arthritis model of MAYV inWTmice. After inoc-

ulation with 103 FFU of MAYV, mice developed joint swelling,

similar to that observed after CHIKV infection. Using this model,

100 mg of CHK-265, CHK-187, or an isotype control MAb was

administered 1 day prior to infection, and ankle size was

measured. Additionally, serum, spleen, quadriceps muscle,

and ankles were collected on day 3 after infection. Treatment

with CHK-265 or CHK-187 reduced joint swelling compared to

isotype control MAb-treated animals (Figure 2C). The reduced

disease correlated with decreased viral burden, as CHK-187

diminished viral load in the spleen, muscle, and contralateral

ankle (Figure 2D). Remarkably, CHK-265 completely protected

against MAYV infection, with no detectable virus at the site of

inoculation or in any other tissue analyzed.

As an additional test, we evaluated the efficacy of CHK-265

and CHK-187 against ONNV infection. Since ONNV does not

replicate extensively in WT mice (Seymour et al., 2013), we

developed an arthritis model in Ifnar�/� immunodeficient mice.

After infection with ONNV, Ifnar�/� mice developed ankle

swelling and hind limb weakness, with variable rates of recovery.

All mice receiving the isotype control MAb developed joint

swelling and limb weakness. In contrast, mice receiving CHK-

187 or CHK-265 showed minimal clinical disease (Figure 2E),

reduced joint swelling from day 5 through day 14 after infection

(Figure 2F), and greater weight gain (Figure 2G). To confirm

that reduced disease was linked to decreased ONNV infection,

we measured viral burden in the spleen, quadriceps muscles,

and ankles 5 days after infection. CHK-187 reduced ONNV

infection in the ipsilateral foot as well as at distant sites

compared to isotype control MAb-treated animals (Figure 2H).

CHK-265 limited ONNV spread to the contralateral joint and

muscle. Thus, at least two broadly neutralizingMAbs can protect

against infection and disease caused by multiple arthritogenic

alphaviruses.

Cross-Protective MAbs Map to the B Domain of the E2
Glycoprotein
The binding sites of broadly neutralizing mouse and human

MAbs were mapped by alanine-scanning mutagenesis and

mammalian cell display (Davidson and Doranz, 2014) of the E2,

6K, and E1 proteins (Figure S3). All cross-neutralizing MAbs

bound primarily to sites within the B domain of the E2 protein

(Figures 3A and 3B). Eight amino acids (Q184, S185, I190,

V197, Y199, G209, L210, I217) emerged as critical for binding

(Figure 3A and 3B). These residues are highly conserved across

CHIKV E2 proteins, as determined by alignment of 415 genome

sequences (http://www.viprbrc.org) (Figure 3C). Variation was
1098 Cell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc.
detected only at amino acid position 210 on E2, with leucine in

386 of 415 sequences, glutamine in 28 of 415 sequences, and

threonine in 1 of 415 sequences. Alignment of other arthritogenic

alphaviruses with CHIKV showed that I190, Y199, G209, and

I217 are conserved, whereas Q184, S185, V197, and L210 are

divergent, particularly in RRV (Figure 3A).

To corroborate the alanine-scanning mapping results, we

introduced amino acid substitutions into CHIKV E2 ectodomain

and generated recombinant proteins in E. coli (Pal et al., 2013)

for binding studies (Figures 4A–4J). Amino acids in CHIKV E2 B

domain were changed to the corresponding amino acids in

RRV (Q184T, S185A, V192A, N193G) to previously defined

escape mutations (G209E, L210P, K215E, K233E) against other

neutralizing mouse MAbs or to residues (R68A and D250A) in the

E2 A domain that showed loss of binding to other human MAbs

(Pal et al., 2013; Smith et al., 2015). Binding of CHK-84, which

maps to the A domain (data not shown), was not altered by

any of the mutations, suggesting that the recombinant proteins

folded correctly (Figure 4D). The majority of the E2 protein resi-

dues identified by alanine-scanning mutagenesis as part of the

epitope (Figure 3A) were confirmed, and additional substitutions

(e.g., Q184T, G209E, and L210P) that disrupted bindingwere de-

tected. Binding of all cross-neutralizing MAbs tested was

affected to varying levels by mutations at Q184, G209, and

L210 (Figures 4A–4J). Mutation at S185 also was associated

with loss of binding of several broadly neutralizing MAbs (Figures

4B, 4C, 4E, 4G, and 4H). These residues all are located within or

immediately adjacent to the cryo-EM-determined footprint of

CHK-265 (see structural analysis in Figure 5D) and thus comprise

an epitope for broadly neutralizing MAbs.

When CHK-48, CHK-65, CHK-77, CHK-88, CHK-124, CHK-

265, and 8I4 were tested for inhibition of RRV infection, they

were poorly (CHK-65, CHK-77, CHK-88, and CHK-124), weakly

(CHK-48 and 8I4), or only moderately (CHK-265) neutralizing

(Figures 1C and 1H). To explore whether virus-specific amino

acid differences in the epitope explained the reduced neutraliza-

tion of RRV, we changed two residues in the E2 protein of the

RRV cDNA clone to the corresponding CHIKV residues (184

[T/Q] and 185 [A/S]). The introduction of the two CHIKV

amino acids into RRV resulted in improved binding and neutral-

ization of RRV byCHK-48, CHK-65, CHK-77, CHK-88, CHK-124,

CHK-187, and CHK-265 (Figures S4 and 4K–4Q). Engineering of

two other CHIKV residues into RRV (192 [A/V] and 193 [G/N])

also improved binding (Figure S4) and neutralization (Figure 4R)

of MAb CHK-98, which mapped to residues 189, 191, 192, and

193 in the B domain (Figure 3A).

Binding of B Domain MAbs Is Coincident with Structural
Rearrangement of CHIKV E2
We determined the structure of CHIKV virions in complex with

Fab fragments of CHK-265 by cryo-electron microscopy (cryo-

EM) at �16 Å resolution (Figure 5A). Three Fab molecules were

bound to each of the q3 and i3 trimeric spikes within the 60

icosahedral asymmetric units. Unexpectedly, the virus density

remaining after subtraction of the fitted CHK-265 Fab density

could not be interpreted by fitting of the crystal structure of the

E1-E2 heterodimer (Voss et al., 2010) (Figures S5A and S5B).

Visual inspection suggested that the A and B domains in the

http://www.viprbrc.org


Figure 2. CHK-187 or CHK-265 Protect against Alphavirus Disease and Dissemination In Vivo

(A–D) Four-week-old WT mice were pretreated with 100 mg of CHK-187, CHK-265, or WNV E60 (isotype control) MAb 1 day prior to inoculation with 103 FFU of

(A, B) CHIKV or (C, D) MAYV in the footpad. (A and C) Footpad swelling (width 3 height) in the ipsilateral and/or contralateral joint was measured prior to and

3 days following inoculation (n = 10 to 12). (B and D) Viral load was determined in indicated tissues 3 days following inoculation (n = 6–7).

(E–H) Six- to seven-week-old Ifnar�/� mice were administered MAbs as described above 1 day prior to inoculation with 10 FFU of ONNV in the footpad. (E) Mice

(n = 8) were monitored for 18 days, and disease was scored as described in the Supplemental Experimental Procedures section. (F) Footpad swelling in the

ipsilateral foot was followed during the course of infection (n = 8). (G) Weight was monitored each day and normalized to starting weight (n = 8). (H) The indicated

tissues were collected 5 days after infection, and viral load was determined (n = 6).

For clinical measurements (panels A, C, F, and G), the mean and SD are shown, with the dashed line indicating the baseline prior to infection. For (A) and (C),

statistical significancewas determined by a one-way ANOVAwith a Bonferroni post hoc test. For (F) and (G), statistical significancewas determined by a two-way

ANOVA with a Bonferroni post hoc test adjusting for repeated measures. For viral titers (B, D, and H), the median value is shown with the limit of sensitivity of the

assay displayed as a dashed line. Statistical significance was determined by a Kruskal-Wallis with a Dunn’s post hoc test. Each graph represents data obtained

from at least two independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Figure 3. Broadly Neutralizing MAbs Map to Domain B of the E2 Protein

(A) CHIKV, ONNV, SFV, MAYV, and RRV were aligned using MegaAlign (DNA Star) with strain names following the virus. The B domain of CHIKV is highlighted in

yellow. Residues mapped by alanine-scanning mutagenesis (see Figure S3) are in solid colored circles (mouse MAbs) or triangles (human MAbs). Additional

residues identified as critical for MAb binding to the recombinant CHIKV E2 protein (Figure 4) are shown as an ‘‘X’’ in the MAb color.

(B) Mapped residues are shown as spheres on the CHIKV p62-E1 structure using PyMOL (PDB 3N42). Residues identified for a single MAb are indicated with

a colored sphere corresponding to the MAb color in (A). Residues important for binding of multiple MAbs are colored in increasing shades of gray (light gray,

2–3MAbs; medium gray, 4 MAbs; dark gray, 5 MAbs; and black, 7–8MAbs). Residues identified forR4MAbs are indicated on the E2 structure by an arrow. E1 is

shown in yellow and E3 in tan. E2-A is in cyan, E2-B in dark green, and E2-C in purple.

(C) Blow-up of E2 B domain with key residues (R3 MAbs with loss of binding) shown as sticks using Pymol (PDB: 3N42). The percent variation of amino acids in

CHIKV strains is indicated to the right of the residue and was determined by aligning 415 different CHIKV E2 protein sequences.

See also Figure S3.
heterodimer had undergone substantial conformational change.

To define this change, the A and B domains were removed from

the crystal structure before fitting the remainder of the modified

E1-E2 dimer, and then the A and B domains were fitted manually

into the density using EMfit to maximize the average densities for

each domain (Rossmann et al., 2001) (Table S3). This process

showed that the position and orientation of the B domain had

moved further over the fusion loop in domain II of E1 protein. In

addition, the A domain had undergone a large repositioning (a

translation of 21 Å and rotation of 71�) around the domain II of

E1 (Figures 5B and S5C–S5E and Movies S1 and S2). In this
1100 Cell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc.
new position, CHK-265 Fab binds the B domain on one spike

and contacts the A domain on a neighboring spike, effectively

cross-linking the spikes on the virion surface (Figure 5C and

Movie S3); each q3 spike is linked to two neighboring q3 spikes

and one i3 spike, and each i3 spike is linked to three neighboring

q3 spikes. The C termini of the constant domains of Fab mole-

cules that are bound to neighboring spikes make contacts with

each other across quasi 2-fold axes in a manner consistent

with the T4 quasi symmetry surface lattice. This result suggests

that the intact CHK-265 IgG might be able to bind and cross-link

many of the spikes together. The interface between CHK-265



and the virus consists of 19 residues in the B domain and 4 in the

A domain (Figure 5D and Table S4). The cryo-EM-determined

footprint of CHK-265 on the B domain (amino acids 180–220)

is consistent with the identified loss- or gain-of-binding residues

(e.g., Q184, S185, V192, N193, G209, and L210) from the muta-

genesis-based strategies described above.

Broadly Neutralizing MAbs Inhibit Both Viral Entry and
Egress
We evaluated the mechanism of inhibition for two broadly

neutralizing MAbs, CHK-187 and CHK-265. Inhibition of viral

attachment was assessed by pre-incubating CHK-187, CHK-

265, or an isotype control MAb with CHIKV and then adding

the mixture to cells at 4�C. CHK-187 and CHK-265 did not block

viral attachment any more strongly than did the isotype control

MAb (Figure 6A). Entry blockade was tested by pre-incubating

CHIKV with CHK-187, CHK-265, or with the isotype control

MAb and then allowing it to bind to cells at 37�C. One hour later,

unbound virus and MAb were removed by extensive washing,

and infectivity was assessed 18 hr later. Exposing CHIKV to

CHK-187 and CHK-265 only at the time of entry resulted in

neutralization that was comparable to when MAbs were main-

tained throughout infection, suggesting that entry blockade is a

dominant mode of inhibition (Figure 6B). To determine whether

MAb valency affected entry blockade, studies were repeated

with Fab fragments. The Fab fragments were somewhat less

potent (5- to 10-fold) than their IgG counterparts (Figure 6B).

Saturating amounts of either CHK-187 or CHK-265 Fab frag-

ments could not inhibit infection completely and resulted in a

substantial neutralization-resistant fraction. This result suggests

that, while monovalent binding of B domain MAbs can inhibit the

entry step of infection, bivalent binding is required for complete

neutralization.

Since CHK-187 and CHK-265 blocked at a post-attachment

entry step, we tested whether they inhibited fusogenic activity

using a liposomal fusion assay (Smit et al., 1999). Pyrene-labeled

CHIKVwas incubated withMAbs andmixed with liposomes, and

a low-pH (5.1) buffer was added to trigger fusion. In contrast to

results with potently neutralizing type-specific MAbs that bind

preferentially to the A domain and completely block fusion (Pal

et al., 2013), the cross-neutralizing B domain MAbs showed var-

iable inhibition: fusion was blocked weakly (�20%) by CHK-187,

moderately (�60%) by CHK-265, and more strongly (�80%) by

CHK-88, although none inhibited completely (Figure 6C).

We next evaluated whether B domain MAbs also could block

viral egress, presumably by inhibiting assembly or budding from

the plasma membrane. Cells were inoculated with CHIKV and

then washed extensively to remove free virus. Subsequently,

CHK-187, CHK-265, or isotype control MAb was added, and

viral RNA was analyzed from supernatants harvested at 1 or

6 hr; 6 hr corresponds to the initial round of virion secretion. Addi-

tion of CHK-187 or CHK-265 reduced the amount of CHIKV RNA

in the supernatant compared to cells treated with the isotype

control MAb (Figure 6D). Fab fragments of CHK-187 or CHK-

265 were less potent than intact IgG, suggesting that cross-link-

ing of E2 proteins on the cell or virion surface might contribute to

blockade of egress (Figure 6E). To confirm these results, we

transfected CHIKV RNA directly into cells, then added CHK-
C

187, CHK-265, or isotype control MAb, and monitored accumu-

lation of RNase-A-resistant encapsidated CHIKV RNA in the

cells and supernatant. CHK-187 and CHK-265 had equivalent

levels of intracellular viral RNA but had reduced accumulation

of viral RNA in the supernatant compared to the isotype control

MAb at 24 hr (Figure 6F). Finally, we determined the relative

contribution of entry and egress blockade to cross-neutralization

of MAYV. CHK-187 or CHK-265 inhibited MAYV infection at the

entry (Figure 6G) and egress (Figure 6H) steps, although the ef-

fects on egress were less than that observed with CHIKV. Taken

together, these results indicate that, while broadly neutralizing

MAbs can inhibit multiple steps (including fusion and egress)

in the alphavirus lifecycle, they preferentially cross-neutralize

infection by blocking entry at a post-attachment pre-fusion step.

DISCUSSION

This study describes a panel of broadly neutralizing MAbs

against multiple and distantly related arthritogenic alphaviruses.

We identified ten mouse and human cross-neutralizing MAbs

and showed that two of these MAbs protected in vivo against

infection with homologous and heterologous alphaviruses. A

conserved epitope in the B domain of the E2 protein contributed

to the recognition of these broadly neutralizing MAbs. Structural

analysis of CHIKV complexed with CHK-265 showed a large

conformational change in the A domain of E2. Mechanistically,

the B domain MAbs blocked CHIKV infection at both viral entry

and egress steps, although the cross-neutralizing activity was

due primarily to inhibition of entry. Collectively, these results

describe a class of broadly neutralizing MAbs with substantive

inhibitory activity against different members of the alphavirus

genus.

We detected a larger number of broadly neutralizing mouse

compared to human MAbs. While this could reflect a sampling

bias of a small number of mice and a single human (Smith

et al., 2015), it could suggest that the epitope repertoire is

different between the species, as has been observed with anti-

bodies against other viruses. In contrast to individuals who

develop broadly neutralizing antibodies to HIV through constant

exposure to the escaping viral envelope protein and extensive

somatic hypermutation over time (Doria-Rose et al., 2014),

sequencing of 8I4, the broadly neutralizing anti-alphavirus hu-

man MAb, revealed no evidence of such selection. Thus, selec-

tion for clones with specific and extensive somatic mutations, as

required for HIV envelope protein antigens (Dosenovic et al.,

2015), may not be required to elicit broadly neutralizing anti-

bodies against alphaviruses.

Although CHK-187 and CHK-265 neutralized infection of

CHIKV and MAYV equivalently in cell culture, greater protection

in mice was observed against MAYV compared to CHIKV. The

phenomenon in which an antibody raised against one virus pro-

tects to greater levels against a related virus was observed pre-

viously with flaviviruses. MAbs recognizing the conserved fusion

loop of WNV E protein provided greater protection against DENV

thanWNV (Oliphant et al., 2006; Williams et al., 2013). In contrast

to CHK-187 and CHK-265, the flavivirus-specific fusion loop-

specific MAbs showed greater neutralizing activity in cell culture

against DENV than WNV. The differences in protection in vivo
ell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc. 1101



(legend on next page)

1102 Cell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc.



between CHIKV and MAYV with the same MAbs having equal

neutralizing activity could reflect differences in tropism, patho-

genesis, or propensity for accumulation of escape mutations

with sustained virulence. Alternatively, the impact of effector

functions (e.g., complement or antibody-dependent cellular

cytotoxicity) on control of the different viruses could vary be-

tween models; these factors could be relevant especially for

MAbs that block egress and bind to E1 or E2 proteins on the sur-

face of infected cells.

Of the arthritogenic alphaviruses tested in this study, RRV had

the greatest divergence in B domain sequence from CHIKV and,

accordingly, was neutralized least efficiently by anti-CHIKV

MAbs. MAbs that localize to the B domain on E2 of RRV have

been reported to have neutralizing activity (Davies et al., 2000;

Vrati et al., 1988), although their capacity for cross-neutralization

was not assessed. Based on loss-of-binding studies with variant

CHIKV E2 proteins, several key residues (Q184, S185, V192,

N193, G209, and L210), all close to or within the cryo-EM deter-

mined footprint of CHK-265, contributed to the binding of

broadly neutralizing anti-alphavirus MAbs. Four of these resi-

dues differed in RRV and, accordingly, substitution of the CHIKV

amino acids at corresponding positions into RRV resulted in

a gain-of-neutralization phenotype. Since RRV and CHIKV

currently do not circulate in the same endemic regions, it seems

unlikely that RRV evolved these changes to evade pre-existing

immunity against CHIKV.

Our findings with B domain MAbs may be relevant in the

context of vaccination, as cross-neutralization of different alpha-

viruses by polyclonal antibodies has been observed. Cross-

protection by anti-RRV serum against CHIKV infection and

anti-CHIKV serum against ONNV infection was reported in

mice (Gardner et al., 2010; Partidos et al., 2012). However, serum

orMAbs derived fromONNV-infected animals or humans weakly

neutralized CHIKV (Blackburn et al., 1995; Porterfield, 1961).

Future genetic analysis paired with reagents that deplete

cross-neutralizing B domain antibodies in serum is needed to

explain fully the basis for the directionality of inhibition of poly-

clonal serum of different alphaviruses.

Cryo-EM structures of several alphaviruses have shown that

the B domain has a lower electron density, implying that its po-

sition varies by roughly 4 Å relative to the best average orienta-

tion of the icosahedral symmetry axes (Porta et al., 2014; Sun

et al., 2013). Similarly, the B domain is disordered in the low-

pH crystal structure of CHIKV trimeric spikes (Li et al., 2010)

and has a high ‘‘temperature’’ factor in the crystal structure of

the CHIKV E2-E1 heterodimer (Voss et al., 2010). This structural

feature is important because the fusion loop on domain II of the

E1 protein is hidden under the B domain to prevent adventitious

fusion. Thus, the capacity for the B domain to move likely is
Figure 4. Mutation of Domain B Residues Eliminates Binding to CHIKV

(A–J) Mutations were introduced into the CHIKV E2 ectodomain, and binding was

determined by a one-way ANOVA with Dunnett’s multiple comparison tests (*p <

(K–R) Serial dilutions of MAbs were incubated with 102 FFU of RRV-WT, RRV-T18

virus mixture to Vero cells for 18 hr. Cells were fixed, and virally infected foci were

determine the relative infection. EC50 values are shown as ng/ml. Each graph sho

duplicate.

See also Figure S4.

C

required for the fusogenic activity of the CHIKV. In the cryo-EM

map of CHIKV complexed with CHK-265, the B domain had an

electron density height equal to the other glycoprotein domains

in all four quasi-equivalent positions within the icosahedral

asymmetric unit. This configuration likely occurs because the

Fab fragment bridges the normally flexible B domain to a second

contact site in the more stable A domain. With the B domains

tethered, it is more difficult for the fusion loops in E1 to be

exposed, which might explain the observed partial inhibition of

viral fusion. Another unusual feature of the cryo-EM map is that

domain I of E1 has lower density than the other domains,

implying a greater flexibility. This domain connects domain II to

domain III of E1 that forms the base of the spike. A flexible

domain I might result in a floppy trimeric spike, which could

impair entry functions of the virus.

In a previous study with Fab fragments of four different MAbs

bound to CHIKV-like particles, binding did not cause major

conformational changes to the structure of the virus (Sun

et al., 2013). These antibodies bound primarily to the A

domain of E2. In contrast, CHK-265 Fab binding is centered

in the B domain and is coincident with large conformational

changes. The cryo-EM analysis of the CHK-265-virion complex

showed that although the orientation of the A domain is

changed radically, the putative receptor binding site (Sun

et al., 2013) remains accessible. This finding is consistent

with the observation that CHIKV can attach efficiently to cells

in the presence of CHK-265. Binding of CHK-265 induced a

conformational shift of the four quasi T-4 related A domains

to sites between neighboring spikes, consistent with the

T = 4 quasi-symmetry. Although mutagenesis studies did not

identify residues in the A domain that resulted in loss of binding

of CHK-265, amino acid H73 in domain A of E2 contributed to

the binding of the broadly neutralizing MAb CHK-187. This res-

idue is present in the cryo-EM-determined binding footprint of

CHK-265.

Vaccine- and antibody-based therapy efforts against HIV,

IAV, and DENV have focused on the induction or generation of

neutralizing antibodies that target most strains of a virus within

a given genus. These broadly neutralizing antibodies function

by binding to conserved glycans, receptor-binding domains,

stem regions, or dimer and trimer contacts of the envelope gly-

coproteins (Corti and Lanzavecchia, 2013). Our description of a

class of MAbs that induces marked structural changes in the

virion, inhibits infection at multiple steps in the viral lifecycle,

and protects in vivo against disease pathogenesis by multiple

alphaviruses suggests that targeting of the B domain on E2

could serve as a strategy for the development of vaccines

with utility against CHIKV and several related viruses of global

concern.
E2 and Enhances Neutralization of RRV

determined by ELISA. Significant reduction compared to theWT E2 protein was

0.05, **p < 0.01, ***p < 0.001).

4Q/A185S, or RRV-A192V/G193N for 1 hr at 37�C followed by addition of MAb-

stained. Wells containing MAb were compared to wells containing no MAb to

ws the mean and SD from two to three independent experiments performed in
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Figure 5. CHK-265 Binding to CHIKV Results in Repositioning of the E2 A Domain

(A) Cryo-EM reconstruction of CHIKV 181/25 in complex with CHK-265 Fab fragments. The triangle represents one icosahedral asymmetric unit. The colors

indicate the radial distance in Å from the center of the virus, as shown on the scale bar.

(B) (Left) Structure of the E1-E2 heterodimer (PDB: 3N42). (Right) Structure of the E1-E2 heterodimer with the bound Fab molecule, as observed in the cryo-EM

complex of the virus with CHK-265. The CHK-265 Fabmolecule is colored blue, and the CHIKV E1-E2 heterodimer (PDB: 3N42) is colored with E1 in gray, E2-A in

cyan, E2-B in green, E2-C in purple, and the E2-b-ribbon in orange. The left and right ribbon structures are oriented to place the lower parts of these figures (E1

and domain E2-C) into the same orientation. The E2 A and E2 B domains are circled, showing the difference in their conformations.

(C) Roadmap showing footprint of CHK-265 Fab projected onto the surface of CHIKV. The projections are colored according to the radial distance of the surface

from the center of the virus, as shown in the scale bar. The white contours are the radial projections of the bound Fab molecules onto the surface of the virus. The

black triangle denotes the boundary of an icosahedral asymmetric unit. The 5-fold, 3-fold, and 2-fold icosahedral axes are indicated by a small black pentagon,

triangle, and oval symbol, respectively. The residues in the Fab footprints are shown in white. Each Fab footprint bridges separate trimers with the variable portion

of the Fab binding to the E2-B domain on one spike and the E2-A domain on a neighboring spike.

(D) Enlargement of a part of the q3 spike shown on the right in (C). The A and B domains of E2 are outlined in yellow. Individual surface amino acids are labeled and

outlined in black. To differentiate residues in E1 from those in E2, a value of 500 arbitrarily was added to the E1 residue numbers. The roadmaps were created by

the program RIVEM (Xiao and Rossmann, 2007).

See also Figure S5, Table S3 and S4, and Movies S1, S2, and S3.
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Figure 6. Broadly Neutralizing Anti-CHIKV MAbs Block Steps in Viral Entry and Egress
(A–F) Mechanism of action studies with CHIKV. (A) Attachment blockade. CHIKV was incubated with CHK-187, CHK-265, or isotype control MAb (Iso; WNV E60)

for 1 hr, added to chilled Vero cells for 1 hr at 4�C, and washed extensively, and bound CHIKV viral RNA was measured. RNA levels are normalized to a no

MAb treatment control. (B) Entry blockade. 102 FFU of CHIKV were incubated with indicated MAbs or Fabs at 37�C for 1 hr, added to Vero cells for 1 hr at 37�C,
washed extensively, overlaid with methylcellulose, and fixed 18 hr later. Wells containing MAb were compared to wells containing no MAb to determine the

relative infection. (C) Fusion blockade. Pyrene-labeled CHIKV was incubated with 1.5 mg/ml of the indicated MAbs and mixed with liposomes at 37�C, and fusion

was triggered with a low-pH (5.1) buffer. The percent fusion was measured over time compared to a no MAb control. (D–F) Egress blockade. Vero cells were

inoculated with (D, E) CHIKV for 2 hr at 37�C and rinsed extensively, and medium containing (D, E) IgG or (E) Fab fragments (10 mg/ml) and 25 mM NH4Cl was

added back. Supernatant was collected 1 or 6 hr later, the latter of which corresponds to the first round of virion production, and was analyzed for CHIKV viral

RNA. (F) BHK21 cells were transfected with CHIKV RNA and rinsed extensively, and medium containing 10 mg/ml IgG and 25 mM NH4Cl was added. Cells and

supernatants were collected 1 or 24 hr later, treated with RNase A at 37�C to degrade unencapsidated RNA, and analyzed for CHIKV viral RNA. See Figure S6 for

additional controls.

(G and H) Mechanism of action studies with MAYV. (G). Entry blockade. Studies were performed as described above in (B) using 102 FFU of MAYV. (H) Egress

blockade. Studies were performed as described above in (D) using MAYV at an MOI of 1 and analyzed for MAYV viral RNA.

Graphs in this figure show the mean and SD of two or three independent experiments performed in triplicate or duplicate. EC50 values for entry blockade are

shown as ng/ml and were determined by non-linear regression. Statistical significance for the egress blockade assay was determined using a one-way ANOVA

with a Bonferroni post hoc test at each MAb concentration and time point (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
EXPERIMENTAL PROCEDURES

Antibodies, Cell Culture, and Viruses

Mouse and human MAbs against CHIKV were reported previously (Pal et al.,

2013; Smith et al., 2015) and were purified by Protein A Sepharose and S200

size-exclusionchromatography.PurifiedCHK-265andCHK-187weredigested

with papain (Pierce) to generate Fab fragments and were collected in the flow-

through after passage over a Protein A Sepharose column. Vero, BHK21, and

C6/36 cells were cultured as described (Pal et al., 2013). CHIKV (La Reunion

OPY1 p142) and RRV (T48) were the gifts of S. Higgs (Kansas State University)

and R. Kuhn (Purdue University), respectively, and were produced from infec-

tious cDNA clones (Morrison et al., 2006; Tsetsarkin et al., 2006). MAYV
C

(BeH407), ONNV (MP30), SFV (Kumba), BEBV (MM 2354), MIDV (30037),

GETV (AMM-2021), UNAV (CoAr2380), and BFV (K10521) were provided by

the World Reference Center for Arboviruses and propagated in Vero cells.

Focus Reduction Neutralization Assay

Focus reduction neutralization tests (FRNT) were performed as described (Pal

et al., 2013). Additional details are reported in the Supplemental Experimental

Procedures.

Mouse Studies

Experiments were carried out in accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Institutes of
ell 163, 1095–1107, November 19, 2015 ª2015 Elsevier Inc. 1105



Health after approval by the Institutional Animal Care and Use Committee at

the Washington University School of Medicine. MAbs CHK-187 or CHK-265

or isotype control MAb WNV E60 (100 mg in PBS, 6 mg/kg) were administered

to 4-week-old WT C57BL/6 mice or 6- to 7-week old Ifnar�/� mice by intraper-

itoneal injection 1 day prior to infection. WT mice were infected subcutane-

ously in the footpad with CHIKV or MAYV. Ifnar�/� mice were inoculated in

the footpad with ONNV. Animals were scored daily using a modified clinical

disease scale created for RRV (Morrison et al., 2006). Additional information

is in the Supplemental Experimental Procedures.

Mutagenesis of CHIKV E2 and ELISA

Amino acid substitutions were introduced into the CHIKV E2 ectodomain (res-

idues S1-E361) using Quikchange II mutagenesis (Aligent) and the primers

listed in Table S1. Mutations were confirmed by direct sequencing of plasmid

DNA. MAb binding to CHIKV WT or mutant E2 proteins was assessed by

ELISA. Detailed protocols are described in the Supplemental Experimental

Procedures.

Mutagenesis of RRV Infectious Clone

A double mutation at positions 192(A/V) and 193(G/N) of the E2 gene was

introduced into the pRR64 cDNA clone of RRV by Quikchange II mutagenesis

(Aligent). Double mutations at positions 184(T/Q) and 185(A/S) of the E2

gene were engineered using Phusion high-fidelity DNA polymerase (New

England BioLabs). The mutagenesis primers are listed in Table S1. Mutations

were confirmed by sequencing with separate primers (Table S2). WT and

mutant RRV were produced after plasmid linearization, in vitro transcription,

and electroporation into BHK21 cells. Additional details of RRV mutagenesis

are provided in the Supplemental Experimental Procedures.

Cryo-EM Reconstruction of CHK-265 in Complex with CHIKV

Purified CHK-265 Fab molecules (5 mg/ml) were mixed with purified and

concentrated CHIKV (181/25) in 2:1 (Fab:E2) molar ratio and incubated on

ice for 30 min. Samples were flash frozen on holey carbon grids (Ted Pella)

in liquid ethane using Cryo-plunge 3 (CP3) in a biosafety cabinet. CCD im-

ages of the CHIKV-Fab complex were recorded under low-dose conditions

(�22 e/Å2) using a FEI Titan Krios electron microscope operated at 300 kV

and 47,0003 magnification. All cryo-EM images were collected at about

1.5–3 mm below the focus level. A total of 5,828 particles was selected

manually with the e2boxer program in the EMAN2 suite (Kimoto et al.,

2003; Tang et al., 2007). Contrast levels of micrographs were corrected using

the ctfit program in EMAN (Ludtke et al., 1999; Tang et al., 2007). Additional

information about the purification of CHIKV and CHK-265 Fabs and the

cryo-EM model generation is described in the Supplemental Experimental

Procedures.

Mechanistic Analyses of MAb Inhibition

(a) For virus attachment inhibition assays, MAbs were incubated with CHIKV

at 37�C, chilled, and added to pre-cooled Vero cells. Cells were extensively

rinsed, and bound RNA was extracted from the cells and measured by

qRT-PCR. (b) For entry inhibition assays, MAbs or Fabs were incubated

with virus at 37�C, added to Vero cells, and after extensive rinsing, processed

as described for the FRNT assay. (c) Liposomal fusion inhibition assays were

performed as described (Pal et al., 2013). (d) For egress inhibition assays,

Vero and BHK21 cells were infected with virus or transfected with viral

RNA, respectively. Cells were rinsed extensively, and MAbs or Fabs were

added in medium containing NH4Cl. Viral RNA was quantified from superna-

tant or cells. Detailed protocols are described in the Supplemental Experi-

mental Procedures.

ACCESSION NUMBERS

The cryo-EM density map of CHIKV in complex with CHK-265 Fab fragments

was deposited with the EM Data Bank under accession number EMD: EMD-

3144. The coordinates of the fitted structural models of CHK-265 Fab and

E1-E2 were deposited with the Protein Data Bank under accession number

PDB: 5ANY.
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