
Resource
Cell-Cell Communication between
Malaria-Infected Red Blood Cells
via Exosome-like Vesicles
Neta Regev-Rudzki,1,2,6 Danny W. Wilson,1,2,6 Teresa G. Carvalho,1,2,7 Xavier Sisquella,1,2 Bradley M. Coleman,3,4

Melanie Rug,1,2,8 Dejan Bursac,1,2 Fiona Angrisano,1,2 Michelle Gee,5 Andrew F. Hill,3,4 Jake Baum,1,2

and Alan F. Cowman1,2,*
1Division of Infection and Immunity, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
2Department of Medical Biology
3Department of Biochemistry and Molecular Biology
4Bio21 Molecular Science and Biotechnology Institute
5School of Chemistry
The University of Melbourne, Melbourne, Victoria 3010, Australia
6These authors contributed equally to this work
7Present address: Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
8Present address: Centre for AdvancedMicroscopy, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
*Correspondence: cowman@wehi.edu.au

http://dx.doi.org/10.1016/j.cell.2013.04.029
SUMMARY

Cell-cell communication is an important mechanism
for information exchange promoting cell survival for
the control of features such as population density
and differentiation. We determined that Plasmodium
falciparum-infected red blood cells directly commu-
nicate between parasites within a population using
exosome-like vesicles that are capable of delivering
genes. Importantly, communication via exosome-
like vesicles promotes differentiation to sexual forms
at a rate that suggests that signaling is involved.
Furthermore, we have identified a P. falciparum pro-
tein, PfPTP2, that plays a key role in efficient commu-
nication. This study reveals a previously unidentified
pathway of P. falciparum biology critical for survival
in the host and transmission to mosquitoes. This
identifies a pathway for the development of agents
to block parasite transmission from the human host
to the mosquito.
INTRODUCTION

Cell-cell communication and cooperative motility are well known

in multicellular eukaryotes and include tissue morphogenesis,

wound healing, and tumor metastases. Direct communication

between mammalian cells occurs either by the transfer of infor-

mation through microvesicles or physical connection through

nanotubes (Belting and Wittrup, 2008; Gerdes and Carvalho,

2008). Extracellular vesicles (EVs) are small cellular particles of

30–400 nm, and their release is highly conserved in biology (re-

viewed in Delabranche et al., 2012). EVs are divided into micro-

particles (MPs), microvesicles (MVs) and exosomes on the basis
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of size and the cell compartment from which they originate. MPs

(100–400 nm) are released by the vesiculation of plasma mem-

branes, whereas exosomes (30–150 nm) originate from multive-

sicular bodies (MVBs) derived from late endosomes (Johnstone

et al., 1987). Exosomes and MPs are involved in the transfer of

biologically active molecules for the induction of phenotypic

changes (Belting and Wittrup, 2008; Coleman et al., 2012;

Ratajczak et al., 2006). In malaria, MPs are released from in-

fected red blood cells (RBCs) and activate endothelium at the

blood-brain barrier, exacerbating inflammation (Combes et al.,

2005; Campos et al., 2010; Nantakomol et al., 2011).

Although cell-cell communication and social behavior is

established in many eukaryotes and prokaryotes (Bassler and

Losick, 2006; Dubey and Ben-Yehuda, 2011; Record et al.,

2011), there is less known for parasitic protozoa (Lopez et al.,

2011; Rupp et al., 2011). Protozoan parasites are responsible

for major diseases, including malaria, caused by the genus

Plasmodium. P. falciparum and P. vivax are responsible for

most clinical cases of malaria in humans. These vector-born par-

asites cycle between mosquitoes and humans and, in both con-

texts, are faced with an unstable and hostile environment. To

ensure survival and transmission, the malaria parasite must

infect and survive in the human host and differentiate into sexual

forms (gametocytes) that are competent for transmission to

mosquitoes. The molecular mechanisms for commitment to ga-

metocytogenesis, a ‘‘once in a life cycle’’ decision, are obscure

in Plasmodium biology (reviewed in Alano, 2007).

In theprotozoanparasiteTrypanosomabrucei,which is respon-

sible for sleeping sickness, a density-sensing mechanism acti-

vates the differentiation of proliferative slender cells to stumpy

forms through the release of stumpy induction factor (STI) (Mac-

Gregor et al., 2011; Reuner et al., 1997; Vassella et al., 1997).

Stumpy formsarecommitted tocell-cycle arrest in thehost,which

limits population density, and are competent for transmission to

the tsetse fly. This quorum-sensing-like mechanism provides a
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means for T. brucei to enhance vector transmission and prolong

survival in the host (MacGregor et al., 2011).

It would be amajor advantage for Plasmodium parasites, such

as P. falciparum, to communication during blood-stage infection

in order to enable populations to react to changing conditions in

the host. To date, no study has provided direct evidence for its

existence. Here, we demonstrate cell-cell communication be-

tween P. falciparum parasites through exosome-like vesicles

that promote differentiation to sexual forms.

RESULTS

Communication between P. falciparum Cells Mediates
DNA-Dependent Transfer of Drug Resistance and
Fluorescence
To determine whether P. falciparum-infected RBCs communi-

cate and transfer information, we used strains expressing

different drug resistance cassettes and fluorescent proteins as

markers. The parasite line 3D7edhfrGFP has an episomal (e)

plasmid expressing human dihydrofolate reductase (dhfr),

conferring resistance to WR99210 (WR), and green fluorescent

protein (GFP) (Boddey et al., 2010). A second line, CS2eBsdGFP,

contains an episomal (e) plasmid expressing blasticidin deami-

nase (Bsd), conferring resistance to blasticidin-S (Bs), and GFP

(Ataı́de et al., 2010). Parasite lines were cocultured in Bs+WR

and, after initial cell death, expected because of the presence

of both drugs, parasites grew to high parasitaemia within

5 days (Figures 1A and 1B). In contrast, when CS2eBsdGFP or

3D7edhfrGFP (parental lines) were cultured alone in both drugs,

no parasites survived.

We tested other P. falciparum lines to determine whether they

transferred drug resistance between cells. The WR-resistant

CS2idhfr920 has an integrated (i) copy of hdhfr and was cocul-

tured with Bs-resistant CS2eBsdGFP in Bs+WR with ring-stage

parasites observed after 5 days (Figure 1C). To test whether

this was due to the release of plasmid into supernatants or up-

take by parasitized RBCs, we added CS2idhfr920 to RBCs elec-

troporated with a plasmid conferring Bs resistance (Figure 1C).

Typically for this method of P. falciparum transfection, parasites

are observed at 21 days (Fidock and Wellems, 1997). However,

when plasmid-loaded RBCs were incubated with CS2idhfr920,

no ring-stage parasites were obtained after 5 days on Bs. Addi-

tionally, we added plasmid encoding a bsd gene to CS2idhfr920

parasites, and, again, no ring-stage parasites were detected

after 5 days on Bs. Therefore, P. falciparum lines can rescue

parasite growth, under drug selection, when cocultured, and

this was not through the uptake of plasmid DNA released during

normal growth.

If drug resistance genes were transferred to cells in the popu-

lation via cell-cell communication, then fluorescent proteins

encoded on the plasmid should be expressed. 3D7idhfrmCh

expresses mCherry in the nucleus (Volz et al., 2010), whereas

CS2eBsdGFP expressesGFP in the cytoplasm (Figure 1D) (Ataı́de

et al., 2010). We detected dual-colored (red nucleus and

green cytoplasm) parasites after 5 days of coculture for

CS2eBsdGFP+3D7idhfrmCh with Bs+WR (Figure 1D). To test

whether the transfer of GFP ormCherry expression between par-

asites resulted from plasmid transfer, we used fluorescence
in situ hybridization (FISH) to detect bsd (CS2eBsdGFP) and hdhfr

(3D7edhfrGFP) genes in cocultured CS2eBsdGFP+3D7edhfrGFP

parasites with Bs+WR (Figure 1E). In the coculture experiments

analyzed by FISH, 100% of the parasites were positive for both

hdhfr and bsd genes, confirming the transfer of an episomal

plasmid. In contrast, the parental parasites were positive for

only the endogenous drug resistance marker.

DNA-dependent transfer was confirmed by PCR of

3D7idhfrmCh+CS2eBsdGFP inBs+WR (Figure 1F). The genes hdhfr

and mcherry were present in 3D7idhfrmCh, and, conversely, bsd

and gfp were detected in CS2eBsdGFP, as expected for parental

lines. When 3D7idhfrmCh and CS2eBsdGFP were cocultured in

Bs+WR, hdhfr,mcherry, bsd, and gfp genes were detected. This

was not due to remnant genomic DNA (gDNA) from dead or dying

cells, given that no genes were detected by PCR for 3D7idhfrmCh

and CS2eBsdGFP parental lines cultured separately in Bs+WR

(Figure 1F). Altogether, these data show that P. falciparum

parasites can transfer information between cells in a population.

Parasite Communication Is Mediated by Factors
Released by P. falciparum-Infected RBCs
To determine whether communication between P. falciparum-

infected RBCs required cell contact, we used transwells to phys-

ically separate parasites in culture. We established that

P. falciparumparasitescouldnotpass through400nmpore trans-

well membranes.We separated 3D7edhfrGFP andCS2eBsdGFP in

transwellswith Bs+WRand assessed ring-stage parasitaemia af-

ter 5 days (Figure 2A). 3D7edhfrGFP only survived in either the

insert or bottom of the transwells whenCS2eBsdGFPwas present

in the opposite chamber. Interestingly, when placing the two

parasite lines in different compartments of the transwell, the

directionality of transfer was toward 3D7edhfrGFP and not

CS2eBsdGFP, implying it was the drug selection cassette (bsd)

andnot theepisomal plasmid, per se, thatwasdetermining thedi-

rection of transfer. The predominance of episomal bsd plasmid

transfer was most likely because Bs inhibits the ring and early

trophozoite stages (see Figure S1 available online), whereas WR

inhibits later in the life cycle (Dieckmann and Jung, 1986). In these

experiments, we added both drugs at ring stages, and, below,we

show that the ring stage is critical for cell-cell communication.

Experiments with 3D7idhfrmCh and CS2eBsdGFP gave similar

results with Bs drug resistance transferred to 3D7idhfrmCh (Fig-

ure 2B). In related experiments, plasmid transfer from

CS2eBsdGFP to a second integrated line, CS2idhfr920, was

confirmed by PCR amplification of hdhfr and gfp genes

in coculture transwells containing CS2idhfr920 after the removal

of CS2eBsdGFP in inserts (Figure 2C). Therefore, factors are

released into supernatants that carry a DNA plasmid through a

400 nm pore in order to communicate with P. falciparum-in-

fected RBCs. This demonstrates that communication between

P. falciparum parasites does not require direct cell-cell contact

and occurs over long distances.

Next, we exploited transwells to study whether DNA carrier

factors present in cocultured media were stable and could

‘‘rescue’’ a drug resistance phenotype. Increasing volumes of

3D7edhfrGFP+

CS2eBsdGFP parasites were cultured in transwell inserts with

Bs+WR (Figure 2D). After 24 hr of coculture, the insert was
Cell 153, 1120–1133, May 23, 2013 ª2013 Elsevier Inc. 1121



Figure 1. Communication between Parasites Results in the DNA-Dependent Transfer of Drug Resistance and Fluorescence

(A) Giemsa smears after 5 days for 3D7edhfrGFP (episomal hdhfr gene, WR resistant) + CS2eBsdGFP (episomal blasticidin-S-deaminase gene, Bs resistant)

compared to each smear cultured alone with Bs+WR.

(B) 3D7edhfrGFP+CS2eBsdGFP parasites cocultured in Bs+WR and ring-stage parasitaemia determined after 5 days compared to 3D7edhfrGFP and CS2eBsdGFP

parental controls. Scale bars represent the mean and SEM of three experiments.

(C) CS2idhfr920+CS2eBsdGFP coculture compared to CS2idhfr920 in RBCs electroporated (el) with a Bsd resistance plasmid or plasmid added tomedia in Bs+WR.

Scale bars represent the mean and SEM of three experiments.

(legend continued on next page)
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removed, and naive recipient 3D7edhfrGFP was added with

Bs+WR to the parasite-free medium. Remarkably, the initial

presence of 3D7edhfrGFP+CS2eBsdGFP in the insert rescued

3D7edhfrGFP growth, consistent with transfer of Bs-resistant

plasmids. Moreover, there was an increase in rescue of

3D7edhfrGFP associated with increasing volumes of the initial

coculture (Figure 2D). Multiple experiments comparing cocul-

tured versus single lines gave similar levels of rescue suggesting

efficiency was the same (see Figure S2). These data demon-

strate that stable factors are secreted into supernatants by

P. falciparum-infected RBCs that mediate the transfer of drug

resistance to other parasites.

To determine whether the dose response measured for

communication activity was due to the continuous release of fac-

tor(s) between P. falciparum cells, we incubated ring-stage

donor, CS2eBsdGFP, in the insert and recipient 3D7edhfrGFP in

the bottom with Bs+WR (Figure 2E). The inserts were removed

either immediately or between 1 and 24 hr after mixing.

Increasing exposure of 3D7edhfrGFP to CS2eBsdGFP in inserts

resulted in increased survival consistent with a greater transfer

of Bs resistance. Our results demonstrate rapid and efficient

plasmid transfer, even after 1 hr, maximal rescue of the

3D7edhfrGFP line occurring within 10 hr of the coculture of ring

stages. This suggests that P. falciparum employs an efficient

mechanism to communicate and transfer factors harboring

cellular information over long distances without direct cell-cell

contact.

Communication Occurs at Ring Stages and Is Sensitive
to Actin Filament and Microtubule Inhibitors
We examined the timing of communication and plasmid transfer

within the blood-stage asexual cycle by the coculture of either

ring or trophozoites of 3D7idhfrmCh+CS2eBsdGFP in Bs+WR (Fig-

ure 3A). Ring-stage coculture showed efficient plasmid transfer,

whereas parasite survival for trophozoite cocultures was 10-fold

less. This suggests that efficient communication and plasmid

transfer occurs mainly in ring stages of the asexual life cycle.

Because drug selection of P. falciparum parasites causes

stress and death, we addressed whether this affected cell-

cell communication. Using transwells, we cocultured

3D7edhfrGFP+CS2eBsdGFP parasites in inserts with or without

drugs for 24 hr (Figure 3B). The insert was removed, and naive

3D7edhfrGFP was added to cell-free medium containing

Bs+WR. In the first 24 hr, the growth of 3D7edhfrGFP in wells

where no drugs were initially added was greatly reduced in com-

parison to wells where both Bs+WRwere present through exper-

iments. Although it is suggestive of a more efficient transfer of Bs

resistance during drug stress, in the absence of drugs,
(D) Fluorescencemicroscopy of live 3D7idhfrmCh (mCherry) and CS2eBsdGFP (GFP

panel, CS2eBsdGFP expression of GFP in cytoplasm. Bottom, examples of CS2e

(blue) show the nucleus and final image merged.

(E) FISH showing plasmids transferred between parasites. Top, CS2eBsdGFP hybr

(red) and hdhfr (green). Bottom, CS2eBsdGFP+3D7edhfrGFP coculturedwith Bs+W

stained nuclei (blue) and merged.

(F) First panel, PCR genotyping of drug resistance (hdhfr and bsd) and fluorescen

3D7idhfrmCh+CS2eBsdGFP in (M+) or absence (M�) of Bs+WR after 12 days. Seco

Bs+WR after 8 or 12 days.
3D7edhfrGFP+CS2eBsdGFP parasites still transferred Bs resis-

tance to 3D7edhfrGFP. Our study shows that intercellular

communication between P. falciparum-infected RBCs occurs

under normal conditions; however, signaling between cells un-

der stress conditions, such as when faced with antimalarials in

the host, is a more active process. The importance of ring stages

and stress in cell-cell communication suggests that the direc-

tionality of episomal Bs plasmid transfer observed in Figures

2A and 2B may be due to Bs acting against ring stages and

causing stress, whereasWR acts later and does not cause stress

at the critical ring stage for cell-cell communication.

Because communication and plasmid transfer occur effi-

ciently at ring stages without direct contact between cells, we

hypothesized that EVs were providing a vectored and efficient

mode of export and signaling. Given that actin and microtubules

have a role in the secretion of vesicles, we tested sublethal con-

centrations of inhibitors of these processes for a role in

P. falciparum communication (Dieckmann-Schuppert and

Franklin, 1989; Shaw et al., 2000). Cytochalasin D (CytoD) and

oryzalin (ORY) were potent inhibitors of plasmid transfer be-

tween 3D7edhfrGFP and CS2eBsdGFP (Figure 3C). Significant in-

hibition (75%)was also observed for swinholide. Both CytoD and

ORY inhibition showed a dose-dependent response at sublethal

levels for cocultured Bs+WR-treated parasites (Figures 3D and

3E). CytoD and ORY are inhibitors of actin polymerization and

microtubule depolymerization, respectively, suggesting that

these functions are required for cell-cell communication. In addi-

tion, we found that heparin blocked plasmid transfer in

P. falciparum, which was consistent with studies showing that

highly charged heparin suppresses microvesiculation (Sustar

et al., 2009).

Exosome-like Vesicles Are Released into the Culture
Supernatant
To address the size of mediators of P. falciparum cell-cell

communication, we cultured CS2eBsdGFP enclosed in dialysis

tubing (excludes >100 kDa) with 3D7edhfrGFP recipient in the

outside compartment (Figure 4A). Although, in control experi-

ments, 3D7edhfrGFP grew normally when CS2eBsdGFP was

separated by dialysis tubing, it did not grow in the presence of

Bs+WR, indicating that the mediator(s) responsible for commu-

nication was >100 kDa.

Next, we used atomic force microscopy (AFM) to determine

whether EVs were present in supernatants and whether

their concentration changed with differing treatments of

P. falciparum. We visualized P. falciparum-infected RBCs by

AFM and observed vesicles (�120 nm diameter) around para-

sites (Figure 4B, black arrows) as well as small protrusions on
) cocultured. Top, 3D7idhfrmCh expression of mCherry (red) in nucleus. Second

BsdGFP+3D7idhfrmCh cocultures in Bs+WR after 5 days. DAPI-stained images

idizedwith bsd (red) and hdhfr (green). Middle, 3D7edhfrGFP hybridizedwith bsd

R and hybridized with bsd (red) and hdhfr (green). Each panel shownwith DAPI-

t protein genes (mCherry and gfp) from 3D7idhfrmCh (P1), CS2eBsdGFP (P2) and

nd panel, gDNA from parental 3D7idhfrmCh (P1) or CS2eBsdGFP (P2) parasites in

Cell 153, 1120–1133, May 23, 2013 ª2013 Elsevier Inc. 1123



Figure 2. Parasite Communication and DNA

Transfer Is Mediated by Factor(s) Released

in Culture Supernatant

(A) Transwells with 3D7edhfrGFP (WR resistant) and

CS2eBsdGFP (Bs resistant) in the insert (I) and bot-

tom chamber (B) containing Bs+WR. Ring-stage

parasitaemia was determined after 5 days in com-

parison to 3D7edhfrGFP+CS2eBsdGFP.

(B) 3D7idhfrmCh (WR resistant) and CS2eBsdGFP (Bs

resistant) separated in insert (I) and bottom cham-

bers (B) with Bs+WR. Ring-stage parasitaemia was

determined at 5 days compared to

3D7idhfrmCh+CS2eBsdGFP cocultured. Scale bars

represent the mean and SEM of three experiments.

(C) PCR amplification of gfp confirms transfer of

DNA. CS2idhfr920 and CS2eBsdGFP separated in

transwells with Bs+WR compared to controls for

hDHFR and GFP.

(D) Rescue of P. falciparum growth by cell-cell

communication and plasmid transfer. Culture su-

pernatant from 3D7edhfrGFP+CS2eBsdGFP (50,

100, 150, and 200 ml) in the insert rescued the

growth of 3D7edhfrGFP ring-stage recipient (100 ml,

1.5% parasitaemia). 3D7edhfrGFP was added to the

bottom chamber, and parasite survival was deter-

mined at 3 days. Scale bars represent themean and

SEM of three experiments.

See also Figures S1 and S2.

(E) Parasite communication and DNA transfer

occurs within 1 hr and continues 10 hr after drug

treatment. CS2eBsdGFP (insert) separated from

3D7edhfrGFP (bottom well) containing Bs+WR.

CS2eBsdGFP removed at different time points

(0–24 hr) and survival of 3D7edhfrGFP determined

at 3 days. Scale bars represent the mean and range

of two experiments. For (D) and (E), scale bars

represent the mean and SEM of three experiments

with differences assessed with a paired t test. *, p

% 0.05; **. p % 0.01.
the RBC (Figure 4B, white arrows) that may be in the process of

being released (Figure 4B). Although this was insufficient to

conclude these are vesicles being actively released, it suggested

that this process may occur from P. falciparum-infected RBCs,

and we explored this in more detail.
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To determine whether EVs were

present in supernatant released from

P. falciparum-infected RBCs, we incu-

bated CS2eBsdGFP+3D7edhfrGFP with

Bs+WR (Figure 4C, Mix++) or no drug (Fig-

ure 4C, Mix) in transwell inserts and har-

vested supernatants from the bottom for

AFM. Remarkably, vesicles of a similar

width were observed in both the presence

(123.1 ± 2.08 nm) and absence (112.2 ±

17.7 nm) of drug in cell-free supernatants

of CS2eBsdGFP+3D7edhfrGFP. Vesicle

height was similar in both cases (13.1 ±

0.9 and 12.6 ± 1.6 nm, respectively). As

predicted, supernatant in the absence of

drugs showed that vesicles are present
at lower numbers (1.5 ± 0.4 vesicles in 100 mm2 area) in compar-

ison to parasite mixtures in Bs+WR (8.5 ± 2.2/100 mm2) (Fig-

ure 4C). Some vesicles appeared to be wider than the low-pass

of transwell filters (400 nm) most likely because of aggregation

and spreading on mica surfaces as well as AFM tip convolution



Figure 3. Actin and Microtubule Inhibitors

Block Intercellular Communication in

P. falciparum

(A) Parasite communication and plasmid transfer

occurs mostly in ring stages. 3D7idhfrmCh+C-

S2eBsdGFP were cocultured at ring or trophozoite

stage and selected on Bs+WR. Ring-stage para-

sitaemia was counted at 5 days. Scale bars repre-

sent the mean and SEM of three experiments.

(B) Parasite communication and plasmid transfer

increase under drug stress. 3D7edhfrGFP and

CS2BsdGFP cocultured in transwell inserts with

(+drug) or without Bs+WR (�drug). After 24 hr,

coculture inserts were removed, and naive

3D7edhfrGFP recipient was added to the bottom

transwell with fresh Bs+WR. The growth of recipient

3D7edhfrGFP was assayed after 3 days. Scale bars

represent the mean and SEM of four experiments.

(C) Treatment of ring-stage 3D7edhfrGFP+C-

S2eBsdGFP parasites in Bs+WR cocultured for 20 hr

with actin or microtubule inhibitors. LATA, la-

trunculin A; LATB, latrunculin B; PH, phalloidin; JAS,

jasplakinolide; COL, cholchicine; SWIN, swinholide;

NOC, nocadazole; CytoD, cytochalasin D; ORY,

Oryzalin; Heparin; PBS, Phosphate buffered saline;

R1, R1 peptide. Data represent ring stages ex-

pressed as percentage of a parallel non-Bs- and

WR-treated control at 5 days. Subinhibitory con-

centrations determined from growth inhibition

curves of 20 hr-treated 3D7edhfrGFP+CS2eBsdGFP

parasites. (B) Actin inhibitor cytocholasin D and (C)

the microtubule inhibitor oryzalin show dose-

dependent inhibition at 5 days following 20 hr of

CytoD or oryzalin treatment of 3D7edhfrGFP+C-

S2eBsdGFP cocultures in Bs+WR. Data represent

ring stages as percentage of non-Bs- and WR-

treated, but cytocholasin D- or oryzalin-treated,

control. Scale bars represent the mean and SEM of

three experiments.
(Figure 4D). Importantly, the incubation of sublethal concentra-

tions of communication inhibitor CytoD (Figures 3C and 3D)

reduced the number of vesicles (2/100 mm2) (width 89.73 ±

3.04 nm, height 8.1 ± 1.4 nm) (Figure 4C, Mix ++CytoD). Vesicles

were also observed in RBC supernatants (width 106.5 ± 1.12 nm,

height 7.3 ± 0.6 nm), but the number was substantially less than

that observed with P. falciparum-infected RBCs. Features of 10

to 100 nm width, with an average height of 5 nm, were observed

in culture medium, which was consistent with a background

deposition of protein aggregates (Figure 4C, RBC and Media).

The quantity of vesicles released from P. falciparum-infected

RBCs correlates with frequency of plasmid transfer, and this im-

plicates vesicles as mediators of intercellular communication.

The size of these vesicles suggests they are analogous to

mammalian exosomes, sharing features such as release from

viable cells (Bang and Thum, 2012; Record et al., 2011).

Exosome-like Vesicles Are Responsible for Cell-Cell
Communication and Plasmid Transfer
In order to determine whether exosome-like vesicles, identified

in culture supernatants by AFM, were responsible for cell
communication and plasmid transfer, we attempted to purify

them. Amethod employingOptiPrep density gradient centrifuga-

tion was used to fractionate the culture medium (Coleman et al.,

2012). Purification of vesicles with these gradients and analysis

of plasmid transfer in fractions resolved a discrete peak of activ-

ity observed in fractions 4 and 5 consistent with buoyant vesicles

being responsible for plasmid transfer (Figure 5A).

We used AFM as well as negative-staining and cryo-transmis-

sion electron microscopy (cryo-TEM) to visualize contents of

OptiPrep fractions. In fractions 4 and 5 a relatively homogeneous

population of�70 nmdiameter spherical vesicleswere observed

(with AFM, sizes were: width, 70.55 ± 3.92; height, 12.37 ± 1.04)

(Figures 5B and 5C). In contrast, vesicles of similar size were not

present in fractions 3 and 6, although smaller aggregates of

�14 nm were observed by TEM and AFM (with AFM: width,

14.13 ± 1.37; height, 4.28 ± 0.87) as a rough background. The

lack of plasmid transfer activity in fraction 3 was consistent

with the smaller aggregates having no role in cell-cell communi-

cation. However, the predominance of the �70 nm vesicles

banding with cell-cell communication activity suggests that

they are most likely responsible. These vesicle dimensions are
Cell 153, 1120–1133, May 23, 2013 ª2013 Elsevier Inc. 1125



Figure 4. Visualization and Size of Vesicles from P. falciparum-Infected RBCs

(A) Factor(s) enabling communication between parasites are >100 kDa. Parasite communication was abolished when Bs+WR-treated 3D7edhfrGFP parasites

(within dish) were separated from CS2eBsdGFP (within dialysis tubing). Scale bars represent the mean and range of two experiments.

(B) An AFM image of CS2 RBCs showing vesicles surrounding the cell (black arrows) and budding from cell membrane (white arrows). The scale bar represents

2 mm.

(C) AFM imaging of supernatants from media, RBCs, CS2eBsdGFP+3D7edhfrGFP (Mix), CS2eBsdGFP+3D7edhfrGFP in Bs+WR (Mix++) and

CS2eBsdGFP+3D7edhfrGFP in Bs+WR+CytoD (Mix++CytoD). Ring-stage parasites were mixed (50/50 ratio) at same hematocrit and parasitemia. Histograms of

vesicle diameter (top) and height (middle) distributions are shown. The average number and SEM of vesicles in 100 mm2 are displayed. Data are from four in-

dependent experiments in triplicate. The scale bar represents 5 mm.

(D) AFM images of two larger vesicles (Mix ++, C). The scale bar represents 600 nm.

(E) Profile of three vesicles (red line in C, Mix ++) plotting height and diameter.

See also Table S1.
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Figure 5. Purification and Communication

Activity of Exosome-like Vesicles

(A) A representative experiment (of nine indepen-

dent gradients) showing the purification of exo-

some-like vesicles with OptiPrep velocity gradient

centrifugation. Communication activity of gradient

fractions screened by incubating ring-stage

3D7edhfrGFP with dilution series of each gradient

compared to controls with media+Bs and culture

supernatant+Bs. Parasite growth was assessed by

comparing the number of free merozoites, ex-

pressed as a percentage of control, of newly

invaded cultures between treatments.

(B) An AFM visualization of vesicles in fraction 3

(top panels) and fraction 4 (bottom panels). Size

bars are shown on the top panels and are the same

for the corresponding panel below.

(C) Negative-staining TEM of fraction 4 contents

(top panels). In the bottom panels are negative-

staining TEM of fraction 3 (left) and cryo-TEM of

fraction 4 (middle and right). The inset scale bars

represent 50 nm.
comparable to those observed by AFM (�120 nm diameter)

when aggregation is taken into account. Altogether, these data

provide strong evidence that exosome-like vesicles are respon-

sible for cell-cell communication between P. falciparum-

infected RBCs.
Cell 153, 1120–11
An Exported P. falciparum Protein Is
Required for Efficient
Communication
We hypothesized that P. falciparum

proteins required for communication

between parasite-infected RBCs would

include those involved in trafficking to

host cells. Previously, we performed

a gene knockout screen and identified

proteins, named PfEMP1 trafficking pro-

tein (PfPTP), required for the trafficking

of virulence protein P. falciparum erythro-

cyte membrane protein 1 (PfEMP1) (Maier

et al., 2008). PfEMP1 is trafficked to

membranous structures called Maurer’s

clefts that bud from the parasitophorous

vacuolar membrane, migrate to the

underside of host cells, and insert into

the RBC membrane (Kriek et al., 2003;

Papakrivos et al., 2005). We showed that

parasites CS2idhfrDPTP1, CS2idhfrDPTP2

(See also Figure S3), and CS2idhfrDPTP3

do not transfer PfEMP1 to the parasite-

infected RBC surface (Maier et al., 2008).

These knockout parasites were tested

to determine whether they could receive

a plasmid from donor CS2eBsdGFP.

Transfer of resistance to Bs was efficient

for CS2idhfrDPTP1 and CS2idhfrDPTP3;

however, it was greatly reduced for

CS2idhfrDPTP2 (Figure 6A). There was
no significant difference between CS2idhfrDPTP2 and

CS2idhfrDPTP1 growth rates in the absence of Bs, indicating

that the loss of PfPTP2 reduces cell-cell communication

in coculture experiments. These experiments demonstrate

that PfEMP1 is not required for efficient communication and
33, May 23, 2013 ª2013 Elsevier Inc. 1127



Figure 6. Communication between Para-

sites Is Dependent on the Maurer’s Cleft

Vesicle- Located Protein PfPTP2

(A) Cell-cell communication screening of

P. falciparum knockout strains. CS2idhfrDPTP1,

CS2idhfrDPTP2 (see Figure S3), and CS2idhfrDPTP3

have gene disruptions blocking PfEMP1 trafficking

to parasite-infected RBCs. Knockout lines cocul-

tured with donor CS2eBsdGFP for 5 days in Bs+WR.

Final parasitaemia expressed as a percentage of

CS2idhfr920. Scale bars represent the mean and

SEM of three experiments.

(B) Localization of PfPTP2 in CS2idhfrPTP2/HA-

infected RBCs. First panel, PfPTP2 (green); second

panel, SBP1 (Maurer’s cleft marker; red); third

panel, DAPI (blue); fourth panel, all panels merged.

(C) Immuno-EM of CS2idhfrPTP2/HA-infected RBCs

after treatment with equinotoxin II. MC, Maurer’s

cleft; RBCM, red blood cell plasma membrane;

PVM, parasitophorous vacuole membrane. a, the

side panel shows higher magnification of Maurer’s

cleft; arrows point to budding vesicle where PfPTP2

is localized. b, arrows point to PfPTP2 on budding

vesicle and membrane material. c, an example of

budding vesicle with PfPTP2 localization.

(D) A comparison of vesicle release from

CS2idhfrDPTP1 and CS2idhfrDPTP2 by AFM. The

quantity of vesicles released into transwell super-

natants is shown in the corresponding histogram.

The scale bar represents 5 mm.

See also Figure S4 and Table S2.
suggest that PfPTP2 plays a role in communication and plasmid

transfer.

To address the potential roles of PfPTP2 in intercellular

communication, we determined its subcellular localization using

superresolution microscopy. We used CS2idhfrPTP2/HA-infected

RBCs (see Figure S3) and identified large numbers of structures

in host cell cytoplasm, some of which appeared to be budding

from Maurer’s clefts (labeled with antibodies to skeleton binding

protein 1 [SBP1]) (Figure 6B) (Maier et al., 2007). PfPTP2 was

further localized to membranous structures budding from

Maurer’s clefts by immunoelectron microscopy, suggesting

that PfPTP2-labeled material in host cell cytoplasm was derived

from these membranous organelles (Figure 6C, a and inset, b,

and c). The solubility of PfPTP2 was consistent with its associa-

tion on the outer membrane of Maurer’s clefts and vesicles,

either through binding to lipid or a protein(s) in the membrane

(see Figure S4). These results suggest that PfPTP2 functions in

the budding of vesicles from Maurer’s clefts.
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Furthermore, if these cytoplasmic vesi-

cles were the source of extracellular vesi-

cles then CS2idhfrDPTP2 parasites, which

lack the function of PfPTP2, then they

would have greatly reduced quantities in

the extracellular space. To examine this,

we used AFM to quantitate vesicles in su-

pernatants of CS2idhfrDPTP2 in compari-

son to CS2idhfrDPTP1 (Figure 6D). Indeed,

CS2idhfrDPTP2 (0.2 ± 0.1 vesicles/
100 mm2, width 74.8 ± 8.3 nm) released 16-fold fewer vesicles

into the supernatant than CS2idhfrDPTP1 (3.2 ± 1.1 vesicles/

100 mm2, width 76.6 ± 1.62 nm), suggesting these particles are

derived from the intracellular PfPTP2-coated vesicles

(Figure 6D). Moreover, this result was consistent with the signif-

icantly impaired ability of CS2idhfrDPTP2 for cell-cell communi-

cation. These data strongly suggest PfPTP2 functions in the

budding of vesicles from Maurer’s clefts and the release of exo-

some-like vesicles into supernatant, implicating P. falciparum’s

molecular machinery in communication.

Communication between P. falciparum Parasites
Increases Sexual Differentiation
Although it was clear that cocultured P. falciparum lines effi-

ciently transfer DNA, we made the interesting observation that

blood-stage parasites disappeared over 2 weeks and were re-

placed by increased levels of gametocytes (sexual forms). To

explore whether communication between P. falciparum cells



promotes sexual differentiation, we determined whether game-

tocytes originating from cocultured 3D7idhfrmCh (mCherry) and

3D7iBsdCK1-GFP (GFP) on Bs+WR expressed both fluorescent

proteins (Figure 7A). Live fluorescence microscopy of different

stages of developing gametocytes showed cytoplasmic GFP

and nuclear mCherry, thus confirming the transfer of plasmids.

The plasmids in these parasites are integrated via a single

recombination and, consequently, can frequently loop out to re-

form episomal plasmids. Thus, it is likely that these have been

transferred as plasmids rather than directly from a chromosomal

location.

Next, we compared the quantity of gametocytes produced by

3D7edhfrGFP and CS2eBsdGFP when cocultured in Bs+WR. Ga-

metocytes were quantified for 3D7edhfrGFP and CS2eBsdGFP

cultured alone with few gametocytes observed (Figure 7B). In

contrast, 17-fold more gametocytes were seen for

3D7edhfrGFP+CS2eBsdGFP cocultures (Figure 7B). Similar re-

sults were observed for combinations of 3D7idhfrmCh and

3D7iBsdCK1-GFP parasites (Figure 7C). Furthermore, in a comple-

mentary approach to fully quantify gametocytogenesis, we used

fluorescence-activated cell sorting analysis of Bs+WR treated

3D7edhfrGFP and CS2eBsdGFP parental line and cocultures

with N-acetyl glucosamine (NAG) depletion of asexual, but not

gametocyte, forms (Gupta et al., 1985) (Figures 7D and 7E).

Again, 3D7edhfrGFP and CS2eBsdGFP, when cultured alone, pro-

duced low levels of gametocytes, whereasmixtures in drugs effi-

ciently produced high levels. The 3D7idhfr/BsdD175/181 line,

which has both hdhfr and bsd inserted into the genome (Figures

7D and 7F) (Lopaticki et al., 2011), was used as a control, and it

showed that gametocyte production, although clearly evident,

was much lower than in cocultured parasites. The level of con-

version of Bs+WR-selected cells from surviving blood-stage par-

asites to gametocytes in mixed cultures was very efficient, and

these experiments suggest that most, if not all, of the population

that received a plasmid underwent sexual differentiation to ga-

metocytes. These findings demonstrate that cell-cell communi-

cation between P. falciparum parasites allows parasite survival

and increased differentiation of gametocytes for disease

transmission.

DISCUSSION

Cell-cell communication and the social behavior of cells within a

population have become common features in organisms ranging

from higher eukaryotes to single-cell eukaryotes and bacteria

(Ratajczak et al., 2006; Belting and Wittrup, 2008). This social

and cooperative behavior plays an important role in many

different processes ranging from cell differentiation to the devel-

opment of bacterial and single-cell eukaryotic ecosystems for

the enhancement of survival (Gerdes and Carvalho, 2008; Lopez

et al., 2011; Marzo et al., 2012). Protozoan parasites such as

T. brucei have a population-sensingmechanism that is important

for transmission to the insect vector (MacGregor et al., 2011;

Reuner et al., 1997; Vassella et al., 1997). Here, we show that

P. falciparum-infected RBCs are capable of transferring DNA

within the population via EVs that we have termed exosome-

like. Importantly, these exosome-like vesicles are shed from

P. falciparum-infected RBCs and allow parasites to transfer,
receive, and propagate information that is advantageous for

population growth under stressed and nonstressed conditions.

Furthermore, cell-cell communication facilitates the differentia-

tion and activation of parasites competent for transmission to

mosquito vectors. Increased production of exosome-like vesi-

cles under conditions of stress, such as drug pressure, would

be highly advantageous for parasite survival in providing a

means to react to environmental conditions. In other words,

P. falciparum promotes the differentiation of sexual forms and

escape to the vector in response to conditions in the host less

conducive for survival.

The EVs released from P. falciparum-infected RBCs are

termed exosome-like because they are similar in size to

mammalian exosomes and share common features, such as be-

ing released from viable cells (Bang and Thum, 2012; Record

et al., 2011). It is not clear whether these vesicles are the

same as MPs derived by the vesiculation of RBC membranes

involved in stimulation of proinflammatory responses (Couper

et al., 2010), but our finding that there are subpopulations of

vesicles with different sizes suggests that they may be function-

ally distinct. Previously, OptiPrep gradients have been used to

purify exosomes from human cells and provide a method for

the high-resolution separation of vesicles (Coleman et al.,

2012). Using this methodology, we have shown that

P. falciparum cell-cell communication activity was restricted to

specific fractions. Visualization of the contents of fractions by

AFM and electron microscopy showed that they contained

spherical vesicles of�70 nm diameter. The ability to purify these

vesicles provides the opportunity for additional downstream

analysis, including proteomics, lipidomics, genomics, and struc-

tural biology, to further define functional characteristics of these

exosome-like vesicles.

The identification of P. falciparum protein PfPTP2, which plays

a role in mediating intercellular communication, suggests that

exosome-like vesicles may be derived from Maurer’s clefts

and not RBC membranes. The PfPTP2-coated particles in

P. falciparum-infected RBCs appear to be vesicular structures,

previously defined as electron-dense vesicles (EDVs), or may

be related to other particles called J-dots (Hanssen et al.,

2010; Külzer et al., 2010). Although the function of EDVs is un-

known, their size is consistent with that observed for PfPTP2-

coated structures (Hanssen et al., 2010). The localization of

PfPTP2-coated vesicles in the process of budding fromMaurer’s

clefts suggests that they are formed from these large vesicular

structures that play a role in protein sorting, targeting, and pack-

aging and, as such, have similarities to late endosomes. Whether

the PfPTP2-coated vesicles are equivalent toMVBs and whether

the exosome-like vesicles originate directly from them by secre-

tion across the RBC plasma membrane remains to be deter-

mined. Disruption of PfPTP2 function decreases the number of

extracellular exosome-like vesicles, and this is consistent with

PfPTP2-labeled vesicles having a pivotal role in the genesis

and transmission of exosome-like vesicles. However, it is also

clear that PfPTP2 is important for receipt of the signal by the

target cell.

The ability of P. falciparum to differentiate from blood-stage

asexual to sexual forms is essential for transmission to mos-

quito vectors (reviewed in Alano, 2007). How this process is
Cell 153, 1120–1133, May 23, 2013 ª2013 Elsevier Inc. 1129



Figure 7. Communication between Parasites Results in Differentiation to Sexual Stages and Transfer of DNA

(A) Fluorescence microscopy of gametocytes produced by 3D7idhfrmCh+3D7iBsdCK1-GFP in Bs+WR.

(B) Gametocytaemias from 3D7edhfrGFP or CS2eBsdGFP alone and 3D7edhfrGFP+CS2eBsdGFP cocultured.

(C) Gametocytaemias from 3D7iBsdCK1-GFP or 3D7idhfrmCh alone and 3D7iBsdCK1-GFP+3D7idhfrmCh cocultured with Bs+WR. Microscopy counts expressed as

percent gametocytes of uninfected RBCs.

(D) Flow cytometry of gametocytaemia for Bs+WR treated 3D7edhfrGFP and CS2eBsdGFP parental controls, 3D7edhfrGFP+CS2eBsdGFP cocultured,

and 3D7idhfrBsd175/181 double-drug-resistant control. Gametocytes measured are from 3D7edhfrGFP (data not shown). Gametocytaemia for the 50/50

3D7edhfrGFP+CS2eBsdGFP coculture has been calculated to reflect the contribution of the 3D7edhfrGFP line. Gametocytaemia is expressed as a percentage of

3D7iWRBsd175/181 control for 200,000 RBCs. Scale bars represent the mean and SEM of three or more experiments.

(E) Giemsa smears of sorted NF54 gametocytes confirmed gating of gametocytes by flow cytometry.

(F) Representative flow cytometry plots with gated gametocyte population (square gate) for 3D7edhfrGFP and CS2eBsdGFP controls and

3D7edhfrGFP+CS2eBsdGFP coculture compared to 3D7idhfrBsd175/181 on Bs+WR.
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activated and regulated is not known. Our study demonstrates

that exosome-like vesicles released from P. falciparum-infected

RBCs enable the survival of drug-treated parasites and lead

to greatly increased numbers of gametocytes competent for

transmission to the next host. Intriguingly, in T. brucei stumpy

induction factor (STI) leads to increased differentiation to the

transmission-competent stumpy form at high-parasite loads

(MacGregor et al., 2011; Reuner et al., 1997; Vassella et al.,

1997). Here, the high levels of gametocytes achieved during

cell-cell communication suggest active signaling of gametocy-

togenesis. This is supported by the demonstration that vesicles

purified from culture supernatants act as a messenger for the in-

duction of gametocytogenesis (Mantel et al., 2013). The exact

nature of any activation signal is unknown; however, exosomes

in mammalian cells are key players in signaling between cells

and are known to transfer messenger RNA, microRNA, lipid me-

diators, and proteins (Bang and Thum, 2012; Record et al.,

2011).

In summary, we have demonstrated that cell-cell communica-

tion occurs between P. falciparum-infected RBCs and that this

provides a mechanism for increasing parasite survival in times

of stress and promoting differentiation to sexual forms. This is

a key advantage for parasites in maintaining infection of the hu-

man host in order tomaximize the chances of transmission to the

mosquito vector (MacGregor et al., 2011). Furthermore, we pro-

vide evidence that exosome-like vesicles are responsible

for parasite communication. Moreover, we identified a key

P. falciparum protein, which is for this pathway. It is likely that

many other P. falciparum proteins are involved in the develop-

ment and secretion of these vesicles in the donor cells as well

as detecting the signal in the recipient. This process is potentially

an excellent target for therapeutic approaches for blocking

P. falciparum transmission to the vector and will be an important

factor that requires addressing with respect to the spread of

further parasite drug resistance.
EXPERIMENTAL PROCEDURES

Parasite Lines

Parasite lines are as follows: CS2eBsdGFP (Ataı́de et al., 2010); 3D7edhfrGFP

(GFP fused to PfEMP3, PF3D7_0201900) (Boddey et al., 2010); 3D7idhfrmCh

(mCherry fused to PF3D7_0919000) (Volz et al., 2010); 3D7iBsdCK1-GFP (GFP

fused to CK1, PF3D7_1136500) (D. Dorin-Semblat and C. Doerig, personal

communication); CS2idhfr920 (knockout of PFB0920w/PF3D7_0220100);

CS2idhfrDPTP1, CS2idhfrDPTP2, and CS2idhfrDPTP3 (knockout of PFB0106c/

PF3D7_0202200, Pfptp1; MAL7P1.172/PF3D7_0731100, ptp2, and

PF14_0758/PF3D7_1478600, ptp3, respectively) (Maier et al., 2008);

3D7idhfr175/181 (3D7 line with knockouts of EBA-175 and EBA-181) (Lopaticki

et al., 2011); and CS2idhfrPTP2/HA (Pfptp2 gene, MAL7P1.172/

PF3D7_0731100, tagged with HA) (see Figure S3).
Parasite Culture and Coculture Experiments

Use of human red blood cells was approved by the Walter and Eliza Hall Hu-

man Research Ethics Committee (ethics number 86/17) and an Australian

Red Cross Blood Service Agreement (11-09VIC-01). P. falciparum parasites

were cultured in erythrocytes with routine methods. Ring-stage parasites

were mixed at a 50/50 ratio between 2% to 4% hematocrit and 1% to 1.5%

parasitaemia with growth (rings) counted 3 or 5 days postsetup by microscopy

of Giemsa-stained thin smears. Variations on the parasite mix experiments are

described in the Extended Experimental Procedures.
Electroporation of RBCs and Plasmid Addition

pHGBrHrBl-1/2 plasmid (400 mg; encodes Bsd) (Wilson et al., 2010) was added

or transfected into RBCs (Fidock andWellems, 1997) and added to cultures of

trophozoite stage CS2idhfr920. CS2eBsdGFP+CS2idhfr920 parasites served as

a positive control. Drugs Bs+WR (2.5 mg/ml and 5 nM, respectively) were

added to rings.

Live Fluorescence and Immunofluorescence

For immunofluorescence assays, iRBCswere fixed by standardmethods (Volz

et al., 2012). Cells were imaged on a Zeiss Elyra PS.1 SR-SIM platform (Carl

Zeiss) or a line scan confocal Zeiss LSM 5 LIVE fluorescent microscope. Struc-

tured illumination microscopy was performed on a DeltaVision OMX V4 Blaze

3D Structured Illumination Microscopy (3D-SIM) System (Applied Precision).

Fluorescent In Situ Hybridization and PCR

FISH was carried out as described previously (Volz et al., 2012). FISH experi-

ments were visualized using a Zeiss LSM 5 LIVE fluorescent microscope.

OptiPrep Gradient Purification of Exosome-like Vesicles

Media components were fractionated by centrifugation (250, 000 3 g, 18 hr,

4�C) through a continuous 10%–30% OptiPrep (Axis-Shield) gradient. Frac-

tions (1 ml) were collected from the top of the gradient for further analysis.

Atomic Force Microscopy

Transwell supernatants were imaged in situ after deposition on mica surfaces.

AFM images were then analyzed for number, diameter, and height (Extended

Experimental Procedures).

Electron Microscopy

Magnet-purified infected RBCs were fixed in 2% paraformaldehyde and PBS,

treated with Equinatoxin II (10 mg) (Anderluh et al., 1996) refixed in 2% para-

formaldehyde and 0.0075% glutaraldehyde and PBS, and blocked with 1%

bovine serum albumin and PBS as described previously (Jackson et al.,

2007). Cells were incubated with antibody (rabbit anti-PfPTP2) and 6 nm

gold-conjugated protein A (Aurion) and observed on a Phillips CM120 at 120

kV. Negative staining and cryo-TEM of purified vesicles from OptiPrep frac-

tions was performed as described previously (Coleman et al., 2012). TEM

was performed with a Tecnai G2 F30 (FEI) transmission electron microscope

operating at 300 kV (Bio21 Molecular Science and Biotechnology Institute)

with defocus between 10 and 16 mm across 15,0003 to 39,0003

magnification.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and two tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.04.029.
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