Finite p-groups of class 2 have noninner automorphisms of order p^{*}

A. Abdollahi ${ }^{\text {a,b }}$
a Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
${ }^{\mathrm{b}}$ Institute for Studies in Theoretical Physics and Mathematics (IPM), Iran
Received 4 April 2006
Available online 14 December 2006
Communicated by Gernot Stroth
Dedicated to Professor Aliakbar Mohammadi Hassanabadi

Abstract

We prove that for any prime number p, every finite non-abelian p-group G of class 2 has a noninner automorphism of order p leaving either the Frattini subgroup $\Phi(G)$ or $\Omega_{1}(Z(G))$ elementwise fixed.

 © 2006 Elsevier Inc. All rights reserved.Keywords: Automorphisms of p-groups; Nilpotent groups of class 2; Noninner automorphisms

1. Introduction

Let p be a prime number and G be a non-abelian finite p-group. A longstanding conjecture asserts that G admits a noninner automorphism of order p (see also Problem 4.13 of [7]). By a famous result of W. Gaschütz [3], noninner automorphisms of G of p-power order exist. M. Deaconescu and G. Silberberg [2] reduced the verification of the conjecture to the case in which $C_{G}(Z(\Phi(G)))=\Phi(G)$. H. Liebeck [5] has shown that finite p-groups of class 2 with $p>2$ must have a noninner automorphism of order p fixing the Frattini subgroup elementwise. It follows from a cohomological result of P. Schmid [6] that the conjecture is true whenever G is regular. Here we show the validity of the conjecture when G is nilpotent of class 2 . In fact we prove that

[^0]Theorem. For any prime number p, every finite non-abelian p-group G of class 2 has a noninner automorphism of order p leaving either the Frattini subgroup $\Phi(G)$ or $\Omega_{1}(Z(G))$ elementwise fixed.

The unexplained notation is standard and follows that of Gorenstein [4].

2. Preliminaries

We use the following facts in the proof of the Theorem.
Remark 2.1. If G is a group whose derived subgroup G^{\prime} is a finite cyclic p-group for some prime p, then $G^{\prime}=\langle[a, b]\rangle$ for some $a, b \in G$. Since G^{\prime} is generated by commutators $[x, y]$ $(x, y \in G)$ whose orders are p-powers and G^{\prime} is abelian, $\exp \left(G^{\prime}\right)=\max \{|[x, y]|: x, y \in G\}$. But G^{\prime} is a finite cyclic group and so $\exp \left(G^{\prime}\right)=\left|G^{\prime}\right|$. Hence G^{\prime} is generated by one of the elements of the set $\{[x, y]: x, y \in G\}$.

Remark 2.2. Let G be a finite nilpotent group of class 2 such that $G^{\prime}=\langle[a, b]\rangle$ for some $a, b \in G$. Then by a well-know argument (e.g., see the proof of Lemma 1 of [1]) we have $G=$ $\langle a, b\rangle C_{G}(\langle a, b\rangle)$. We give it here for the reader's convenience: for any $x \in G$, we have $[a, x]=$ $[a, b]^{s}$ and $[b, x]=[a, b]^{t}$ for some integers s, t. Then $\left[a, b^{-s} a^{t} x\right]=1$ and $\left[b, b^{-s} a^{t} x\right]=1$. Hence $b^{-s} a^{t} x \in C_{G}(\langle a, b\rangle)$ and so $G=\langle a, b\rangle C_{G}(\langle a, b\rangle)$.

Remark 2.3. Let G be a nilpotent group of class $2, x, y \in G$ and $k>0$ be an integer. Then since $[y, x]=y^{-1} x^{-1} y x \in Z(G)$, it is easy to see by induction on k that $(x y)^{k}=x^{k} y^{k}[y, x]^{\frac{k(k-1)}{2}}$. Also we have $[x, y]^{m}=\left[x^{m}, y\right]=\left[x, y^{m}\right]$ for all integers m.

We shall make frequent use of Remark 2.3 without reference in the proof of the Theorem. Especially we use it in such a sample situation: if we know that x and y are two elements in a nilpotent 2-group of class 2 , $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $|[x, y]|=2^{n}$ and $x^{m 2^{n}}=y^{-2^{n}}$, then by Remark 2.3 and the hypothesis we have

$$
\left(x^{m} y\right)^{2^{n}}=x^{m 2^{n}} y^{2^{n}}\left[y, x^{m}\right]^{2^{n-1}\left(2^{n}-1\right)}=[y, x]^{m 2^{n-1}\left(2^{n}-1\right)} .
$$

Since $[x, y]=\left[x, x^{m} y\right]$ and $|[x, y]|=2^{n}$, we have that $\left(x^{m} y\right)^{2^{n-1}} \neq 1$ and so $2^{n}| | x^{m} y \mid$. It follows that $\left|x^{m} y\right|=2^{n+1}$, if m is odd, and $\left|x^{m} y\right|=2^{n}$, if m is even.

Remark 2.4. Let G be a finite p-group of class 2 . If G has no noninner automorphism of order p leaving $\Phi(G)$ elementwise fixed, then $Z(G)$ must be cyclic. In fact by the part (a) of the proof of [5, Theorem 1], we have G^{\prime} is cyclic. Now if $Z(G)$ is not cyclic, then $\Omega_{1}(Z(G))$ is not cyclic and so $\Omega_{1}(Z(G)) \nless G^{\prime}$. Now take an element $z \in \Omega_{1}(Z(G)) \backslash G^{\prime}$, a maximal subgroup M of G and $g \in G \backslash M$. Then the map α on G defined by $\left(m g^{i}\right)^{\alpha}=m g^{i} z^{i}$ for all $m \in M$ and integers i, is a noninner automorphism of order p leaving M (and so $\Phi(G)$) elementwise fixed, a contradiction.

Note that if $Z(G)=\Phi(G)$, then one may replace the latter argument by the part (iv) of Lemma 2 of [5].

Remark 2.5. Let G be a group and H, K be subgroups of G such that $G=H K$ and $[H, K]=1$. If there exists a noninner automorphism φ of order p in $\operatorname{Aut}(H)$ leaving $Z(H)$ elementwise
fixed, then the map β on G defined by $(h k)^{\beta}=h^{\varphi} k$ for all $h \in H$ and $k \in K$ is a noninner automorphism of G of order p leaving $Z(G)$ elementwise fixed. It is enough to show that β is well defined and this can be easily seen, because $x^{\varphi}=x$ for all $x \in H \cap K=Z(H)$, by hypothesis.

3. Proof of the Theorem

By the main results of [2] and [5], we may assume that $\Phi(G)=C_{G}(Z(\Phi(G)))$ and $p=2$. By Remark 2.4, we may further assume that $Z(G)$ is cyclic. Now Remark 2.1 implies that there exist elements $a, b \in G$ such that $G^{\prime}=\langle[a, b]\rangle$. Let $H=\langle a, b\rangle$. Then it follows from Remark 2.2 that $G=H C_{G}(H)$ and by Remark 2.5 it is enough to construct a noninner automorphism φ of H of order 2 leaving $Z(H)$ elementwise fixed.

Note that $\left|G^{\prime}\right|=\left|H^{\prime}\right|=|[a, b]|=2^{n}$ for some integer $n>0$. Since G^{\prime} is cyclic and $G^{\prime} \leqslant Z(G)$,

$$
\exp \left(\frac{G}{Z(G)}\right)=\exp \left(\frac{H}{Z(H)}\right)=2^{n}
$$

which implies that $Z(H)=\left\langle a^{2^{n}}, b^{2^{n}},[a, b]\right\rangle \leqslant Z(G)$. If $n=1$, then $\Phi(G)=G^{2} \leqslant Z(G)$. Since $\Phi(G)=C_{G}(Z(\Phi(G)))$, we have $G=\Phi(G)$, which is impossible. Therefore $n \geqslant 2$. Since $Z(H)$ is cyclic, either $a^{2^{n} i}=b^{2^{n}}$ or $a^{2^{n}}=b^{2^{n} i}$ for some integer i. Suppose that $a^{2^{n} i}=b^{2^{n}}$. If i is even, then $\left|a^{-i} b\right|=2^{n}$ and $\left(a^{-i} b\right)^{2^{n-1}} \notin Z(H)$, as $[a, b]=\left[a, a^{-i} b\right]$ has order 2^{n}. If $c=a^{-i} b$, then the map φ on H defined by $\left(a^{s} c^{t} x\right)^{\varphi}=\left(a c^{2^{n-1}}\right)^{s} c^{t} x$ for all $x \in Z(H)$ and integers s, t, is a noninner automorphism of H of order 2 leaving $Z(H)$ elementwise fixed. If $a^{2^{n}}=b^{2^{n} i}$ and i is even, then we can similarly construct such a $\varphi \in \operatorname{Aut}(H)$.

Hence, from now on we may assume that $a^{2^{n} i}=b^{2^{n}}$ for some odd integer i and so $c=a^{-i} b$ has order 2^{n+1}.

Now suppose that $[a, b] \in\left\langle a^{2^{n}}\right\rangle$. Then $Z(H)=\left\langle a^{2^{n}}\right\rangle$ and so $\left|a^{2^{n}}\right| \geqslant 2^{n}$. Thus $a^{2^{n} j}=c^{2^{n}}$ for some integer j. Since $n \geqslant 2,\left|a^{2^{n}}\right| \geqslant 2^{n}$ and $|c|=2^{n+1}, j$ must be even. This implies that $d=a^{-j} c$ has order 2^{n} and $d^{2^{n-1}} \notin Z(H)$, as $[a, b]=[a, d]$ is of order 2^{n}. Hence the map φ on G defined by $\left(a^{s} d^{t} x\right)^{\varphi}=\left(a d^{2^{n-1}}\right)^{s} d^{t} x$ for all $x \in Z(H)$ and integers s, t is the desired automorphism φ of H.

Thus we may assume that $[a, b] \notin\left\langle a^{2^{n}}\right\rangle$. Since $Z(H)=\left\langle a^{2^{n}},[a, b]\right\rangle$ is cyclic, it follows that $Z(H)=\langle[a, b]\rangle=H^{\prime}$. On the other hand,

$$
\frac{H}{Z(H)}=\langle a Z(H)\rangle \times\langle b Z(H)\rangle
$$

and $|\langle a Z(H)\rangle|=|\langle b Z(H)\rangle|=2^{n}$, which implies that the element $e=a^{-2^{n-1} i} b^{2^{n-1}}$ does not belong to $Z(H)$ and $|e|=2$ as $n \geqslant 2$. Now the map φ on H defined by $\left(a^{s} b^{t} x\right)^{\varphi}=(a e)^{s}(b e)^{t} x$ for all $x \in Z(H)$ and integers s, t is the required automorphism φ. This completes the proof.

Acknowledgment

The author thanks the Center of Excellence for Mathematics, University of Isfahan.

References

[1] J.E. Adney, Ti Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965) 137-143.
[2] M. Deaconescu, G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra 250 (2002) 283287.
[3] W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. Algebra 4 (1966) 1-2.
[4] D. Gorenstein, Finite Groups, Harper \& Row, New York, 1968.
[5] H. Liebeck, Outer automorphisms in nilpotent p-groups of class 2, J. London Math. Soc. 40 (1965) 268-275.
[6] P. Schmid, A cohomological property of regular p-groups, Math. Z. 175 (1980) 1-3.
[7] V.D. Mazurov, E.I. Khukhro (Eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, vol. 16, Russian Academy of Sciences, Siberian Division, Institute of Mathematics, Novosibirsk, 2006.

[^0]: * This research was in part supported by a grant from IPM (No. 85200032).

 E-mail address: a.abdollahi@ math.ui.ac.ir.

