
JOURNAL OF MULTIVARIATE ANALYSIS 33, 1-16 (1990) 

Elliptical Symmetry and Exchangeability 
with Characterizations 

ABDULHAMID A. ALZAID 

King Saud University, Saudi Arabia 

C. RADHAKRISHNA RAO* 

University of Pittsburgh 

AND 

D. N. SHANBHAG 

University of Sheffield, Sheffield S37RH, United Kingdom 

Communicated by the Editors 

We establish certain general characterization results on elliptically symmetric 
distributions and exchangeable random variables. These results yield, in particular, 
the results given earlier by Maxwell, Bartlett, Kingman, Ali, Smith, Arnold and 
Lynch, and several others. 0 1990 Academic press. hc. 

1. INTRODUCTION 

Several important properties of elliptically symmetric distributions 
(e.s.d.s) or, in particular, of spherically symmetric distributions (s.s.d.s) are 
in some sense extended versions of certain properties of multivariate 
normal distributions. Many of these properties appear to be of statistical 
relevance with applications especially in Bayesian inference. A review of the 
literature on e.s.d.s is contained in a recent paper by Chmielewski [6]. 

There are several ways of defining e.s.d.s or s.s.d.s. However, we shall 
restrict ourselves in this discussion to the following definitions. 
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A distribution on R” is said to be an e.s.d. if its characteristic function 
d(t) is a real function of tCt’ for some non-negative definite real symmetric 
matrix 2. Furthermore, a distribution on R” is said to be an s.s.d. if its 
characteristic function d(t) is a real function of lltll (11 .I[ stands for the usual 
norm). 

From the work of Schoenberg [ 181 and subsequent authors it is known 
that an n-vector random variable X (assumed clearly to be a row) has an 
e.s.d. as defined above if and only if it has the representation 

X g TUC, (1.1) 

where C is an n x n real matrix such that C’C = C, U is an n-vector random 
variable that is uniformly distributed on {x E R”: llxil = 1 } and T is a non- 
negative real random variable independent of U. It is implicit here that the 
distribution of X in question depends on C only through C. An s.s.d. is 
obviously a special case of e.s.d. Indeed, any n-vector random variable X 
has an s.s.d. if and only if it satisfies (1.1) with C= I. In the present paper, 
we use the notation &,JC) for the class of e.s.d.s defined by (1.1). The class 
of spherical distributions is denoted by &,(I). 

Maxwell [15], Bartlett [4], Kac [lo], Hartman and Wintner [7], 
Kelker [12], Nash and Klamkin [16], Ali [l], Arnold and Lynch [3], 
and several others have characterized the normal distributions in the class 
gn(Z), for n > 2, as the one having properties such as: 

1. The components X,, X,, . . . . X, of the random variable X are inde- 
pendently distributed. 

2. I= (l/n)@-, + ... +X,) and s’=(l/(n--l))[(X,-X)‘+ ... + 
(X, - X)*] are independently distributed. 

Kingman [ 131 and, more recently, Smith [21] have characterized 
certain mixtures of univariate normal distributions via sphericity and 
exchangeability. 

The purpose of the present paper is to give some general results charac- 
terizing subclasses of distributions in &(C). In Section 2, we give results 
that enable us to provide a unified treatment to the problems considered in 
the literature cited above, and also to translate the well-known charac- 
terizations of normality, such as Darmois-SkitoviE theorem and other 
results, under the assumption of independence of the components of X, 
based on properties of linear or quadratic statistics, to characterizations of 
normality in the class &(I). In Section 3, we characterize certain proba- 
bility distributions through regression properties of statistics based on 
exchangeable random variables yielding, among other things, certain 
characterizations of members of tp,(Z) and related distributions. As a conse- 
quence of our general results, we obtain the results of Kingman [13] and 
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Smith [21] and also give various other characterizations of distributions 
such as mixed gama, Poisson, binomial, and negative binomial distribu- 
tions. 

2. CHARACTERIZATIONS OF NORMALITY BASED ON ELLIPTICITY 

In this section, we give two general results on the characterization of the 
normal distribution in the class gn(Z). These results immediately establish 
that properties such as 

E(S2 I W) = c as., E(S2 1 IWl) = c a.s., 

E(SI 1x1) = c as., E( 1x1 1 S2) = c a.s., 

E( S 1 X) = c a.s. 

E(R2 I S’) = c a.s., 

etc., where each of the c’s, appearing above and in other equations of the 
paper, represents a constant which could take different values in different 
cases, are characteristic properties of the normal distribution in the class 
&JZ). These results also give several versions of the Darmois-Skitovii: 
theorem under ellipticity or sphericity of the distribution of X = (X,, . . . . X,,). 

Define now the following polynomial functions, 

Ql(x)=Cl ail,,...i, fi X!Y x = (x1, . . . . x,) E R” (2.1) 
i-=1 

Qz(x) = 12 b,...., i, fi X?, x = (x1, . . . . x,) E R”, (2.2) 
r=l 

where x1 and Cz denote summations over ((ii, . . . . i,): i, + . . . + i, = k} 
and {(ii, . . . . i,): i, + . . . + i, = m}, respectively, with k, m > 1 and fixed. We 
shall assume Ql and Q2 to be such that 

P{Q#C)=O} # 1 and f’{Q,(UC) = 0) Z 4 (2.3) 

where U is an n-vector random variable with uniform distribution on the 
unit sphere, for some (and hence all) n x n real C satisfying the condition 
CC = C. Note that the assumption (2.3) is equivalent to 

P{QI(UC)=O} =0 and P{ Q2(UC) = 0} = 0 (2.4) 

for some (and hence all) C satisfying the condition C’C = C (see note A2 
in the Appendix). Then we have the following basic theorem. 
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THEOREM 1. Let b > 0, Q, and Q2 be as defined in (2.1), (2.2), and F be 
a speczyied nondegenerate member of &n(Z) for which the property 

~~/Ql(X)lbllQ~(X)l~=~a.~. (2.5) 

holds, where X-F. Then the property (2.5) characterizes F except for a 
change of scale of the random variable involved, in the class of nondegenerate 
distributions in 8,,(C). (That is, if there is a nondegenerate r.v. Y whose 
distribution belongs to 6$,(C) and satisfies (2.5), then there exists a constant 
A > 0 such that AY has the distribution F.) 

Proof: Let X-FE&,,(Z) and Y-GE&~(Z) both have the property 
(2.5). By the representation ( 1.1 ), X =d T, UC and Y =d TUC, where T, 
and T are nonnegative r.v.3. We show that T = d AT,, which establishes the 
theorem. 

The property (2.5) for Y, with c = 1, without loss of generality, implies 

E{IQ,WC)lb lQWC,l” Tbk+? 

=E{lQ,WC,l” T’? for 880 (2.6) 

with T> 0 as. (Note that P{ T = 0 j > 0 is impossible, since it contradicts 
(2.5) in view of the fact that P{Qi(UC) =0} =O, i= 1,2. Also, in (2.6) we 
take 8 2 0 only because it is sufficient for our purpose; indeed Eq. (2.6) is 
valid for all real 0 with possibly infinite value for both sides for some 8 
values.) In view of the independence of T and U, (2.6) implies 

E{ lQ#JC)l” lQ,(UC)le} E{ Tbk+mO} 

= E( lQz(UC)j”) E{ TmB} for 0>0. (2.7) 

On taking 8 = 0, m ~ ‘bk, 2m-‘bk, . . . . successively, (2.7) yields inductively 

E{Tflbk}<~ for all integers a > 0 

(since E(T’) = 1, and the identity (2.7) gives E{ T’“+ ‘I*‘> < 00 whenever 
E{ Tabk} < co) and hence that E( TO} < 00 for all nonnegative real 0. 
Consequently, we have from (2.7) the identity, with both sides well defined 
and finite, 

E{T Et lQzl”> 
hk+ms) = ~(lQ,lb lQ#?} E(T”e)’ 820, (2.8) 
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where Qi= Qi(UC), i= 1, 2. It follows from Lemma A, given in the 
Appendix and the fact that lQJUC)j is bounded almost surely, that 

gpg 
EtlQAOl 

E{lQJ” IPA = 
Ellog IQA lQzl”> -E{lw IQ21 IQ? lQ,l”> 

E{lQ,l”, 
t29j 

E{lQ,l” lQA”;- ’ 
+logcr-loga as B-cc, (2.10) 

with a as the right extremity of the distribution of lQ*l. To establish (2.10), 
we take $ of Lemma A, to be such that I,+(Z) = log 2, z E (0, co) and Z as 
respectively jQzl and a r.v. Z with d.f., 

E~IQ~lb~~,~~,~~~~lE~IQ~lb~~ 

Then it follows that each of the two quantities in (2.9) tends to log a. From 
(2.10), we conclude that 

$log E{Tbk+’ }--$-logE{7.“}+0 as e-co. (2.11) 

Since E( TH >, 6 E [O, co ) is the restriction of a moment generating func- 
tion to [0, co), it is obvious that it is log-convex and hence d log E{ T”}/de 
is increasing on (0, co). Consequently, from (2.1 l), we conclude that 

-$log E(T’+@ j--$ogE{T”j+O as O-+cc (2.12) 

for every 0’ 2 0. If T and T, are two positive r.v.‘s for which (2.8) is valid, 
then it follows that E{ T’)/E{ (Tl)‘} is p eriodic with period bk for 8 20. 
Since (2.12) is valid for T as well as T, , 

-&g Em 
E{(T,)‘) 

is independent of 0 for 0 E (0, cc ) or, equivalently, 

E{T’} =A’E{(T$), of2 co, co) (2.13) 

for some positive 1. In view of the uniqueness theorem for Mellin trans- 
forms, Eq. (2.13) implies T =d AT,, which proves the theorem. (Incidentally 
if both T and T, satisfy (2.8) we get ,? = 1; however, we have arrived at this 
situation only because our argument does not take into account scale 
changes.) 

THEOREM 2. .Suppose that I QI (X)1 and I Q,(X)1 are independently dis- 
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tributed, where X - N,(O, C) E &( l?). Zf the independence property holds for 
any other nondegenerate Y-FE C&(Z), then F is the same as N,(O, C), 
except for a change of scale of the random variable. 

Proof: Assume IQ,(X)1 and lQ2(X)l to be independent if X- N,(O, C). 
It is now sufficient if we show that this condition on IQ,(X)1 and lQz(X)l 
with X having nondegenerate distribution in 8”(C) implies that X has a dis- 
tribution of the type N,(O, aZ) for some cc In view of Eq. (1.1) and the con- 
dition that P(Q,(UC) = 0) = 0, i = 1,2, it follows that the independence of 
IQi(X)l and IQ,(X)1 together with the nondegeneracy of X implies T of 
(1.1) to be >O a.s. We then obtain, appealing to the independence of 
IQi(X)l and lQz(X)l and condition (l.l), that, for sl,s2 in some 
neighbourhood of the origin, 

i(s* + .q) w > E{lQAUCNisl> ~~lQ2W~,lis21 
E{ T’S1 > E{ T’“2) = 

~~lQA~~~lisl IQ2WC)lis21 
(2.14) 

with both sides well defined. Since the independence of lQr(X)l and 
IQ,(X)/ is assumed to be valid for X with distribution N,(O, C), we can 
claim that (2.14) is valid for the T corresponding to N,(O, C). Denoting the 
T for N,(O, Z) by T,, we then see that, for s,, s2 in some neighbourhood 
of the origin, 

vl(s, + s2) = WI) W,)? (2.15) 

where 

yqs) = ‘v”} 
E{ T;}’ 

(Y is indeed well defined for all s; however, we require here only the infor- 
mation that it is well defined in a neighbourhood of the origin.) From 
Lemma 1.5.1 in Kagan, Linnik, and Rao [ 1 l] and the fact that E{ T’“} and 
E{ Tg} are characteristic functions, we can then conclude that, for s lying 
in some neighbourhood of the origin, 

E{ T”} = A’“E{ Tb”) 

with 1>0. Since the distribution of log(AT,) (i.e., the logarithm of the 
square root of a certain gamma random variable) is determined uniquely 
by its moments, we have the distribution of log T to be determined by its 
moments and 

log T 2 log(lT,) 
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or, equivalently, 

Hence we have the required result. 

Remark 1. Theorem 1 remains valid if [Q,(X)/ in (2.5) is replaced by 
Qz(X), since the identity with Q,(X) in place of lQz(X)l yields the original 
identity (2.5). Also Theorem 2 remains valid if either IQ,(X)/ is replaced by 
Qi(X) or IQ,(X)1 and lQz(X)l are replaced respectively by Q1(X) and 
Q*(X); this follows because the independence of IQ,(X)1 and Qz(X) implies 
the independence of IQ,(X)1 and IQ,(X)1 and also the independence of 
Q,(X) and es(X) implies that of IQ,(X)1 and lQ,(X)l. 

Remark 2. A result analogous to that of Theorem 2 or its modified ver- 
sion mentioned in Remark 1 remains valid for the uniform distributions on 
{x E R”: llxll= A} (with E. > 0). (Indeed the proof of Theorem 2 illustrates 
that the result is valid if we replace N,,(O, Z) by a member of&(Z) that has 
the corresponding log T well defined with its distribution determined 
uniquely by moments; we have not come across any examples of members 
of g,,(Z) other than normal and spherically uniform, for which some Q,(X) 
and Q*(X) are independent.) It may also be noted that there exist distribu- 
tions F which are neither normal nor spherically uniform, for which a 
property of the type (2.5) is valid. In particular, if X denotes the subvector 
containing the first n (>2) components of a random vector which has 
uniform distribution on {x E R”+“‘: llxll = 11, where m 3 1, then 

E{(n+m-l)Xf+XiIX:}=l a.s.; 

however, X here is neither normal nor spherically uniform. Clearly the X 
satisfies (1.1) with C= I and T as the square root of a beta random 
variable with parameters n/2 and m/2, respectively. Taking a clue from this 
example, it is possible to produce more general examples of the type given 
below supporting our claim: 

EXAMPLE. Let X = (X, , . . . . X,) be an n-vector random variable such 
that 

with U as an n-vector random variable that is uniformly distributed on 
{x E R”: llxll = 1 } and T as the square root of a beta random variable with 
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parameters n/2 and r, respectively, and distributed independently of U, 
where r is any fixed positive real number. Observe that 

where 1 <k <n. In the present case, obviously X is neither spherically 
uniform nor normal; also, if r is not an integral multiple of i, we cannot 
have X to be of the type considered in the previous example. 

Remark 3. It is not true that every characterization of the normal dis- 
tribution based on n independent identically distributed r.v.‘s remains valid 
in the class of s.s.d.s (on R”). In particular, the characterization of the 
normal distribution given by Heyde [9] which is based on the symmetry 
of a conditional distribution does not, in general, remain valid among 
s.s.d.s. (A corrected version of Heyde’s result appears in Kagan, Linnik, 
and Rao [ll, p. 4183.) On the other hand, from Theorems 1 and 2 it 
follows that there exist characterization properties of normality such 
as E(XT+ ... +X,!JXt,+l+ ... +Xi)=c a.s. or independence of 
Xf+ ... +Xk and Xi+, + . . + Xz, where 1 < m < n, in the class of 
s.s.d.s, which do not happen to be characterization properties of normality 
in the class of all probability distributions on R” under the hypothesis that 
the components of X are independent and identically distributed. 

3. CHARACTERIZATIONS BASED ON EXCHANGEABLE 
RANDOM VARIABLES 

Kingman [ 131 and more recently Smith [21] have characterized certain 
mixtures of normal distributions based on infinite sequences of 
exchangeable random variables via the celebrated deFinetti theorem. Smith 
[21] has also given a statistical motivation to this result, especially in 
Bayesian inference. In what follows we shall give a theorem implying that 
characterizations of probability distributions based on sequences of inde- 
pendent and identically distributed random variables of a fairly general 
type can easily be translated into characterizations of mixtures of proba- 
bility distributions based on sequences of exchangeable random variables. 
This result is clearly of potential importance in Bayesian inference and 
yields several results including those of Kingman and Smith. 

Let m be a positive integer and B be a Bore1 subset of R”. Further, let 
{F(.jb):bEB} b e a family of probability distributions such that F(x 1 .) is 
Bore1 measurable on B for each XE R and {($L”, b!“, 11/L”‘, 41”): rc r> be 
a countable family of vectors of real-valued Bore1 measurable functions on 
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R” such that for every probability measure on the Bore1 a-field of R” 
yielding all the projection maps to be independent and identically dis- 
tributed and every r E r, ($ I”, 4:’ ‘) and ($l”, 4F2’) are independent and 
identically distributed. Let 5 = (r,, . . . . 5,) be a vector of extended real- 
valued tail Bore1 measurable functions on R”. We have now the following 
theorem: 

THEOREM 3. Suppose any infinite sequence {X,,: n = 1,2, . ..} of inde- 
pendent and identically distributed random variables satisfies the condition 
that 

q~wwfv(x)) =o, r E r a.s., (3.1) 

where X = (X,, X2, . ..). on!v if there exists a b E B such that PI&X) = b} = 1 
and the df of X, is F(. 1 b). Then, zf (Y,,: n = 1,2, . ..} is a sequence of 
exchangeable random variables, the equation 

qcp(w d:2’(w I am” - IcI12’(Y)} = 0, r E I- as., (3.2) 

where Y = (Y,, Y,, . ..). is valid only zf k(Y) E B a.s. and conditional upon 
k(Y), the random variables Y;s are independent and identically distributed 
with df F(. 1 k(Y)) as. 

Proof (In this proof the identities are to be read as the ones with left- 
hand side well defined and equal to right-hand side). Equation (3.2) is 
equivalent to 

E{ertw!‘)(Y )-i12’(Y ,,$;l,(y) 4;“(y)} = 0, ref, --cO<t<cO (3.3) 

(cf. Laha and Lukacs [14, p. 1031; the result in Laha and Lukacs [14] 
could be viewed as a consequence of the uniqueness theorem corresponding 
to Fourier transforms of finite signed measures). In view of the deFinetti 
theorem (see, for example, Olshen [ 171 for the relevant details), it follows 
that (3.3), in turn, implies that 

IE{ei’~!“(Y)~j1)(y)I~}12=0, r E r a.s., -a3<<<<, (3.4) 

where T is the tail o-field relative to (Y,: n = 1, 2, . ..}. and hence that 

E*re”~!“(‘)~~‘)(Y)j~} =O, -co< t< co, rEra.s., (3.5) 

where E* is the expectation of eit*!l’(Y)#fl)(Y) arrived at via the conditional 
distribution of (II/i’)(Y), #ll)(Y)) g’ iven y-. Clearly (3.5) is valid in view of 
the cited result in Laha and Lukacs [14] if and only if 

wI”(y) I ~(~~~(~llYY)))} =o, r E r, as. (3.6) 

In view of the fact that given r-, {Y,: n = 1, 2, . ..} is a sequence of 
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independent identically distributed random variables almost surely, the 
assumption appearing in the statement of the theorem implies that (3.6) is 
valid only if Pit(Y) E Bl S} = 1 as. and the conditional distribution of Y, 
given y is F(. 1 k(Y)) a.s. The assertion of the theorem now follows easily. 

Remark 4. If tjz”, Ic/,, (*) for each t-ET in the above theorem are both 
nonnegative or both nonpositive then the theorem is also valid with 
$)‘)(Y) - II/~*‘(Y) replaced by $l”(Y) + $l”(Y) for some or all r E r. 

Remark 5. If $I’), $1” are independent of r and r is finite, then the 
theorem remains valid if (3.2) is replaced by 

r~rE(q5~1’(Y) Qf”(Y) j I)“‘(Y) - $(*)(Y)) = 0, a.s., (3.7) 

where @(I) and IJ~(‘) denote the functions 1+91” and $1” that are independent 
of r. Additionally, if we have $“’ and $ (*I both nonnegative or both non- 
positive, then the result in question remains valid when @l)(Y) - @*‘(Y) in 
(3.7) is replaced by $(l)(Y) + It/“‘(Y). 

Remark 6. The multivariate versions of the above results are clearly 
valid in view of deFinetti’s theorem for vectors. 

Remark 7. If the sequence { Y,: n = 1,2, . . . j of exchangeable random 
variables is taken such that for two distinct real values of 8, 

then the above theorem remains valid with the left side of (3.1) replaced by 
the means of the conditional distributions of #l’)(X) given @l”(X) for r E r 
and simultaneously the left-hand side of (3.2) replaced by the means of the 
conditional distribution of CJ~~“(Y) dt2)(Y) given 1+91”(Y) + i,Gt*‘(Y) for r E r. 

Remark 8. If it is assumed that E{ l&l’)(Y) +4y’(Y)l} < cc for r E r, then 
the results of Theorem 3 and also Remark 7 remain valid with “only if” in 
two places replaced by “if and only if.” 

Kingman [ 131 and more recently Smith [21] have characterized 
variance mixtures of symmetric normal distributions and mean-variance 
mixtures of normal distributions on the basis of exchangeability and 
sphericity. To be more precise, Kingman [13] showed that if 
{ Y,: n = 1, 2, . ..} is a sequence of exchangeable random variables such that 
( y, 3 “‘3 Y,) has a spherical distribution, then there exists a nonnegative 
random variable V such that conditional on V, the Yn’s are independent 
N(0, V) random variables (a.s.). Smith [21] extended Kingman’s ideas to 
show essentially that if { Y,,: n = 1, 2, . . . } is a sequence of exchangeable 
random variables such that ( Y, , . . . . Y,) has a central spherically symmetric 
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distribution, then there exist random variables M, V with V>O such that 
conditional on (M, V), the m’s are independent N(M, V) random 
variables. (It may be noted that in Kingman’s and Smith’s results 
degenerate distributions are allowed to be called normal; also it is easily 
seen that the resulting sequence { Y,,} in Kingman’s case has for each II the 
distribution of ( Y,, . . . . Y,) to be spherical and, in Smith’s case, for each n 
the distribution of the vector to be centered spherically symmetric.) 

From Box and Hunter [S], it is clear in view of (1.1) that if (Y,, . . . . Y,) 
is spherically symmetric, then (for some version) 

(3.8) 

where ~i:,),~,~~,~ are the product moments corresponding to the conditional 
distribution of ( Y,, Y,, Y3, Y4) given Y i + . . . + Yi = t. From the defini- 
tion of the centered spherical symmetry in Smith [21], it follows that if 
(Y I, ..., Y,) is centered spherically symmetric, (3.8) is valid with ~i:,),~.~,,,~ as 
the product moments corresponding to the conditional distribution of 

given 

(Y,- y,, y,- y,, y,- y,, Y,- YE), 

(Y,- Y*)*+(Y3- Y‘$+(Ys- Y,)*+(Y,- Y*)*=t. 

We shall now give the following extended versions of the results of 
Kingman [13] and Smith [21]. 

COROLLARY 1. Let { Y,,: n = 1,2, . ..} be a sequence of exchangeable 
random variables. Then, defining pj:,1h,,,,,4 to be the product moments corre- 
sponding to the conditional distribution of ( Y, , Y2, Y3, Y4) given YT + Y: + 
Y: + Y: = t, (3.8) is valid if and only if there exists a nonnegative random 
variable V such that conditional on V, the random variables Y, are inde- 
pendently distributed N(0, V) random variables (U.S.). 

Proof: The “if” part is trivial. We shall now establish the “only if” part. 
Take m= 1, Sr(x)=lim n _ ,( l/n) C; xf if the limit exists and equals zero 
otherwise. Define { F( . 1 b)} to be the family of normal probability distribu- 
tion functions with zero mean. Define 

I-= {L2), 

qq”(X) =x; - 3(x,x,)2, 4%,=x,, 

am”‘= x; - 3(x3x,)2, 4:“(x) =x3, 

p(x)=x;+x;, r=l,2 

l/p(x) =x: + xi, r= 1,2. 
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VarC&)l~$+4Cn~1 f: I wni(X) wnj(x)l ti[(i-- j)/2J 

c: 

j=l i=j+l 

n-1 

Gn+4CsuP lwni(x)l 1 Iwnj(x)l i $[(i-j)/Z] 

x i&n j=l i=j+l 

+O (9) 

as n -+ co, since (A2)(b) and (A3) imply n, -+ cc as n -+ co. 1 

Remark 2.4. (a) It is obvious from inequality (9) that Theorem 2.5 
still holds true if we replace assumption I,“=, $, < co by (lo), i.e., 

suP I wni(x)l i tii +O 

[ I 

as n-ioo. 
i<n i=l 

(10) 

(b) When E)“)‘s are independent r.v.‘s, condition (10) holds automati- 
cally, since tii = 0 for i 2 1. Hence, Theorem 2.5 is a natural generalization 
of Theorem 3 in Georgiev (1988) to the model with dependent observa- 
tions. 

EXAMPLE 2.2. Consider the k-NIV estimator given in Mack [14] with 
weights 

tVni(x)=K(~)/~, K(y), i= 1,2, . . . . n (11) 

where K( .) is a bounded, nonnegative weight function satisfying K(U) = 0, 
for llull > 1. R, is the Euclidean distance between x and its kth nearest 
neighbor, and k = k, satisfies k, + 00, k,ln --t 0 as n --) co. The fixed design 
points xi, . . . . x, are the same as those in Example 2.1. 

It can be shown that R, + 0, and nRff + co, as n + 0~). Therefore, R, in 
k-NN estimator plays the same role as h, in Nadaraya-Watson estimator 
discussed in Georgiev [ 131. Assumptions (A2) and (A3) can be verified for 
Pni(x) by using Lemma 2 of Georgiev along the same line as that of the 
proof of Theorem 1 in Georgiev [ 131. 

We can conclude from the results obtained so far in this section that the 
k-NN estimator is weak and mean square error consistent upon the 
satisfaction of the other conditions in Corollary 2.4 and Theorem 2.5, 
respectively. Further, the array of nearest neighbor weights ( lV,,ix)) is 
fixed design universally consistent, provided the remaining conditions in 
Theorem 2.3 are satisfied. 
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modified version of (3.1) is valid, then X, is normal with mean 5 i(X) and 
variance t2(X) as. The required result is then immediate. 

Remark 9. In view of what appears in Laha and Lukacs [ 141, Kagan, 
Linnik, and Rao [ll], Shanbhag [19,20], Heller [8], and in several other 
places, it is obvious that one can arrive at various other characterizations 
of mixtures of probability distributions on the basis of exchangeable 
random variables. In particular, the resulting sequence of Corollary 2 is 
characterized under a mild restriction that Y, Y, is square integrable by the 
condition that { Y,> F is an exchangeable sequence of random variables 
satisfying for some k > 2, 

E{(Sf - t,W))(Si - 5,(Y)) I PI - P,> = 0 

where l2 is as defined in the proof of Corollary 2, 

a.s., 

Sf= g& i (Y,- y,)2y s;=- 
n=l 

,‘, 2 (Y,+,- p2j2. 
n=l 

In the same notation and under the same restriction, we have 
{Y,: n = 1,2, . ..} to be a sequence of exchangeable random variables 
satisfying 

E{(Sf- P,)(S:-- F2)I F,- F2)=0 a.s. 

(or, alternatively, satisfying 

E{(Sf- F1)(S:- Y2)l P, + F2}=0 a.s. (3.9) 

when the restriction of square integrability of Y, Y, is replaced by the 
restriction that Y,‘s are nonnegative and the conditional expectations are 
taken as in Remark 7) if and only if there exists a nonnegative random 
variable W such that conditional upon W, m’s are independent Poisson 
random variables with mean W a.s. (We allow here the degenerate distribu- 
tion at zero to be called Poisson; it is also worth pointing out that 
(3.9) is implied in particular by the condition that Y,,‘s are such that the 
conditional distribution of ( Y,, . . . . Y,,) given C:” Yi is multinomial a.s.) 
Applying the result of Laha and Lukacs [14], it is possible to arrive at 
analogous characterizations relative to other distributions such as bino- 
mial, negative binomial, gamma, and Meixner hypergeometric. (For the 
definition of a Meixner hypergeometric distribution see Lai [14a].) These 
characterizations have obviously statistical interpretations of the type given 
in Smith [21]. 
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Remark 10. In Bayesian inference, the marginal distribution corre- 
sponding to a random sample of size n could be viewed as the distribution 
of any n-members of an infinite sequence of exchangeable random 
variables. Consequently one could appeal to the results of the present 
section to characterize well-known marginal distributions here via certain 
regression properties. 

APPENDIX 

A,. LEMMA. Zf Z is a positive random variable and II/ is a continuous 
increasing or decreasing function on (0, co) such that cc/(Z) Ze and Ze are 
integrable for each 9 > 8, ( >O), then 

where a* is the right extremity of the distribution of Z. (One could obviously 
extend the statement of the lemma further; however, the existing form is 
sufficient for our purposes.) 

ProoJ There is no loss of generality in assuming II/ to be increasing. 
Then using the notation E( Y; A) to denote J,., Y dP corresponding to a 
random variable Y when A is an event, we have, for z E (0, cr*), 

lim +(z) 2 E{@(Z) ze}/E{ze} 
z+oL* 

= E{ w)(z/4”; z < z} + E{ Il/(z)(z/z)e; z 2 z} 
q (z/z)e; z-c z} + E{ (Z/z)B; z 2 z} 

~ Ic/I(ZT 0) + IL(z) 
$z(z, 0) + 1 ’ 

where 

11/1k 0) = -wmz/z)e; z<z}/E((Z/z)e; z> z} 

(A,.l) 

ll/*(z, e) = E{ (Z/z)“; z < z}/E{ (Z/z)B; z B z}. 
By the Lebesgue dominated convergence theorem and monotone con- 
vergence theorem, it follows that 

$A=, 0) -+ 0 as 0+cofori=1,2. 

Consequently, it follows that the extreme right-hand side of (A, .l) tends to 
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1,9(z) as 0 + co. Since z is arbitrary, we can then conclude that (A, .l ) and 
monotonic continuous nature of 1,9 imply the required result. 

AZ. There is no loss of generality if we take C = I. If 
P(Q,(U) = 0) > 0, then we have either 

Qi(UI, .-T un-1, J l-z+ ... -u;-,)rO 

or 

Q;(uI ,..., u,pl, -&+ . . -u;-,)EO 

for (ui, . . . . u, _ ,) lying in some nonempty open subset of {x E R"- ': 
llxll d l} and hence for all (u,, . . . . u,-i) such that UT+ ...ui-,< 1. (Note 
that 

Qi(uI 9 . . . . u,- , > (-1)’ l-L+ ... -#f-,) 

has a power series expansion for both j = 1 and 2 in terms of ui, . . . . u,- i 
on {(ui,...,u,-i);u:+ ... +~~-,<I}.) This, in turn, implies that if 
P(Q,(U) = 0) > 0, we should have both 

and 

Q,(uI,...,u,-I, -Jl-z+ ... -u;:-JEO 

for all (ui,...,u,-i) such that UT+ ... +ui-,<l (since Qi(x)=O if and 
only if Qi( -x) = 0). Consequently, we have that P( Qi(U) = 0) > 0 * 
P(Q,(U) = 0) = 1. 
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