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a b s t r a c t

This paper presents a dynamic bidding model of the power market based on the Nash
equilibrium and a supply function. The new model is composed of different dynamic
systems and semismooth equations by means of the nonlinear complementarity method.
Comparing with those existing bidding models, the remarkable characteristic of the new
model is twofold: First, it adopts a dynamic bid so that the bidding limit point is the
Nash equilibrium point of the market; Second, it considers the system requirement and
the market property such as involving the transmission constraints in the network, and
using a supply function which is suitable for the oligopolistic competitive power market.
All of these imply that the new model is very close to the practical power market.
The computation of the dynamic model is discussed by using the semismooth theory. A
numerical simulation is presented to test the model behaviors in the uncogestion and the
congestion cases, respectively. The numerical tests include the computing behavior of the
dynamic model to reach Nash equilibrium points, the influence of the adjusted parameters
and the system parameters to the Nash equilibrium, the local stability of the model, and
the comparison of simulation effect between the proposed model and the Cournot model.
The simulations show that the new bidding model is valid.

© 2009 Published by Elsevier Ltd

1. Introduction

A competitive electricity market includes different participants such as electric power producers, electric consumers and
transmission network companies, etc. Under the supply-demand relationship and the unisonal operation of electrical price,
generators adjust their own generation quantity, and users change their consumed quantity constantly. The objective of
the market is to realize an optimal allocation of the power system resources so that each of the participants can obtain the
maximal profit. The dynamic evolvement of an electricity market with the behavior of generation, consumed quantity and
power price, includes various messages of the market and operates as the following processes:

• Each participant submits his/her bid to the Independent System Operations (ISO) at a period time t;
• The ISO, taking account of the security of transmission network, solves a social cost minimization (or a social welfare
maximization) problem to get a dispatch and to announce participants for their production/consumption and prices;
• Each participant operates according to the dispatch of the ISO, and submits the bid of the next period time t + 1.
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According to the operationmechanismof the powermarket and theNash equilibrium concept in economics, themaximal
profit problems of the market participants consist of a set of correlative bi-level optimizations (see [1] and references
therein). We call the solution set of bi-level optimization problems Nash Equilibrium Points. [1] studied the Nash equilibrium
problem in the power market, including the existence of solutions and solution approaches. We know that in an actual
competitive market environment, the ISO can not completely control the behavior of the market participants, and none
of the participants has global information of the market. Both of these imply that in a competitive market it is impossible
to obtain Nash equilibrium solutions by solving the Nash equilibrium problem unitedly or independently. Actual methods
should be an adjusting process step-by-step with bounded rationality of the market participates so that the market reaches
a Nash equilibrium point. This is called a game problem in economics. Our problem in this paper is to set a dynamic bidding
manner and to model the power market.
The biddingmanner has been extensively studied and various biddingmodels are presented in the powermarket (see [2–

10] and reference therein). Among the variousmethods, the simplest way is to estimate themarket clearing price of the next
time and then present the bid with a lower price than the estimated one. This method is based on an assumption that the
market clearing price is not affected by any bidding of the marketers, which is not suitable for the power market since it is
controlled by a fewbig electrical companies and is an oligopolistic competitionmarket. The secondmethod is to estimate the
behaviors of the rivals and to present the bid, including conjectured variations [7] and conjectured supply function [11]. The
thirdmethod is based on the game theory [12] with oligopolistic strategy such as Bertrandmodel [6], the Cournotmodel [9],
and supply function models [3].
Except for the study of the bidding manners, another key question is the stable property of the power market due to the

dynamic action of the marketers. Alvarado et al. [13,14] first studied these issues. By establishing the first-order differential
equations with the variables of generation quantities and consumption ones, the stable condition of the power market (also
called the dynamic behavior approach to the market equilibrium) is analyzed. [15] also studied the stability of the power
market by the controlled method.
We note that most of the strategy bidding methods in the power market rarely considered the transmission constraints

since the constraints in the ISO optimization problemswill increase the analysis difficulty. In order to set a strategy bid close
to the practical systems and the market, based on the Cournot model, [9] proposed a dynamic bidding model by combining
the transmission constraints, and the stability of the model is also studied. We know that the Cournot model is set on the
basis of quantity. However, the powermarket is a competitivemarket of quantity-price;what’smore, it does not suit the case
of inelastic demand (or small inelasticity). These motivate us to study a new strategy bidding model of the power market.
Our objective in this paper is to design a new dynamic bidding model according to the characteristics of the power

market and to make some analysis on the model. At the end, based on some theories and approaches of the optimization
problems, we construct a different dynamic systemwith constraints of semismooth equations by using the supply function
and the nonlinear complementarity problem (NCP) method. The specialties of the proposed dynamic model is twofold.
First, it uses the Nash equilibrium theory as a basis. In other words, the final objective of the dynamic bidding is to arrive
at the Nash equilibrium point with a suitable dynamic adjustment. Second, the proposed strategy bidding is considered
close to the practical power market, including the transmission constraints, being true of the competitive behavior of
markets by a supply function which can reflect the potential market power of participants. The model approach is also
studied based on the semismooth theory. In order to test the validity of the proposed bidding model, a power network
system with three buses/nodes is presented. Numerical simulations analyze the Nash equilibrium points for the two cases
of transmission constraints (non-congestion and congestion). Furthermore, the infection of adjusted dynamic parameters
and system parameters to Nash equilibrium points is also investigated. Some comparison results with the Cournot model
are also presented in simulations. The local stability of the model is studied.
The paper is organized as follows. Section 2 presents the Nash equilibrium mathematical model of the power market.

Section 3 constructs the dynamic biddingmodel based on theNash equilibrium theory and the optimization theory. Section 4
discusses the approaches to the problems of the new model. In Section 5, numerical simulations for a power network is
presented to test the new model. Some final remarks are made in the last Section.
Some notations are used in this paper. q ≡ (q0, q1, . . . , qN) is the generation/consumption quantity at the nodes.

Constant vector C is the line limits in the network.Weuse the index i to express the i-th node,where a = (a0, a1, . . . , aN)T ≡
(ai, a−i)T is the bidding vectorwith a−i = (a0, . . . , ai−1, ai+1, . . . , aN)T.αi is the adjusted parameter in themodel of dynamic
bidding. ∂qi

∂ai
is the generalized derivative in the sense of Clarke [16]. ali and aui are the bidding bounds. πi means the profit

function. pi denotes themarginal price. Fi is called the dynamic function used in the dynamicmodel. The symbol ∗ expresses
the corresponding value at the equilibrium point.

2. Nash equilibrium in the power market

This section is a basis on which we construct a dynamic bidding model. Consider an electric network of N + 1 nodes,
where there is one generator (i = 0, 1, . . . , s) and one consumer (i = s + 1, . . . ,N) at each node. A special node indexed
i = 0 refers to the reference node (swing bus). The network has a setL of links, denoted by ij, which connect nodes i and j
and have the distribution factor matrixΦ = (φij) on each link ij. Suppose that the power flows are approximated by the DC
model.
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According to the operation pattern of the power market, on the one hand, the ISO considers the social cost minimization
with power balance(powerflowingin = powerflowingout) and line flow constraints to decide generation and consumed
quantity at each node, denoted by qi (i = 0, . . . ,N). The behavior of the ISO can be expressed by the following quadratic
programming:

minimizeq
N∑
i=0

ci(qi)

subject to q0 + q1 + · · · + qN = 0

−Cj ≤
N∑
i=0

φjiqi ≤ Cj, j ∈ L = {1, 2, . . . , L}

qi ≥ 0, i: generator, qi ≤ 0, i: consumer,

(2.1)

where ci(qi) is called a cost function and a benefit function for generator i or consumer i with form ci(qi) = aiqi + biq2i
when qi ≥ 0, and ci(qi) = −aiqi − biq2i when qi ≤ 0, respectively; Cj > 0 is the transmission limit of the line j.
Here a = (a0, . . . , aN)T and b = (b0, . . . , bN)T are bidding parameters of the market participants. The power quantity
q = (q0, . . . , qN)T is decided from the ISO problem (2.1) with the given bidding vectors a and b, which is denoted by
q = q(a, b). The power price is paid by quoted price, i.e., pi ≡ c ′i (qi) = ai + 2biqi, which is also called the local marginal
price (LMP).
Let Aiq+ Biq2 with q ≥ 0 be the actual cost function of generator i, and let−Ajq− Bjq2 = Aj(−q)− Bj(−q)2 with q ≤ 0

be the actual benefit function of consumer j with constants Ai ≥ 0, Bi ≥ 0. On the other hand, generators and consumers
take their optimal production decision according to the cost or the benefit functions with the aim of the maximum profit.
Then participant i′s profit maximization problem is:

maximize(ai,bi) (ai + 2biqi)qi − (Aiqi + Biq2i )
subject to ali ≤ ai ≤ aui

bli ≤ bi ≤ bui
qi such that q = (q0, . . . , qN)T solves (2.1)
given other participants’ cost/benefit bids,(a−i, b−i)

(2.2)

where a−i = (a0, . . . , ai−1, ai+1, . . . , aN)T, b−i = (b0, . . . , bi−1, bi+1, . . . , bN)T, ali (bli) and aui (bui) are the lower bound and
the upper bound on ai (bi), respectively.
In a completely competitive market, the market participates submit their bids in order to obtain the maximal benefit

according to the real case, i.e., ai = Ai, bi = Bi, which is also the seeking aim of the market manager. However, a practical
powermarket is oligopolistic competition, and themarket participatesmay obtain a high benefit via strategy bidding. Hence,
we consider a special case where the bidding variable is just for ai with fixed bi = Bi. Then (2.2) is reduced to the following
version

maximizeai (ai − Ai)qi + Biq2i
subject to ali ≤ ai ≤ aui

qi such that q = (q0, . . . , qN) solves (2.1)
given other participants’ cost/benefit bids a−i.

(2.3)

It needs to point out that our analysis throughout this paper is suitable for the case bi 6= Bi.
According to the marginal price pi = c ′i (qi) = ai + 2biqi, the objective function of (2.3) is called a profit function and is

denoted by

πi(a) = (ai − Ai)qi(a)+ Biq2i (a). (2.4)

(2.2) and (2.3) are bi-level optimization problems, and their solutions are called Nash equilibrium points. The exact
definition of a Nash equilibrium is given as follows.

Definition 2.1. A pure strategy Nash equilibrium for (2.3) is a vector a∗ = (a∗0, a
∗

1, . . . , a
∗

i , . . . , a
∗

N)
T such that for each

participant i, given all other participants’ bid a∗
−i = (a

∗

0, . . . , a
∗

i−1, a
∗

i+1, . . . , a
∗

N)
T, a∗i maximizers the i-th participant’s profit,

that is

a∗i ∈ argmax
ali≤ai≤aui

πi(ai, a∗−i). (2.5)

3. The dynamic bidding model of the power market

Throughout this paper, the bidding form is considered a special case (2.3). Denote the solution of the ISO as q∗i (a) or
q∗i (ai, a−i). According to the operation mechanism of a power market, the bidding process in a practical market is dynamic.
This means that every participant of the market will present their bid via the dynamic adjustment.
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This section will set a mathematical model for the dynamic process of the power market. Suppose that every participate
is bounded rational, then the object of each participant is to reach the Nash equilibrium point as time tends to be infinite.
Furthermore, we assume that each participant knows some messages at the period time t , especially for his/her own. Then
the participant decides the next period bid, denoted by ai(t + 1). Based on these assumptions and the necessary conditions
of the optimization, we set the dynamic bidding model for the i-th participant as follows:

ai(t + 1) = Fi(a(t)) = ai(t)+ κi(ai(t))
∂πi(a(t))
∂ai(t)

= ai(t)+ κi(ai(t))
[
qi(a(t))+ (ai(t)− Ai + 2Biqi(a(t)))

∂qi(a(t))
∂ai(t)

]
, (3.1)

where ai(t) and ai(t + 1) are bids at node i during the periods t and t + 1, respectively; κi(ai(t)) is the extent of variation
for the ith participant following a given profit signal satisfying κi(ai(t)) ≥ 0. If we assume κi(ai(t)) = αiai(t), i.e. a linear
function, then the positive constant αi is called the speed of adjustment. Some illustrations for the dynamic model (3.1) are
expressed as follows.

Remark 3.1. (i) Related to the static game model (2.2), (3.1) is the dynamic description of a bidding manner; Moreover,
the dynamic process (3.1) means ai(t + 1) = ai(t) to be an equilibrium point, which is correspondent to

∂πi(a(t))
∂ai(t)

= 0.
This implies that, if we omit the bounded consideration in (2.3), the equilibrium point is correspondent to the necessary
condition point of optimization problem (2.3). From this viewpoint, we say that the dynamic bidding model (3.1) is set on
the Nash equilibrium.
(ii) ∂πi(a(t))

∂ai(t)
is called marginal profit in economics. The model (3.1) is a typical adjustment pattern in various engineering

and economic areas. Generally, α is chosen as a small constant so that the calculation can satisfy the requirement of the
variable, such as the positive (or negative) property.
(iii) In the iterative process of (3.1), the bidding variable ai is constrained by ali ≤ ai ≤ aui (see (2.3)). To this end, we will

use the project approach in the practical implementation, i.e., the final bidding in t + 1 time is defined by

āi(t + 1) = mid{ali, aui, ai(t + 1)}, (3.2)

where ai(t + 1) is obtained from (3.1), and the mid function is defined as

mid{c, d, w} =

{c, ifw < c
w, if c ≤ w ≤ d
d, ifw > d.

(iv) Since the solution qi(a(t)) is a piecewise mapping due to the transmission limits (see Lemma 6.2.1 in [1]), the partial
derivative ∂qi(a(t))

∂ai(t)
is in the sense of Clarke generalized derivative (see [16]). Correspondingly, Fi is a multi-value function if

one of the inequality constraints in (2.1) becomes active.

In the left part of this section, we reformulate the ISO problem (2.1) to a system of equations by means of nonlinear
complementary methods. This will facilitate the calculation of (3.1). The KKT system of (2.1) can be written as

ai + 2biqi + λ+
L∑
j=1

φj,i(µj − µj
)− νi = 0, (i = 0, 1, . . . ,N)

q0 + q1 + · · · + qN = 0

Cj +
N∑
i=1

φj,iqi ≥ 0, µj ≥ 0, µj

(
Cj +

N∑
i=1

φj,iqi

)
= 0, (j = 1, 2, . . . , L)

Cj −
N∑
i=1

φj,iqi ≥ 0, µj ≥ 0, µj

(
Cj −

N∑
i=1

φj,iqi

)
= 0, (j = 1, 2, . . . , L)

qi ≥ 0, νi ≥ 0, qiνi = 0 (i = 0, 1, . . . , s)
qi ≤ 0, νi ≤ 0, qiνi = 0 (i = s+ 1, . . . ,N)

(3.3)

where λ,µ
j
, µj, νi are Lagrange multipliers of the optimization problem.

Consider the Fisher–Burmeister (FB) NCP function ψ : R2 → R defined by

ψ(a, b) = a+ b−
√
a2 + b2,

which has a typical property as

ψ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0

and is semismooth (see [17] for details).
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Then the KKT system (3.3) is equivalent to the following semismooth equations.

Ψ (a, y) =



ai + 2biqi + λ+
L∑
j=1

φj,i(µj − µj
)− νi (i = 0, 1, . . . ,N)

q0 + q1 + · · · , qN

µ
j
+

(
Cj +

N∑
i=1

φj,iqi

)
−

√√√√
µ2
j
+

(
Cj +

N∑
i=1

φj,iqi

)2
(j = 1, 2, . . . , L)

µj +

(
Cj −

N∑
i=1

φj,iqi

)
−

√√√√
µ2j +

(
Cj −

N∑
i=1

φj,iqi

)2
(j = 1, 2, . . . , L)

qi + νi −
√
q2i + ν

2
i (i = 0, 1, . . . , s)

(−qi)+ (−νi)−
√
(−qi)2 + (−νi)2 (i = s+ 1, . . . ,N)



= 0, (3.4)

where y = (q, λ, µ,µ, ν) ∈ R(N+1)+1+2L+(N+1), L = |L| is the cardinality of the set L. From the semismoothness of the
FB-NCP function, it follows that Ψ (a, y) : R(N+1) × R(N+1)+1+2L+(N+1) → R(N+1)+1+2L+(N+1) is semismooth.
(3.1) and (3.4) consist of a difference dynamic systemwith constraints of semismooth equations,which is the newbidding

model proposed in this paper. The optimization problem (2.1) is a strictly convex quadratic program. Hence, the solution of
(3.4) is identical to the one of (2.1). Moreover, there are many algorithms can solve it effectively.
Note that in the bidding model, we use the KKT system (3.4) to replace the optimization problem (2.1). This replacement

is based on two reasons. One is that to solve a system of nonlinear equations is much easier than for solving an optimization
problem. Other is by using the KKT system, we can analyze the relationship of variables easily, which may be used in the
dynamic bidding model, for example, ∂qi(a(t))

∂ai(t)
in (3.1). The later is our main consideration for this replacement.

4. Computation of the dynamic bidding model

Denote (3.1) as

ai(t + 1) = Fi(a(t)) = Fi(ai(t), a−i(t)), (4.1)

where

Fi(ai(t), a−i(t)) = ai(t)+ κi(ai(t))
[
qi(a(t))+ (ai(t)− Ai + 2Biqi(a(t)))

∂qi(a(t))
∂ai(t)

]
. (4.2)

In the dynamic model (4.1), we assume that κi(ai(t)) has the following linear version

κi(ai) = αiai(t). (4.3)

Then from Lemma 6.2.1 and Theorem 6.2.1 in [1] we know that Fi(a(t)) is a piecewise quadratic function.
By using the dynamic model (4.1), we need to compute qi(a(t)) and

∂qi(a(t))
∂ai(t)

in (4.1). To this end, we mainly consider the
system of Eq. (3.4) in the follows.
Let πy∂Ψ (a, y) be the set of all [(N+1)+1+2L+(N+1)]×[(N+1)+1+2L+(N+1)]matricesM2 such that for some

[(N+1)+1+2L+ (N+1)]× (N+1)matrixM1, the [(N+1)+1+2L+ (N+1)]×{[(N+1)+1+2L+ (N+1)]+ (N+1)}
matrix [M1,M2] belongs to ∂Ψ (a, y). Let πa∂Ψ (a, y) be such that [πa∂Ψ (a, y), πy∂Ψ (a, y)] = ∂Ψ (a, y). From Theorem 1.1
and 2.1 in [18], we have the following conclusion.

Theorem 4.1. For any fixed a∗, let y∗ = (q∗, λ∗, µ∗, µ∗, ν∗) be a solution of (3.4) (or q∗ be a solution of (2.1)), i.e., Ψ (a∗, y∗) =
0. If πy∂Ψ (a∗, y∗) is ofmaximal rank, then there exist an openneighborhood Y of a∗ and a functionG(·) : Y → R(N+1)+1+2L+(N+1)
such that G is locally Lipschitz in Y , G(a∗) = y∗ and for every a in Y ,

Ψ (a,G(a)) = 0. (4.4)

Moreover, if Ψ has a superlinear approximate property at (a∗, y∗), G is superlinearly approximate at a∗.

Since Ψ (a, y) is semismooth, then it is H-differentiable with ∂BΨ (a, y) as an H-differential (see [19] for the concept of
H-differential). Denote the H-differential of G by TG(a) at point a. Then from Theorem 4 in [19], the H-differential of implicit
function G has the following version:

TG(a) = {−M−11 M2 : [M1,M2] ∈ ∂BΨ (a, y)}. (4.5)
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Theorem 4.1 shows that under the so-called maximal rank condition, from (3.4) there exists an implicit function
relationship between variable a and y as

y =


q
λ
µ

µ
ν

 = G(a) =

q(a)
λ(a)
µ(a)
µ(a)
ν(a)

 . (4.6)

Furthermore, we can compute the H-differential of G according to (4.5).
In the next part of this subsection, we compute the elements of TG(a). In order to express Ψ (a, y) simply, we denote

ϕ1 ≡ ai + 2biqi + λ+
L∑
j=1

φj,i(µj − µj
)− νi (i = 0, 1, . . . ,N)

ϕ2 ≡ q0 + q1 + q2 + · · · + qN

ϕ3 ≡ µj
+

(
Cj +

N∑
i=1

φj,iqi

)
−

√√√√
µ2j +

(
Cj +

N∑
i=1

φj,iqi

)2
(j = 1, 2, . . . , L)

ϕ4 ≡ µj +

(
Cj +

N∑
i=1

φj,iqi

)
−

√√√√
µ2j +

(
Cj +

N∑
i=1

φj,iqi

)2
(j = 1, 2, . . . , L) (4.7)

ϕ5 ≡ qj + νj −
√
q2j + ν

2
j (j = 0, 1, . . . , s)

ϕ6 ≡ (−qj)+ (−νj)−
√
(−qj)2 + (−νj)2 (j = s+ 1, s+ 2, . . . ,N)

and for j = 1, . . . , L

g
j
(q) ≡ Cj +

N∑
i=1

φj,iqi, g j(q) ≡ Cj −
N∑
i=1

φj,iqi. (4.8)

For eachM2 ∈ πy∂Ψ (a, y), denote

M2 =



∂ϕ1

∂q
∂ϕ1

∂λ

∂ϕ1

∂µ

∂ϕ1

∂µ

∂ϕ1

∂ν
∂ϕ2

∂q
∂ϕ2

∂λ

∂ϕ2

∂µ

∂ϕ2

∂µ

∂ϕ2

∂ν

...
...

...
...

...
∂ϕ6

∂q
∂ϕ6

∂λ

∂ϕ6

∂µ

∂ϕ6

∂µ

∂ϕ6

∂ν
,


, (4.9)

where each element ofM2 has the following versions:

∂ϕ1

∂q
=


2b0 0 · · · 0
0 2b1 · · · 0
...

...
. . .

...
0 0 0 2bN

 , ∂ϕ1

∂λ
=


1
1
...
1

 ,
∂ϕ1

∂µ
= −

(
ϕj,i
)
,

∂ϕ1

∂µ
=
(
ϕj,i
)
, (j = 1, . . . , L; i = 0, 1, . . . ,N)

∂ϕ1

∂ν
= −1(N+1)×(N+1) ∈ R(N+1)×(N+1),

∂ϕ2

∂y
=

(
∂ϕ2

∂q
, 0, . . . , 0

)
=
(
11×(N+1), 01×(1+2L+N+1)

)
.

∂ϕ3

∂q
= diag(β1(w), β2(w), . . . , βL(w)) ∗

∂g(q)

∂q
,

∂ϕ3

∂µ
= diag(γ1(w), γ2(w), . . . , γL(w)),

∂ϕ3

∂λ
= 0L×1;

∂ϕ3

∂µ
= 0L×L;

∂ϕ3

∂ν
= 0L×(N+1)
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with

∂g(q)

∂q
=


0 φ1,1 · · · φ1,N
0 φ2,1 · · · φ2,N
...

...
. . .

...
0 φL,1 · · · φL,N


and βj(w) = 1−

N j
M j
, γj(w) = 1−

µ
j

M j
, if (g

j
(x), µ

j
) 6= 0,

βj(w) = 1− ξj, γj(w) = 1− ρj, if (g
j
(x), µ

j
) = 0,

where N j = Cj +
∑N
i=1 φj,iqi,M j =

√
µ2
j
+ N2j , ‖(ξj, ρj)‖ ≤ 1 for j = 1, . . . , L.

∂ϕ4

∂q
= diag(β1(w), β2(w), . . . , βL(w)) ∗

∂g(q)
∂q

,
∂ϕ4

∂µ
= diag(γ1(w), γ2(w), . . . , γL(w)),

∂ϕ4

∂λ
= 0L×1,

∂ϕ4

∂µ
= 0L×L,

∂ϕ4

∂ν
= 0L×(N+1),

where

∂g(q)
∂q
= −

∂g(q)

∂q
,

βj(w) and γj(w) have the same version as before with N j,M j being substituted by N j = Cj −
∑N
i=1 φj,iqi,M j =

√
µ2j + N

2
j

for j = 1, . . . , L, respectively.

∂ϕ5

∂q
= diag(β0(w), β1(w), . . . , βs(w)) ∗ (Is×s, 0s×(N−s)),

∂ϕ5

∂ν
= diag(γ0(w), γ1(w), . . . , γs(w)) ∗ (Is×s, 0s×(N−s)),

∂ϕ5

∂λ
= 0(s+1)×1,

∂ϕ5

∂µ
= 0(s+1)×L,

∂ϕ5

∂µ
= 0(s+1)×L,

where{
βi(w) = 1−

qi
Zi
, γi(w) = 1−

νi

Zi
, if (qi, νi) 6= 0,

βi(w) = 1− ξi, γi(w) = 1− ρi, if (qi, νi) = 0,

with Zi =
√
q2i + ν

2
i and ‖(ξi, ρi)‖ ≤ 1 for i = 1, . . . , s.

∂ϕ6

∂q
= −diag(βs+1(w), βs+2(w), . . . , βN(w)) ∗ (0(N−s)×(s+1), I(N−s)×(N−s)),

∂ϕ6

∂ν
= −diag(γs+1(w), γs+2(w), . . . , γN(w)) ∗ (0(N−s)×(s+1), I(N−s)×(N−s)),

∂ϕ6

∂λ
= 0(N−s)×1,

∂ϕ6

∂µ
= 0(N−s)×L,

∂ϕ6

∂µ
= 0(N−s)×L

where{
βi(w) = 1+

qi
Zi
, γi(w) = 1+

νi

Zi
, if (qi, νi) 6= 0,

βi(w) = 1− ξi, γi(w) = 1− ρi, if (qi, νi) = 0,

with Zi =
√
q2i + ν

2
i and ‖(ξi, ρi)‖ ≤ 1 for i = (s+ 1, . . . ,N).

To compute πa∂Ψ (a, y), for eachM1 ∈ πa∂Ψ (a, y), it has

M1 =

((
∂ϕ1

∂a

)T
,

(
∂ϕ2

∂a

)T
,

(
∂ϕ3

∂a

)T
,

(
∂ϕ4

∂a

)T
,

(
∂ϕ5

∂a

)T
,

(
∂ϕ6

∂a

)T)T
(4.10)
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Region market 2 +'

Region market (load) 0+'Region market 1 +'

Generate electricity: q2 +'

Generate electricity: q0+'Generate electricity: q1'

Line 2+'
Line 3+'

Line 1+'

Fig. 1. Solution structure of power market.

Table 1
Parameters and initial values in case-I.

Node i Cj (MW) a(0)i (y/MWh) bi = Bi (y/MWh2) Ai (y/MWh) αi

0 5 2.57 0.07 2.83 0.05
1 5 1.23 0.05 1.52 0.03
2 5 1.22 0.04 1.46 0.02

where
∂ϕ1

∂a
= I(N+1)×(N+1),

∂ϕ2

∂a
= 0,

∂ϕ3

∂a
= 0L×(N+1),

∂ϕ4

∂a
= 0L×(N+1),

∂ϕ5

∂a
= 0(s+1)×(N+1),

∂ϕ6

∂a
= 0(N−s)×(N+1).

Finally, from (4.5) we can obtain ∂qi(a)
∂ai
, as well as Fi(a). Note that at the breakpoint, Fi is a multi-valued function.

Remark 4.1. The above formulas are used to compute terms qi(a(t)) and ∂qi(a)
∂ai
defined in the dynamic bidding model (4.1).

In an actual market, they may be provided by the ISO.

5. Numerical simulation for the dynamic bidding model

Numerical simulations for (3.1) and (3.4) are tested in this section. In addition, since the system includes transmission
constraints, the concepts of uncongestion and congestion are considered in the network of the power systems. If there is
at least one of the transmission limits in the ISO optimization (2.1) to be active, we call the network system congestion;
otherwise, we call it uncongestion. We will see that under the two cases, the system will take on different states of
equilibrium and stability.
A power system of three-nodes (see Fig. 1) is considered. The direction of an arrow indicates the positive direction of the

transmission power; indices i and j (i, j = 0, 1, 2) express the node and line numbers, respectively. In details, i = 0 is the
load node; the other two nodes (i = 1, 2) are generators. The factor (distribution factor) matrixΦ is given by

Φ =

(0 1/3 −1/3
0 1/3 2/3
0 2/3 1/3

)
.

5.1. Numerical tests for equilibrium points

For the tested system, we consider two cases where the system chooses different system parameters and the same initial
bidding. Note that an equilibrium point satisfies ai(t + 1) = ai(t) (i = 0, 1, 2).

Case-I: Parameters and initial values used in model (3.1) and (3.4) are listed in Table 1. where a(0)i (i = 0, 1, 2) is the initial
bidding value, and αi (i = 0, 1, 2) is the adjustment speed, respectively.
The calculating results show that in this case, the network system is uncongestion and the equilibrium point is

q∗ = (q∗0, q
∗

1, q
∗

2) = (−4.82, 2.11, 2.71), a∗ = (a∗0, a
∗

1, a
∗

2) = (2.62, 1.97, 1.83).
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Fig. 2. Iterative process for uncongestion.

Table 2
Parameters and initial values in case-II.

Node i Cj (MW) a(0)i (y/MWh) bi = Bi (y/MWh2) Ai (y/MWh) αi

0 5 2.57 0.07 2.83 0.05
1 0.5 1.23 0.05 1.52 0.006
2 5 1.22 0.04 1.46 0.02

Fig. 3. Iterative process with the congestion in line 2.

The calculating tracks for the three nodes are drawn in Fig. 2where the real-line (red), dotted-line (blue) and dashdotted-line
(black) express the bidding process for nodes i = 0, 1, 2, respectively.
Case-II: Parameters and initial values used in model (3.1) and (3.4) are listed in Table 2.
From Table 2 we can see that when the limited value of line 2 is reduced, the possibility of congestion in the transmission

lines well be increased. Indeed, the computing results show that in this case, when the congestion of the network system
happens in line 2, we obtain the equilibrium point

q∗ = (q∗0, q
∗

1, q
∗

2) = (−1.15, 0.36, 0.79), a∗ = (a∗0, a
∗

1, a
∗

2) = (2.19, 1.68, 1.55).

The calculating tracks are shown in Fig. 3, where each line has the same meaning as that in Fig. 2.
In order to analyze the influence of the adjustment speed αi to the equilibrium state, as an example, we change α1 by

step-up manner and fix α0 = 0.05, α2 = 0.02 for Case-II (see Table 2). The simulation shows that when α1 ≥ 0.04, there
is no equilibrium point in the system, and the dynamic evolution appears a periodical variation with a chaos phenomenon,
see Fig. 4 for case α = (α0, α1, α2) = (0.05, 0.04, 0.02). Furthermore, the chaotic attractor process of a1(t) and a1(t + 1)
is tracked in Fig. 5.
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Fig. 4. Chaotic variation process with α = (0.05, 0.04, 0.02).

Fig. 5. Chaotic Attractors of bidding quantities for a1(t).

The simulation results show that the Nash equilibrium depends heavily on the choice of the adjusted parameters
αi (i = 0, 1, 2). The variation of the state parameters can cause a remarkable difference in the moving track along with
the dynamic bidding process. Moreover, when the market enters the chaotic state, the quantities of dynamic adjustments
can not be decided effectively.

5.2. Computing comparison with the Cournot model

We use the Cournot model proposed in [9] to test the same example system in this subsection in order to analyze the
effect of the new model. The two cases (uncongestion and congestion) are also studied in the comparison.
For theuncongestion case, the price biddingparameter is set a = (2.62, 1.97, 1.83), and the other parameters are showed

in Table 1. Both of these are the same as the ones of Case-I in Section 5.1. By using the dynamic Cournot model, the Nash
equilibrium is solved as q∗ = (q∗0, q

∗

1, q
∗

2) = (−4.37, 2.36, 2.01), and the calculating tracks for the tested system are drawn
in Fig. 6.
We analyze the computing result for the dynamic Cournotmodel. On the one hand, the actual cost of the second generator

(node-2) is lower than the first one (node-1); On the other hand, the bidding value a (quoted price) satisfies a2 < a1 at the
equilibrium point. From the viewpoint of the competitive markets, both of the two observations should bear a result that
the generation quantity of the second generator (node-2) ismore than the first one (node-1). However, the computing result
is q∗1 = 2.36 > 2.01 = q

∗

2 , which obtains an oppositive conclusion.
For the congestion case, as with the tests in the last subsection, we reduce the limit of line 2 and choose the same

values in the Cournot model (see Table 2). Then line 2 happens congestion, and the bidding parameter is given according
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Fig. 6. Iterative process for uncongestion (Cournot).

Fig. 7. Iterative process with the congestion in line 2 (Cournot).

to the computing result in Case-II as a = (2.19, 1.68, 1.55). By using the dynamic Cournot bidding model, we get the Nash
equilibrium solution q∗ = (q∗0, q

∗

1, q
∗

2) = (−1.02, 0.64, 0.38). The calculating tracks for the three nodes are drawn in Fig. 7.
Similar to the uncongestion analysis, for the congestion case, the numerical computation via the Cournot model obtains

an oppositive result relative to the competitive rules of markets.
Comparing the results of two models (i.e., the Cournot model and the supply function model used in this paper), we

can see from Sections 5.1 and 5.2 that the dynamic bidding model based on the supply function expresses better market
competition than the dynamic Cournot model. The reason is that the competitive behavior of markets is related to quantity
and price. The shortcoming of the Cournot model is that it just considers the quantity of competition.

5.3. Local stability simulation for the dynamic bidding model

Another concerned question in the market is the stability at the equilibrium point. From the classical analysis method
of smooth problems, the stability is set on eigenvalue analysis, i.e., to judge |λ(∇F(a∗))| < 1 for the dynamic model (4.1),
where the dynamic function of the model (4.1)–(4.2) is

F(a) =


a0(t)+ α0a0[q0(a)+ (a0 − A0 + 2B0q0(a))]

∂q0
∂a0

a1(t)+ α1a1[q1(a)+ (a1 − A1 + 2B1q1(a))]
∂q1
∂a1

a2(t)+ α2a2[q2(a)+ (a2 − A2 + 2B2q2(a))]
∂q2
∂a2

 . (5.1)
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The dynamic stability is to study the relationship between the stability region and the dynamic adjusted parameters
α = (α0, α1, α2). In order to facilitate the analysis and help the visualization, we fix α2 = 0.02 to the stability analysis in
this subsection.
Note that the stability analysis of the dynamic system (4.1) is an implicit formula, which depends on the relationship of

a and q. On the other hand, the uncongestion and congestion of the system will bring on different results. Hence, two cases
are considered respectively. We have the following conclusion with respect to the relation of a and q.

Theorem 5.1. (i) For the case of uncongestion, we have the relationship of a and q (also called optimal response curve) to be
q0 =

−a0(b2 + b1)+ a1b2 + a2b1
2(b1b2 + b0b2 + b1b0)

,

q1 =
−a1(b2 + b0)+ a0b2 + a2b0
2(b1b2 + b0b2 + b1b0)

,

q2 =
−a2(b0 + b1)+ a0b1 + a1b0
2(b1b2 + b0b2 + b1b0)

.

(5.2)

(ii) For the case of congestion where the congestion happens in Line 2 with C2 = 0.5, the variables a and q satisfy
q0 =

2a1 − a0 − a2 − 6C2(b2 + 2b1)
2(b2 + 4b1 + b0)

,

q1 =
a0 + a2 − 2a1 − 3C2(b0 − b2)

b2 + 4b1 + b0
,

q2 =
3a1 − a0 − 2a2 + 3C2(b0 + 2b1)

b2 + 4b1 + b0
.

(5.3)

Proof. From the process of setting the biddingmodel, the variable q is a function of a determined from the KKT system (3.4)
of the ISO optimization. We consider two cases as follows.
(i) For the uncongestion, we can derive the KKT system of the ISO to be

a0 + 2b0q0 + λ = 0,
a1 + 2b1q1 + λ = 0,
a2 + 2b2q2 + λ = 0,
q0 + q1 + q2 = 0.

(5.4)

To solve above system we obtain (5.2).
(ii) According to the calculation of the last subsection, the KKT system of the ISO for that case is

a0 + 2b0q0 + λ = 0,

a1 + 2b1q1 + λ−
1
3
µ
3
= 0,

a2 + 2b2q2 + λ−
2
3
µ
3
= 0,

q0 + q1 + q2 = 0,

C2 −
1
3
q1 −

2
3
q2 = 0.

(5.5)

Then we follow the result (5.3). �

According to the result of Theorem 5.1, we can express the function F in the dynamic system (4.1) and its Jacobian, and
then analyze the stability.
Case-I: Uncongestion case. From (5.2), the Jacobian of F has the following expression

∇F(a∗) =

(1− 15.57α0 1.24α0 1.55α0
1.23α1 1− 14.35α1 2.47α1
0.04 0.06 0.67

)
. (5.6)

We change α0 and α1 with fixed α2 = 0.02, and draw the region of (α0, α1)which satisfies |λ(∇F(a∗))| < 1. The computing
results are shown in Fig. 8 where the shady part is the stability region.
Case-II: Congestion case. Similar to the computation of equilibrium point, suppose that Line 2 happens congestion. Then F
is a multi-valued function due to the piecewise smooth property of q(a). For this case, the stability analysis is difficult due
to the nonsmoothness of F . According to the approach of the generalized derivatives, we choose a special function F̄i(a(t))
as follows. Denote the solutions of (5.2) and (5.3) as qun(a) and qc(a), respectively, then a convex combination of them is
defined as

q̄(a(t)) = βqun(a(t))+ (1− β)qc(a(t)), β ∈ [0, 1].
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Fig. 8. Stability region with uncongestion.

Fig. 9. Stability region with congestion.

From the above expressionwith the givenβ and (5.1), we can define the correspondent F̄i(a(t)) and compute∇ F̄(a∗). Finally,
we use a similar way as in Case-I to simulate the stability region.
From the numerical simulation shown in Fig. 9with fixedβ = 0.2,we find that the stability region changeswith different

β . But the shape of the stable region is not distinct in the region 0.1 < β < 0.9.
From the stability analysis we can see that the stability is heavily related to the adjusted parameters of the dynamic

model and the transmission limits.

6. Final remarks

This paper presents a dynamic biddingmodel of the powermarket based on theNash equilibriumand the supply function.
Numerical simulation studies the properties of the new model in the uncongestion and congestion cases, including the
computing behaviors of themodel, the inference of the adjusted parameter and system parameters to themarket operation,
as well as the stability of the model. Comparison between computation and the Cournot model is also presented. All the
results show that the new dynamic model can be used to simulate the competitive behavior of the power market. We
also note that for the congestion case, the function defined in the dynamic model loses some general properties, even the
continuity of functions. This adds to the difficulties of the analysis and calculation to the models. How to set the stability
analysis in theory and control the parameters so that the dynamic process of the market is stable are our further research.
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