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A wheel loader is an earth-moving machine used in construction sites, gravel pits and mining to move blasted
rock, soil and gravel. In the presence of a nearby dump truck, the wheel loader is said to be operating in a
short loading cycle. This paper concerns the moving of material (soil, gravel and fragmented rock) by a wheel
loader in a short loading cycle with more emphasis on the loading step. Due to the complexity of bucket-
environment interactions, even three decades of research efforts towards automation of the bucket loading
operation have not yet resulted in any fully autonomous system. This paper highlights the key challenges in
automation and tele-remote operation of earth-moving machines and provides a survey of different areas of
research within the scope of the earth-moving operation. The survey of publications presented in this paper is
conducted with an aim to highlight the previous and ongoing research work in this field with an effort to strike
a balance between recent and older publications. Another goal of the survey is to identify the research areas in
which knowledge essential to automate the earth moving process is lagging behind. The paper concludes by
identifying the knowledge gaps to give direction to future research in this field.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Earth-moving machines comprise a large set of industrial machines
used in construction, mining, forestry, agriculture, cleaning and many
other industries. Such machines generally include a vehicle (i.e., a
main body) and a robotic mechanism mounted on the vehicle. Many
types of earth-moving machines are available with different combina-
tions of vehicle and robotic mechanisms. The robotic mechanism
typically consists of a robotic arm (a combination of links and joints)
powered by a hydraulic system and a tool designed for tasks such as
loading or excavation of materials. It is often possible to change the
tool to adapt to different tasks. Wheel loaders and excavators are two
common examples of mobile earth-moving machines.

Wheel loaders are extremely versatile and often used as multi-
purpose machines at production sites [1]. Applications for which
wheel loaders are used everyday include the transportation of soil, ore,
snow, wood-chips and construction material. Wheel loaders have exten-
sive use in the mining industry, where they are used to transport ore in
both open-pit mines and underground mines. In underground mines,
special types of wheel loaders are used: LHD (Load-Haul-Dump)
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machines. Fundamentally, LHD machines are the same as wheel loaders
except that they are adapted for the low ceilings of underground mines.

Automation of wheel loaders and excavators has been an active area
of research over the past three decades [2]. As claimed by Maeda [3],
despite much research in this field, a fully automated system for a mo-
bile earth-moving machine has never been demonstrated. In Hemami
and Hassani [2], the authors conclude that the subject demands more
research, together with industrial support, to speed up the process
towards successful autonomous loading of bulk material.

In this paper, the focus is on automation and remote control of earth-
moving machines such as wheel loaders and LHD machines. The main
contributions of the paper are the review and assessment of different
approaches for automating the steps involved in short cycle loading
and the survey of publications on automation of earth-moving
machines. We also provide an in-depth review of different automatic
bucket loading strategies and discussion on possible approaches
(Section 4.2). In the paper, we highlight important knowledge gaps in
the areas of automatic loading of fragmented bulk material, wireless
communications, and operator experience and performance in
tele-remote operation.

We find that automating the complete short loading cycle is not
viable in the short tomid-term. Given the identified challenges in full au-
tomation of the earth-moving process, we consider semi-automation
through assisted tele-remote operation to be an important step to collect
experience for further research and development. Reliable wireless com-
munication becomes essential when machines are tele-remotely
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82506421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2016.05.009&domain=pdf
mailto:ulf.andersson@ltu.se
Journal logo
http://dx.doi.org/10.1016/j.autcon.2016.05.009
Unlabelled image
www.elsevier.com/locate/autcon


213S. Dadhich et al. / Automation in Construction 68 (2016) 212–222
operated. This paper also gives a brief overview of communication-
related challenges and possible solutions.

The difficulty in automating the entire process can be attributed to
the fact that it is impossible to accurately model the earth-moving pro-
cess, especially the interaction between the tool and the environment.
The properties of media to be excavated or moved are central to the
problem. Examples of different media are snow, soil, gravel, wood
chips, fragmented rock, mud, etc. Autonomous excavation of soil is a
well-studied problem, and yet fully automated excavators are rare [4].

Because full automation of the earth-moving process is difficult, re-
searchers commonly aim for small steps inmoving towards automation.
In Roberts et al. [5], a five-step approach is suggested, from fully manual
operation at step one to fully autonomous operation at step five. In
Frank et al. [1], another nomenclature for these steps is proposed. Our
review and assessment of different automation approaches relate to
these steps from manual towards fully autonomous operation, as well
as the procedural steps in the short cycle loading process. We define a
versatile set of requirements on the semi-automated and fully autono-
mous short loading cycle, among which some relate to the complete
process, while others apply to one or more of these procedural steps.

The survey of publications on the automation of earth-moving ma-
chines presented here is categorized into different areas: modeling for
control, automatic loading, pile characterization, localization and
navigation, and path planning. Our most important contributions are
the survey of automatic bucket loading strategies and the assessment
of the viability of different approaches. We provide arguments in
support of reinforcement learning methods as a possible solution for
the automatic bucket-loading problem.

The reminder of the paper has been organized as follows. Section 2
assesses the problem of automating earth-movingmachines. It presents
the automation steps and the procedural steps involved in the short
loading cycle. This section also defines operator assistance functions
and presents a previously reported case study on tele-remote operation
and assisted loading. In Section 3, the fundamental requirements for
autonomous and tele-remote earth-moving operation are discussed
from the standpoint of safety and efficiency. Section 4 addresses thema-
chine side of the problem, discussing the different aspects of autono-
mous operation that can be realized via operator assistance functions.
In Section 5, communication requirements in tele-remote operation
are discussed. Section 6 addresses the operator station for a remotely
operated earth-moving machine. Section 7 presents various research
areas and publications that could not be categorized in Sections 4, 5 or
6. Section 8 presents identified knowledge gaps and Section 9 summa-
rizes and concludes the paper.

2. Problem assessment and breakdown

The challenges in automating earth-moving machines are multiface-
ted,motivating us to separately address thedifferent parts of the problem.
For breakdown and assessment of this problem, we need to envision the
possible steps from fully manual to completely autonomous operation
and understand the procedural steps that are performed in the short
cycle loading process. Because the intermediate steps towards full
automation most likely involve tele-remote operation, we also need to
understand possible ways to assist a remote operator. After providing
these tools to better understand and assess the problem, we present a
case study on tele-remote and assisted loading from an iron-ore mine in
Kiruna, Sweden. This case study illustrates how an intermediate step to-
wards fully autonomous loading can be implemented and how operator
assistance functions can improve the performance in terms of average
bucket weights.

2.1. Steps towards full automation

A five step approach from manual operation at step one to fully
autonomous operation at step five is discussed in Frank et al. [1] and
Roberts et al. [5]. These five steps to full automation tailored for short
cycle loading operation are listed below, stressing the point that remote
control issues are important when moving from in-sight tele-operation
to remote-operation of mobile earth-moving machines. This is because
the remote operation introducesmore uncertainties in the formof delay
and loss of the data communicated over the network. The steps towards
fully autonomous operation are:

• Manual operation: The operator is sitting in the machine manually
performing all the tasks.

• In-sight tele-operation: The operator is outside, in the vicinity of the
machine, performing all the tasks by a hand held remote.

• Tele-remote operation: The operator is in a control room far away
from the loading site but still performing all the tasks with the help
of a remote and audio-video feedback from the machine (Fig. 1).

• Assisted tele-remote operation: Themachine performsmany tasks by
itself via the use of operator assistance functions (Section 2.3). The
operator intervenes in the tasks where human supervision is of
importance.

• Fully autonomous: The machine performs all tasks by itself. The
operator is only present to give high-level commands, take care of
emergencies and handle failures.
2.2. Short loading cycle

Most commonly, the mobile earth-moving machines perform the
following three tasks during one cycle of operation. Because this cycle
is repeated thousands of time in many applications, it is important to
ensure that efficiency is respected in each step.

1. Loading

2. Navigating
3. Dumping

The mobile earth-moving machines transport material (soil,
fragmented rock, gravel, etc.) from one place to another, where the
distance between the source of the material to its destination can be
from a fewmeters to a few hundred meters. This differentiation creates
two classes of operating cycles, the load and carry cycle and the short
loading cycle. In the load and carry cycle, there is a significant distance
between the loading point and the dumping point, and thus a larger
amount of time is spend in navigating. In a short load cycle, the dumping
site is in close proximity to the loading machine, which may be in
the form of a dump truck or conveyor belt. The focus of this work is
on the short loading cycle which, puts stricter constraints on the cycle
time of operation of the earth-moving machine.

Most commonly, the mobile excavating machine performs a V–Y
curve (as shown in Fig. 2) between the loading site and the dumping
site, but in the case of a side dumping bucket, themotion of themachine
is close to a straight line. The loading of some granular material on a
nearby dumper in a short load cycle takes place in a small time frame
of 25–30 s [6], and the challenge for the assisted remote-control opera-
tion is to perform at-least equal to an expert driver inmanual operation.

Intensive research efforts are needed to close the gap from remote-
control operation to assisted remote-control operation. In relation
with Fig. 2, different procedural steps for implementing assisted
remote-control for a short loading cycle operation have been identified
in Table 1. The control algorithm for loading the material is the most
important and the most discussed step, but it still remains an open
area of research [3]. A general control strategy for loading does
not work because the properties of the material (density, hardness,
moisture and composition) being loaded varies significantly.
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Fig. 1. Components of tele-remote operation of earth-moving machine.
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2.3. Operator assistance functions

Operator assistance functions are tools for striving towards full
autonomy of the earth-moving process. In pure tele-remote operation,
operator assistance functions can, for example, warn the operator be-
fore collision or alert them about inefficient and unsafe use. In assisted
tele-remote operation, these functions can mostly take over the
operator. Examples of operator assistance functions are:

• Path planning
• Collision detection, avoidance and navigation
• Preparing the boom and bucket for loading and dumping
• Loading algorithm
• Dumping algorithm.

A combination of manual operation with operator assistance func-
tions for path planning and navigation is described by Gustafson [7]
as semi-automation. In Larsson et al. [8] and Larsson [9], a semi-
autonomous operation is developed by implementing collision detec-
tion and avoidance, and navigation functions to assist the operator.
Assisted tele-remote operation is a combination of remote operation
and operator assistance functions. It can be seen as an extension of
semi-automation that finds the right balance between remote control
and automation.
1

2
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Fig. 2. Short loading cycle. The steps performed by a wheel loader in one operation cycle
are as follows: 1: Approach to the pile, 2: Loading, 3: Retract from the pile 4: Approach
the dumper, 5: Dumping, 6: Retract from the dumper.
2.4. Case study on tele-operation and assisted loading

During a 10-year period from1999 to 2009 in theundergroundmine
at Kiruna, Sweden, the iron ore was partly transported by semi-
automatic tele-remote controlled LHDs [10]. It was discovered quite
early that the average bucket weights of remotely operated LHDs
were lower when compared to manual LHDs. To address the problem,
an operating assistance function was introduced to the tele-remote
LHDs that automatically controlled the robotic mechanism (the boom
and the bucket) during the scooping. Testswith twomachines indicated
that the average bucket weight increased by nearly 5% when using
the assistance function (semi-automated LHDs) compared to pure
tele-remote controlled scooping [10]. The remote operators were able
to use the operator assistance function at their own decision so there
is no knowledge of how frequently the function was invoked. Table 2
summarizes one full year of production with five semi-automatic
LHDs and eight manually operated LHDs.

As is clear from Table 2, the productivity of the semi-automatic LHDs
was still far less than that of themanual LHDswhen considering the av-
erage bucket weights. It should be noted, however, that the material
transported was blasted rock, and in the case of a failed blasting, the
blast contained a large number of boulders, which would mean that
the volume of the load in the bucket contained more air than when
the blasting produced well-fragmented rock. The figures in Table 2
should therefore be interpreted as indicators rather than absolute facts.

In underground mining, there are both pros and cons with semi-/
automated machines. An advantage with semi-automated LHDs is that
they can operate directly after a blast whereas manual LHDs need to
wait several hours before gases and dust produced from the blast are
ventilated. However, a drawback with semi-/automated LHDs is the
need of isolating the area in which they operate, due to safety regula-
tions, which heavily constraints other activities in those areas. The
Table 1
Steps in assisted remote-control operation for a short loading cycle.

Steps Strategy

Approach to the pile 1. Locate the best loading spot.
2. Navigate to the loading spot safely and efficiently.
3. Place the bucket in the right position for loading.

Loading 1. Using the sensor input, run the control algorithm for
loading the pile for the specific conditions.
2. Adjust the load in the bucket to prevent spillage.

Retract from the pile 1. Locate the pose of the dumper.
2. Identify a good target location for reversing.
3. Reverse in a safe way avoiding any obstacles.

Approach the dumper 1. Navigate to the dumper safely and efficiently.
2. Prepare the boom and bucket for dumping.

Dumping 1. Ensure that alignment is as desired.
2. Activate the boom and bucket for dumping.

Retract from the dumper 1. Locate a reversal point.
2. Reverse in a safe way, avoiding any obstacles.
3. Lower the boom and bucket for the next cycle.

Image of &INS id=
Image of Fig. 2


Table 2
Comparison of manual operation and tele-remote operation in terms of loaded bucket
weight averaged over one year (Data from LKAB Mine, Kiruna) [10].

Average bucket weight (ton)

Manual LHDs 26.7
Semi-automatic LHDs 23.3
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pros and cons pose an optimization requirement for the most efficient
use of semi-/automated machines alongside manual machines.

3. Requirements of operation

Earth-moving operation requires heavy construction machinery,
which necessitates the safe and efficient use of such machinery.
Because any construction operation cycle, including the short load-
ing cycle, is repeated thousands of times, it is important to define
stringent requirements for the operation. Two aspects in which
these requirements can be classified are safe operation and
performance.

3.1. Safe operation

Safety is a priority for companies in developed countries [4], but re-
ducing themaintenance cost of operation is of interest to all companies
around the globewhoare usingmobile earth-movingmachines. Human
safety comes before any other priority. Normally, this is performed by
separating the zones of remote-operated (or automated) machines by
the zoneswhere humans could be freelyworking. Safety to themachine
is also very important because, apart from the direct cost of repairing a
brokenmachine, themaintenance cost also includes the cost of produc-
tion loss during the down-time of the machine. Given the importance
of safe operation, below is a discussion of major safety threats during
operation and their mitigation.

3.1.1. Wheel slip
Wheel slip is an undesirable phenomenon that results in the loss of

traction. It occurs when the torque applied to the wheels greatly
exceeds the friction available from the surface. Reasonably, this can
occur when the torque applied to the wheel is too high or when there
is not enough friction on the surface (e.g., icy and wet surfaces). For
the wheel loader operation, this can occur during the loading phase
when the resistance force on the tool is very high, leading the operator
to apply more and more throttle. This practice is common with novice
drivers, and wheel slip becomes a larger risk with such drivers [11].

According to Andersson [10], wheel slip can greatly damage the
tires, and it contributes to 20–25% of the machine's total maintenance
cost. Therefore, wheel slip is highly undesirable and should never
occur [12]. To avoid wheel slip conditions, traction control algorithms
can be incorporated during the loading step in the operation cycle.

3.1.2. Collision detection and avoidance
Wear and tear to themachine due to collisionswith the side walls in

underground mines are very common in tele-remote operation during
hauling (also called tramming), even at low speeds [8]. This results in
increased maintenance costs, and hence, collisions are considered a
large disadvantage of tele-remote operation [9]. In the short loading
cycle, driving backwards is one of the more critical steps where the
chances of collision are even higher. Slamming the tool into an obstacle
while driving backwards is not very uncommon during remote-
operation [8]. There can also be collisions with boulders fallen off from
loaded trucks working in the same area, and therefore it is important
to have the collision detection and avoidance mechanism as an integral
part of the remote control system of these machines.

In certain underground mines, there are ditches along the tunnels
that are part of the water drainage system in the mine. The drivers
regularly driving in these tunnels are trained to drive close to the wall
opposite to the ditch [8]. Because all mobile earth-moving machines
working in an underground mine will traverse the tunnels once in a
while, an algorithm to avoid driving into the ditches must also be part
of the remote-control system.

Much research on the topic of collision avoidance already exists in
the field of mobile robotics, and it must be exploited when developing
control systems for automated or tele-remote-operated mobile earth-
moving machines. Most of the collision avoidance systems use laser
range finders, as in Roberts et al. [5], Larsson et al. [8], Larsson [9] and
Andersson [10]. Some researchers have also experimented with radar-
based collision avoidance systems [13]. It is important to mention that
both laser- and radar-based systems can suffer from performance
degradation due to dusty and foggy conditions.

3.2. Performance

Performance is an important aspect for companies to be able to
remain in business against their competitors. The performance of a
short loading cycle or a load and carry operation can be captured in
terms of productivity and fuel efficiency. As mentioned in Larsson
et al. [8], the remote-controlled machines are often less productive
than manually controlled machines. Therefore, to realize the vision of
full automation of these earth-moving machines, it is necessary to
dissect the operation cycle in pieces and study the possibility of im-
provement in performance for each piece. The performance of a short
load cycle operation and that of other operations can be captured by
measuring the fill factor, fuel efficiency and cycle time of the operation.

3.2.1. Fill factor
Fill factor or bucket fill factor is the amount of material loaded in the

bucket in one scoop. The fill factor can bemeasured by a weighing scale
system in themachinewhen lifting the bucket. Aweighing scale system
uses the pressure in the cylinders to calculate the loadedweight. There-
fore, in the absence of a weighing system, the loaded weight can be
computed by the measurements from the pressure sensors of the
boom and bucket cylinders in a wheel loader, for instance. In Almqvist
[12], one theory for developing an automatic scooping function is pre-
sented, wherein a zigzag motion strategy is proposed for the bucket.
In this report, the conclusion is that it is very difficult to fill the bucket
via an automatic function as good as amanual driver can, evenwith soil.

The lower productivity of remote operation is primarily due to the
lesser fill factor compared to manual operation [10]. Keeping this infor-
mation in mind, it is important to consider fill factor as a requirement
while developing an automatic loading function for mobile earth-
moving machines.

3.2.2. Fuel efficiency
The fuel efficiency of the machine directly affects the operational

cost. In Frank et al. [1], arguments are presented to support an operator
assistance function for increasing the fuel efficiency. They claim that fuel
consumption roughly contributes 30–60% of the operations cost
measured per unit of the loaded material. Moreover, pollutant emis-
sions increase with decrease in operational efficiency [14]. Therefore,
it is important to ensure that the fuel efficiency of an automated solution
is at least close to the most fuel efficient drivers.

In some publications, productivity and fill factor are considered to be
the same, and the use of full engine power to load the material is
suggested, as in Kale et al. [15] for instance. The use of full power may
not be a good solution, as not only can it result in reduced performance
due to the increased fuel consumption, but it can also result in increased
wear and tear of the tool.

3.2.3. Operation cycle time
Operation cycle time is also important, as the short loading cycle is

repeated over and over again. A small improvement in cycle time can
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result inmanymore extra loading cycles, resulting in improved produc-
tivity. The loading step in the short loading cycle has greater potential
for improvement with regard to the cycle time than navigation and
dumping. A shorter operation cycle time demands increased fuel
consumption due to the higher acceleration and deceleration. There-
fore, a trade-off is necessary between the cycle time and fuel efficiency.
This particular trade-off problem has been considered in Nezhadali and
Eriksson [16].

3.2.4. Unified performance indication
It can be useful to capture the two aspects of performance,

i.e., productivity and fuel efficiency, in one figure and to access the per-
formance at a lower time resolution for each individual operation cycle.
This can serve as a tool to compare and critique different operator styles
and also different automatic bucket loading algorithms. The productivi-
ty is defined as the ratio of the fill factor and operation cycle time and
thus is measured in weight of loaded material per unit time. In Filla
[6], it is argued that the operator's mental and physical workload should
also be captured in the performance of the operation.

4. Towards autonomous operation

Although research towards automation of earth-moving machinery
has longbeen active, in practice, only a handful of construction andmin-
ing companies use remote controlled or semi-autonomousmachines. In
this section, several challenging problems involved in the automation of
heavy earth-movingmachines are highlighted. In the next two sections
after this section, the focus ismoved to aspects related to remote control
of earth-moving machines due to their significantly growing presence
in industry.

The majority of the reviewed papers aimed towards automation of
earth-moving machines can be categorized in one of the following
areas.

4.1. Modeling for control

Amachinemodel is required for developing automatic control func-
tions for all three steps of a short loading cycle i.e., loading, navigation
and dumping. An automatic control function for loading also requires
a model for the bucket-media interaction. In Fig. 3, a block diagram de-
piction of this approach is presented in the form of a closed-loop control
framework. There are some issues with this representation of the sys-
tem. First, as highlighted in the diagram, the bucket-media interactions
are too highly complex and stochastic to be accurately captured by any
practicalmeasurement system. Second, themodel of the pile (Gp in Fig. 3)
is also unknown and changing during each loading cycle. Modeling the
machine (Gm in Fig. 3), alternatively, is an easy task comparatively.

4.1.1. Modeling the kinematics-dynamics of the machine
Modeling themachine boils down to representing the roboticmech-

anisms (links, joints and the tool), the hydraulics and the power train of
the machine in terms of kinematic or dynamical equations. Several
pieces of literature exist that present the model of excavators or wheel
Gc Gm Gp

Gs

Inputs from 
Operator

Operational 
Output

unknown 
unconstant

1. Acceleration
2. Brake
3. Steering

4. Lift
5. Tilt

complex 
stochastic 
interaction

Fig. 3. Control block diagram of a loading process. Gi is the transfer function for i = c
(controller), m (machine), p (process/pile) and s (sensors).
loaders. In Vaha and Skibniewski [17], a dynamic model of a back-hoe
excavator has been developed. In Zweiri et al. [18], the kinematic and
dynamic model of a tracked earth-moving machine is presented. The
robotic mechanism of the machine in this paper is similar to that of a
typical wheel loader. In Andersson [10], models are developed for an
LHD machine to be used for autonomous navigation.

4.1.2. Modeling of bucket-media interactions
Many efforts, from as early as 1960's, have been conducted to create

models that represent the bucket-media interactions. These early
models were based on the interaction forces between the tool and the
media, and many of them converge to a five-force model, presented in
Singh [19] and Luengo et al. [20]. A good review of many investigations
into determining bucket media interaction is presented in Hemami and
Lipsett [21]. These models are often very complex and so computation-
ally expensive that they remain unusable for real-time automatic
control. However, in Richardson-Little and Damaren [22], an over-
simplified model based on the 5-force bucket-soil interaction model is
used in a closed-loop compliance control scheme. Despite a consider-
able amount of discussion on such models, a reliable bucket-media
interaction model has not yet been achieved.

4.2. Automatic loading

Due to the complex nature of the bucket-media interaction, develop-
ing automatic loading functions that are better than or equal to expert
manual drivers with regard to performance is a highly difficult task.
One of the main questions for the automatic loading control problem
is which signal should be controlled [2] and which signal should be
used for the feedback. Due to the existing challenges in this problem,
only a few control philosophies can be implemented. In this subsection,
the possible candidates for solving the automatic loading problem are
discussed.

With the aim to develop an automatic loading function, most
research works start by studying the actions of expert drivers during
loading. Full-scale experiments with instrumented wheel loaders and
excavators are performed to interpret thedriver's philosophyof loading.
Researchers use these results to give direction to their researchwork. In
Frank et al. [1] and Frank et al. [11], experimentswith awheel loader are
performed, with the loading of sand, gravel and fragmented rock by 80
different drivers ranging from novice to skilled. The aim of this experi-
ment was to establish the basis for an automatic loading function. In
Marshall et al. [23], full-scale experiments are performed with an LHD
machine loading fragmented rock. Sakaida et al. [24] presents another
study on the actions of drivers while excavating soil with an excavator.

4.2.1. Position (trajectory) control
One idea for loading the bucket is to follow a planned trajectory. This

idea is based on the early work by Mikhirev [25] in which the aim is to
maximize the volume between the trajectory cut and the profile of the
pile. A limiting factor for this approach is that, with the available
technology for pile characterization (laser scanners or vision-based
systems), only the surface of the pile is illuminated,which is not enough
information to define an optimal trajectory. Although the idea of trajec-
tory control is comprehensible, it fails to capture the fact that following
the desired trajectory may be impossible in a real-world situation of
non-homogeneous media.

Many current researchers take trajectory planning as a starting point
for their work, as in Almqvist [12] and Filla et al. [26]. Although a trajec-
tory may be approximately followed for low-density sand or wood
chips, it is impossible to follow a trajectory for high-density media,
such as fragmented rock. This is because of the immense amount of re-
sistive forces on the tool by the media, which drives the actuators into
saturation and sometimes also results in wheel slip. In Marshall et al.
[23] and Hemani [27], it is noted that, since the aim of the control

Image of Fig. 3
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system is to fill the bucket and not to follow a predefined path, trajecto-
ry control should not have priority.

4.2.2. Compliance control
It is not surprising that strict position (trajectory) control can only be

realized in extremely low-densitymedia and notwhilemoving through
a pile. To address this fact, several opinions have converged on the idea
of modifying the trajectory of the tool on the fly in compliance with the
resisting forces on the tool. This type of control philosophy named here
as compliance control, is also found under several other names, such as
two-level (force, position/velocity) control, force-feedback control,
inner-outer loop control, admittance, impedance control and more.
Compliance control is a fundamental area of research in robotics [28].

A clear and basic formulation of compliance control with an im-
provement in its formulation is presented in Zhang and Paul [29]. In
Maeda [3], Richardson-Little and Damaren [22], and Väha and
Skibniewski [30], compliance control is applied to excavators. In Mar-
shall et al. [23], it has been suggested to use the bucket cylinder pressure
as an input for admittance control for automatic loading of fragmented
rock. Research in the mobile robotics field that combines the ideas be-
hind admittance and impedance control is presented in Ott et al. [31].
A small-scale laboratory experiment designed around wheel loader op-
eration to advocate a compliance control strategy to modify tool trajec-
tory is presented in Sarata et al. [32]. Recent industrial interest towards
automation of earth-movingmachines can be seen in a patent based on
velocity control of the digging work cycle of an excavator in Clark et al.
[33].

4.2.3. Feed-forward control
In a feed-forward control scheme, the focus is on measuring the

effect of disturbances to the system and pre-compensating their effect
by modifying the controller actions. In the setting of an excavation
process, the disturbances would be the tool-media interaction forces
for a trajectory control problem. Some researchers argue that the un-
modeled dynamics of the pile (Gp in Fig. 3) can be modeled as a distur-
bance to the process. For example, in Liu et al. [34], the interaction forces
from the pile are assumed as a disturbance, and it is suggested that a ro-
bust controller could be sufficient to counteract the resisting forces.
However, this study is only backed up by a simulation study. In Maeda
[3], a disturbance observer for the resisting forces is proposed, and an it-
erative learning algorithm has been used tomodel the repetitive part of
the resisting forces. In this work, experiments are performed by a
1.5-ton excavator but only on near homogeneous soil, which does not
resemble, for instance, a fragmented rock scenario. In summary, it is
hard to conclude that modeling the pile only as a disturbance to the ex-
cavation process can be used as a general approach for the autonomous
excavation problem.

4.2.4. Artificial intelligence methods
The automatic bucket loading problem has also received attention

from the artificial intelligence research community. Modeling the
tool-media interaction is impossible [35], and the traditional control
techniques can be impractical or infeasible, especially for rock excava-
tion [36]. This is often the motivation behind exploration of artificial in-
telligent techniques, such as neural networks and fuzzy logic, to address
this problem. In Xiabo et al. [35] and Shi et al. [36], a small-scale exper-
iment is designed to investigate the excavation process and involves
digging out two rocks of varying sizes from a pile of muck. Their
approach for handling the excavation goal is to break the goal down
into different tasks, which are further broken down into excavation
behaviors and actuator actions. In their work, the excavator behaviors
and actuator actions are coded using fuzzy logic and a neural network
based on finite state machine methods. Wang [37] further continues
the work on fuzzy logic control for robotic excavation presented in
Xiabo et al. [35] and Shi et al. [36].
Otherworks that also use rule-basedmethods for robotic excavation
are Lever [38] andWu [39]. These data drivenmethods relymore on the
experiment than theory, and a common idea behind these artificial
intelligence-basedmethods is to code the intelligence of an expert oper-
ator into a computer program. A rational criticism against the proposal
of being inspired by an expert operator comes from Hemani [27],
which states that the way an operator has learned to use the earth-
moving machine might not be the most efficient method to control
the machine.

4.2.5. Reinforcement learning methods
Reinforcement learning is afield inmachine learning thatfinds some

of its applications in the field of automatic control. In reinforcement
learning, an autonomous agent (controller) interacts with the environ-
ment (via sensor and actuators) in real-time and learns to choose opti-
mal actions to achieve its goal [40]. Because several reinforcement
learning algorithms are model-free, it is attaining the interest of many
research groups. A good survey of several algorithms and challenges
for applying reinforcement learning in robotics is presented in Kober
et al. [41].

Although reinforcement learning has never been applied to robotic
excavation to our knowledge, it is a promising potential candidate to
address the automatic loading problem. Because excavation tasks take
place in an episodic setting with a significant interval between two
bucket loadings, the real-time constraints on reinforcement learning
are not so harsh. Furthermore, if excavation data from an expert driver
is available, it can be included in the framework of imitation learning to
create a baseline controller for learning experiments [41].

Reinforcement learning is applied in robotics to control humanoid
robotic arms in Khan et al. [42]. They use a Q-learning algorithm
where the Q-value function is learned by neural networks. In Khan
et al. [43], a review of reinforcement learning is presented from the
view point of adaptive control. Despite reinforcement learning and
optimal control being somewhat related fields, reinforcement learning
cannot guarantee optimal performance for autonomous loading, mainly
because of the absence of a complete model of the earth-moving
process.

4.3. Pile characterization

Pile characterization is an area of interest in robotic excavation that
uses machine vision techniques to aid autonomous and remote opera-
tion. Some applications of pile characterization via vision-based systems
are identifying a good excavation location for short-term (e.g., next
scoop) and long-term action (e.g., task planner), and computing the
most suitable pose of the machine to scoop the next bucket. Other
applications include identification of the quality of blasted rock and es-
timation of the volume of the loaded material in one scooped bucket.

In Sarata et al. [44], stereo vision is used to identify the best loading
location on the pile of material to bemoved. In Stentz et al. [45], a laser-
based task planner is developed for an excavator and has been shown to
be capable of excavating the ground as fast as a human driver. A similar
method for determining the attack pose for wheel loaders is discussed
in Magnusson and Almqvist [46].

Apart from the attack pose, laser scanner data has also been used to
identify large boulders in the pile [47]. In Anwar et al. [48], a stereo
vision system has been demonstrated to estimate the fill factor of soil
in the bucket.

4.4. Localization and navigation

Localization and navigation are relatively more discussed topics, es-
pecially in thefield ofmobile robotics. From this heritage, the navigation
techniques for mobile earth-moving machines are already quite ad-
vanced. Several companies, including Caterpillar, Atlas Copco and
Sandvik, offer navigation products for the mining industry, and many
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sites already use automatic hauling in their mines McNab et al. [49].
Laser-based techniques are dominant in localization and navigation in
underground mines. Some good references that use laser scanners in
their work are Roberts et al. [5] and Larsson et al. [8]. In the scope of a
short loading cycle, a relative localization technique between the
dump truck and the wheel loader is also a viable solution. The main
challenge during navigation in a short loading cycle is to avoid collisions
with the walls, boulders and other vehicles. Recent advancements in
ultra-wide-bandwidth technologies [50] can also be exploited for the
relative navigation between the wheel loader and the dump truck.

4.5. Path planning

In the short loading cycle, thewheel loadermoves on a slightly vary-
ing V-Y curve, as shown in Fig. 2. The aim of path planning is to generate
this V-Y curve given the starting pose of the machine, the pose of the
dump truck and other constraints (walls and obstacles). Different objec-
tives for optimizing this V-Y curve as noted in Filla [51] are fuel efficien-
cy, travel distance, travel time and more. Another recent publication
concerning path planning for a short loading cycle is Alshaer et al.
[52]. The surfaces at earth-moving operation sites can be bumpy and
uneven due to pebbles and small rocks, and for this reason, a 3D relative
localization could be a better alternative than 2D localization methods.

5. Communication for remote operations

It is identified in Hemani and Hassani [2], Andersson [10] and Lever
[38] that operatorsmake their decisions based on their vision, the sound
from the surroundings and the vibrations from themachine. Because an
operator in manual operation uses all his visual (3D), auditory, tactile
and other sensory organs to operate the machine [27], the tele-remote
operator should also be provided with more feedback than just plain
video streams for different views around themachine. Although it is un-
desirable to trouble the tele-remote operatorwith noisy sound feedback
and uncomfortable vibrations, some reduced form of audio and vibra-
tion feedback will certainly help the remote operator. In total, there
can be four types of streams of feedback data to the remote control sta-
tion along with the upstream of control commands as shown in Fig. 4.

5.1. Wireless network properties

Because mobile machines usually need to communicate over wire-
less links, the adverse effects of wireless channels, such as multi-path
propagation, varying signal strength and interference, can plague
the communication performance. Even a small glitch or delay in the feed-
back data can significantly destroy the experience of the remote operator,
affecting their ability to control the machine. Therefore, the design of a
good communication setup should not be overlooked when designing a
tele-remote control system for mobile earth-moving machines.

Although specializedwireless networks could potentially offer high-
ly predictable performance, the benefits of usingmulti-purposewireless
networks that cannot only be used for tele-remote operations but also
Remote Control
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Fig. 4. Data Streams between mobile machine and remote control station.
for other applications motivate the choice of network technologies
that can carry Internet Protocol (IP) traffic. Choosing a technology
such as wireless local area networks (WLANs) is also attractive for
reasons of cost savings since WLAN equipment is widely popular and
therefore less expensive.

A reliablewireless communication system is also very important to a
fully autonomous system tomonitor the safety of the operation, e.g., by
overseeing the operation and acknowledging safety-critical tasks and
actions. Although communication is critical for the remote earth-
moving operations, it is far less discussed in the literature. A valuable
discussion of communication solutions for underground mines is pre-
sented in Forooshani et al. [53]. The requirements of the tele-remote
control solution from the communication system are low latency, min-
imal loss and high throughput. In Liu et al. [34], a Simulink–Opnet sim-
ulation is implemented to test a proposed communication system for a
tele-remote control solution.

Wireless communications at construction sites and in industrial and
mining environments may be provided with a combination of different
network technologies. For example, IEEE 802.11ac [54] or IEEE 802.11n
[55] WLANs can be deployed and controlled specifically for a construc-
tion site, industry or mine. To extend the wireless network coverage,
suchWLAN deployments may be complemented with 4G cellular infra-
structures based on ETSI 3GPP LTE-Advanced [56]. These wireless net-
works technologies are capable of several hundreds of Mbps to Gigabit
speeds, but as with most wireless communications, the actual speed
varies with radio conditions. When disturbances such as undesired
reflections causingmulti-path propagation and interference appear, re-
ceiving devices experience errors in the received data, whichmakes the
system adapt to stronger coding and consequently lower transmission
rates.

In datagram-based networks, queuing delays, jitters (i.e., delay vari-
ations) and eventually loss of data appear when the communication
speed falls short of the data consumption rate of the application. The
amount of buffers allocated for queuing in WLAN devices is decided
based on a trade-off between delay and throughput. For example, a
maximum of 1600 datagrams may need to be buffered at outgoing
IEEE 802.11n interfaces to ensure that the network can operate at its
full capacity [57]. With such an allocation of buffer space, delays of
more than 300 ms can appear when the network is saturated. In addi-
tion to the latencies that occur when data is queued for transmission,
link-layer retransmission of data can also cause delay and jitters.

For tele-remote operation of earth-moving machines, the risk of
being exposed to throughput degradation and excessive delay and
jitters can be reduced by designing a system in which the demand for
capacity stays well below the available network capacity. However,
this approach alone can prove fatal when the wireless network suffers
from unpredictable variations in radio channel quality. Recent IEEE
802.11 standards offer schemes and mechanisms that provide Quality-
of-Service (QoS) satisfaction for real-time multimedia flows over
WLANs, allowing the prioritization of mission-critical streams for tele-
remote operations [58]. Still, available wireless capacity can vary greatly
and cause severe problems for the operation.

5.2. End-to-end transport services

Varying wireless capacity can be handled by adapting the sending
rates of the different data streams for tele-remote control. In Internet
Protocol (IP)-based networks, such adaptation is typically performed
at the endpoints of the communication system. The widely used
Transmission Control Protocol (TCP), originally published as an Internet
standard in 1981, provided congestion control and avoidance for appli-
cations on IP-based networks [59]. TCP, however, has some disadvan-
tages for the real-time communication required for tele-remote
operations. That is, TCP may introduce undesired delays due to its man-
datory in-order delivery feature since it buffers data awaiting successful
re-transmission of lost packets [60]. This problem is referred to as head-

Image of Fig. 4
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of-line blocking. Alternatively, the User Datagram Protocol (UDP), the
other most commonly used transport layer protocol on IP networks,
does not implement congestion avoidance and control, and applications
using this protocol may hence overload wireless networks, resulting in
high loss rate, jitters and extensive delays.

The end-to-end communications for tele-remote operations over
IP networks share many requirements for telephony signaling
transport. The need of telephony signaling transport over IP motivat-
ed the design of a new protocol for signaling transport. As a result,
the Stream Control Transmission Protocol (SCTP) was published by
the IETF (Internet Engineering Task Force) as a standard track docu-
ment in 2007 [61]. SCTP provides similar congestion control and
avoidance as TCP along with additional features, such as avoidance
of head-of-line blocking of messages and multi-homing for endpoint
devices.

Head-of-line blocking can be avoided with SCTP by using the unor-
dered delivery service offered by this protocol. The multi-homing fea-
ture allows an endpoint device to be connected to its peer endpoint
via more than one network interface. This feature is highly desirable
for tele-remote operation as it allows for the possibility of switching to
a backup wireless network if the primary one becomes unavailable,
e.g., from a WLAN to a 4G network. Extensions to SCTP for partial reli-
ability (PR-SCTP) further allow for the early discard of stale data, such
as delayed video frames or control messages [62]. In Sanson et al. [63],
it is shown that limiting the maximum number of retransmissions
with theH.264/AVC video standard can provide reliable delivery similar
to TCP along with lower delay. In general, the scalable video coding ex-
tension of the H.264/AVC standard offers temporal, spatial, and quality
scalability to video streams,which allows the use of rate-adaptive trans-
port protocols, such as TCP and SCTP [64].

Given the several advantages of SCTPover TCP andUDP, it appears as
a valid alternative for the end-to-end transport of streams for tele-
remote control of earth-moving machines. Another alternative for
video transport is the TCP Friendly Rate Control (TFRC), which offers a
much lower variation of throughput over time compared with TCP or
SCTP. This makes TFRCmore suitable for applications where a relatively
smooth sending rate is of importance [65], such as streaming media.
TFRC can be used with the Datagram Congestion Control Protocol
(DCCP), which is a transport protocol that provides bidirectional unicast
connections of congestion-controlled unreliable datagrams [66]. Multi-
homing support for DCCP is currently being considered by the IETF for
possible standardization [67].
5.3. Key communication aspects

As discussed above, the importance of goodwireless communication
for tele-remote operation of earth-moving machines should not be
underestimated. Modern wireless technologies, such as IEEE 802.11ac,
IEEE 802.11n and 3GPP LTE-Advanced, are likely to provide the
desired communication quality, but the network load and varying
radio condition need to be carefully considered and properly han-
dled through careful design and planning. Available schemes and
mechanisms for QoS should be used to prioritize mission-critical
messages. Additionally, transport layer protocols offering features
such as congestion control and avoidancewithout head-of-line blocking
and support for multi-homing can prove valuable for tele-remote
operations.
6. Remote control station

The tele-remote operation of earth-moving machines is gaining
popularity in some industries. Remote-controlled equipment does pro-
vide a present-day solution while autonomous solutions evolve. In this
section, a remote control station is discussed in brief.
6.1. Human–machine interaction

Because remote control demands real-time interaction with the op-
erator, the Human Machine Interface (HMI) should provide only the
necessary information for efficient remote operation. Irrelevant infor-
mation should be suppressed to lessen the stress on the remote opera-
tor. An advancedHMI is proposed for excavators inNi et al. [68],where a
complete virtual environment of the excavation task has been
envisioned with heads-up displays. Virtual reality may be suitable for
a minimally moving excavator, but it may not be so useful to apply to
a short loading cycle due to the mobility of the machine. Stereo vision
displays have beenproposed in Sauer et al. [69] for presenting augment-
ed reality of industrial robots. In Oh et al. [70], haptic feedback joysticks
are proposed for excavators. Many of these techniques can be used to
present feedback from the wheel loaders to the remote-operator, but
they should only be included if they improve the conditions for efficient
remote operation.

6.2. Task planning

Some researchers strive for automation of the mobile earth-moving
machines from the highest level, and they aim to break themain objec-
tive down into smaller tasks much like how a human operator will see
the work. A task planner software implements such an architecture to
help the operator or the autonomous agent in making high-level deci-
sions (e.g., discretization of the working area into a grid for planning
the excavation). A task planner for an excavator using state chart flow
diagrams has been developed in Ha et al. [71] and ha and Rye [72]. An-
other task planning algorithm for excavators working in a wide-open
area is proposed in Seo et al. [73].

7. Other related works

In this section, research areas that do not fall into the previous cate-
gories but which are still quite interesting with regard to automation of
earth-moving machines are discussed in brief.

7.1. Power-train and traction control

The research in traction control and power-train technologies also
addresses autonomous earth-moving aspects by posing certain require-
ments. The problem of wheel slip during loading of heavy and dense
media already raises enough questions to open the scope. Efficient
transmissions aim to minimize the fuel consumption and wear and
tear of tires. In Andersson [10], improvements in the traction control
of LHDmachines are proposed. In Nilsson [74], advanced control theory
has been applied on the wheel loader transmission to improve fuel
efficiency.

7.2. Simulation of the environment for development and training

Detailed computer simulations are used to design control systems
and to develop operator training simulators. Unfortunately, for wheel
loaders and excavators, the environment is unpredictable, and the
forces exerted by the media (soil, sand, gravel, rock, etc.) are random
and unpredictable. Nevertheless, efforts to simulate the environment
can be seen in some of the literature. In Filla et al. [26], a pile of consis-
tent gravel is simulated to study different bucket trajectories for wheel
loaders, and in Schmidt [75], a simulation of soil is developed to test
automatic loading functions for excavators.

7.3. Connected things at mobile machines

Earth-movingmachines are for different reasons equippedwith var-
ious types of ad-on sensors. For example, construction equipment for
autonomous and remote operation requires video cameras and laser
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sensors [5,8,32,45,47,48] and autonomous loading could further require
speed and pressure sensors [10,23]. Additionally, construction equip-
ment industry strives towards remote healthmonitoring of key compo-
nents in machines to facilitate proactive and predictive maintenance
[76]. Remote monitoring includes logging, pre-processing, and wireless
transmission of controller area network (CAN) signals, and data from
ad-on sensors [77]. For example, accelerometers may be mounted at a
strategic location on machines to detect wear and fatigue of critical
components such as a wet clutch of a wheel loader [78].

The increasing need for connecting sensors to construction ma-
chines turns them into mobile cyber-physical systems (CPS) and a
part of the Internet of Things (IoT). The communication techniques
discussed previously not only facilitate remote operation, but also the
transport of sensor data to an Industry Control System (ICS) and to
advanced machine analysis systems [78].

7.4. Survey work

There is much evident interest in automation of mobile earth-moving
machines, which has generated quite a selection of survey papers. Two
papers, Hassani [2] and Singh [19], provide excellent background and
knowledge for automation of the loading step. An overview of navigation
technologies for LHDmachines is presented inDragt et al. [13]. A couple of
good survey papers in the field of the automation of excavators are
Chacko et al. [4] and Yu et al. [79]. Some recent work towards automation
ofwheel loaders is presented in Koyachi and Sarata [80] and Bonchis et al.
[81].

8. Knowledge gaps

Despite the long on-going research for automation of earth moving
machinery, there are some under-explored areas. In this section, such
knowledge gaps are discussed to motivate further work in this field.
Some areas, such as navigation, dynamic modeling and optimal trajec-
tory for the bucket, have received much attention, which has helped
the research in these areas to move forward significantly. Alternatively,
some areas lack attention or are relatively new.

8.1. Fragmented rock

InMarshall et al. [23], the need for specific research on the loading of
fragmented rock has been noted, highlighting the fact that bucket-rock
interactions are much more complex than bucket-soil interactions.
While developing automatic loading functions for fragmented rock, it
might be necessary to adapt the loading algorithm for different grades
of blasted rock. In Cho et al. [82], a method to estimate the fragment
size distribution after blasting has been discussed. Many papers develop
methods for automatic loading of rock, but very few perform experi-
ments on fragmented rock. More experimental research is required in
regard to the loading of fragmented rockmainly because the pile cannot
be modeled in this case. Additionally, the potential use of artificial
intelligence or machine learning methods, or a combination of these
methods, needs to be further explored.

8.2. Communication performance for remote operation

The latency in audio and video are important issues for tele-remote
operation. Humans can tolerate audio delays up to 400ms [60], but be-
yond that, it can hamper the control. Wireless network jitters can cause
many frames to be dropped, resulting in sluggish video. Although one
argument says that these problems can be mitigated just by upgrading
to higher bandwidth or by using available schemes and mechanisms
for QoS, a good throughput can never be guaranteed over wireless
network due to signal degradation, multi-path propagation and inter-
ference. Therefore, it is important to use the network bandwidth
efficiently by choosing the most suitable protocol suite for tele-remote
operation, especially at the end-to-end transport layer.

Candidate transport layer protocols for tele-remote operation in-
clude SCTP [61], DCCP [66] and TFRC [65]. TFRC can prove beneficial
for the scalable video coding extension of the H.264/AVC standard,
which offers temporal, spatial, and quality scalability to video streams
[64]. The use of these transport protocols (or others) for tele-remote
operation remains to be explored and tested together with wireless
network technologies to gain more knowledge on how a dependable
communication solution should be designed.

8.3. Operator experience during remote operation

Operator experience makes a big difference in remote control per-
formance. In manual operation, drivers use their vision, hearing and
balance-detecting capacities to judge and make decisions in real-time.
It is possible to create a virtual reality for the remote operator with a
motion simulator and head-mount display with surround sound.
However, doing so dilutes the main reason for removing the operator
from the harsh environment. Additionally, any form of feedback to the
remote operator will be slightly delayed, which should be minimized
as much as possible. Force feedback-enabled joysticks and pedals can
be of interest for improving the operator's experience, especially during
loading. Hence, suitable means of feedback to tele-remote operators of
earth-moving machines require more attention.

9. Summary and future work

There is increasing interest in the automation ofmobileworkingma-
chines. Automation of wheel loader operation has its own challenges
because of high levels of interaction with its environment during
loading.

This paper provides background for the problem of autonomous
excavation, presents a wide literature survey covering several research
topics and concludes with the identification of knowledge gaps
for autonomous/tele-remote operation of earth-moving machines.
Automation of mobile earth-moving machines involves many different
research areas. Although the article is slightly inclined towards opera-
tion of wheel loaders in a short loading cycle, this setting covers several
aspects of autonomous earth-moving, which is seen as the future by
several industries, including mining, construction, and forestry.

The research relating to excavators has advanced ahead of the
research relating to wheel loaders, which can be noted from the fact
that themajority of citations listed in this article have performed exper-
iments with excavators. However, excavators, unlike wheel loaders, are
much lessmobile during operation,whichmakeswheel loader automa-
tion more challenging. The more extensive movements of the wheel
loader challenge the wireless communication needed for tele-remote
operations. This motivates the need for careful consideration and plan-
ning to balance the communication load and wireless network capacity
as well as the proper use of available schemes, mechanisms and proto-
cols to obtain the desired quality of the communication services.

There is a split between researchers regarding which approach is
more suitable for the automatic bucket loading problem. Twomain strat-
egies attempted by research communities are artificial intelligence-based
methods and compliance control. However, very few papers have report-
ed results on fragmented rock, which appears to be a mountain not yet
climbed.

10. Future work

Fully autonomous systems that can perform equally well as manual
operation are still far-fetched. Future work towards fully autonomous
operation needs to address different areas encompassing the following
topics.



221S. Dadhich et al. / Automation in Construction 68 (2016) 212–222
Autonomous loading algorithms that can adapt to different
materials and machines, and can still perform better than or equal to
human drivers are important for autonomous operation. Rather than
programming based methods, we advocate for learning based methods
like reinforcement learning. Model free deep reinforcement learning
[83] is an interesting approach which can be build to support variations
in machine and material, and could potentially optimize over multiple
performance metrics.

Machine to machine communication technology enables task coor-
dination between machines. For example, an autonomous loader and
an autonomous dumper working together at a draw point in a narrow
corridor in an underground mine need to communicate with each
other and use coordinated path planning and navigation.

Pile shape and geometry characterization enable cognitive decision
making by the machine for the loading process. Existing technologies
such as laser based lidar system can address this requirement. Autono-
mous navigation and path planning in a constantly changing environ-
ment such as a blasting site should be done with an accurate map of
the environment. Simultaneous localization and mapping (SLAM)
technology can be used to create the latest and accurate map of the
site to be distributed to other machines and to the site management
software. The site management technology also requires further
research and development to incorporate autonomous machines for
their operation, monitoring and maintenance.

The requirements of the construction and mining industries to be
more efficient can be met by automation of earth-moving machines,
and doing so, also relieve humans from harsh working environments.
Adding operator assistance functions over tele-remote operation is a
good enabler for companies to increase automation in their operation.
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