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Abstract

Let F(t, u) ≡ F(u) be a formal power series in t with polynomial coefficients in u. Let F1, . . . ,Fk be
k formal power series in t , independent of u. Assume all these series are characterized by a polynomial
equation

P
(
F(u),F1, . . . ,Fk, t, u

) = 0.

We prove that, under a mild hypothesis on the form of this equation, these k +1 series are algebraic, and we
give a strategy to compute a polynomial equation for each of them. This strategy generalizes the so-called
kernel method and quadratic method, which apply, respectively, to equations that are linear and quadratic
in F(u). Applications include the solution of numerous map enumeration problems, among which the hard-
particle model on general planar maps.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let us begin with a classical enumeration problem. We consider walks on the half-line N,
that start from 0 and consist of unit steps ±1. Let F(t, u) ≡ F(u) be their generating function,
where t counts the length (the number of steps) and u the position of the endpoint. That is to
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say, F(t, u) = ∑
n,k an,kt

nuk , where an,k is the number of n-step walks that end at level k. Note
that F(t,0) ≡ F(0) is the length generating function of the celebrated Dyck paths, which are
the walks ending at 0 [41, p. 173]. A step-by-step construction of these walks gives either a
recurrence relation of the numbers an,k or, equivalently, the following functional equation:

F(u) = 1 + tuF (u) + t

u

(
F(u) − F(0)

)
. (1)

The second (respectively third) term on the right-hand side counts walks ending with a step +1
(respectively −1). Clearly, this equation defines F(u) uniquely as a formal power series in t

(with rational coefficients in u). Observe that the equation

F(u) = 1 + tuF (u) + t

u

(
F(u) − F1

)
(2)

defines uniquely both F(u) and F1 as formal power series in t , if we impose that F(u) has poly-
nomial coefficients in u and that F1 is independent of u. Indeed, after multiplying the equation
by u and setting u = 0, we find F1 = F(0), and we are thus back to (1). Finally, we recall that
F(0) is well known to be algebraic of degree 2,

F(0) = 1 − √
1 − 4t2

2t2
.

Consequently, F(u) is algebraic too (meaning that it satisfies a non-trivial polynomial equation,
Q(t,u,F (u)) = 0, with rational coefficients).

The above example is an instance of the general situation we study in this paper. We assume
that a (k + 1)-tuple (F (u),F1,F2, . . . ,Fk) of formal power series in t is completely determined
by a polynomial equation

P
(
F(u),F1,F2, . . . ,Fk, t, u

) = 0. (3)

Typically, F(u) has polynomial coefficients in u, and Fi is the coefficient of ui−1 in F(u). Fol-
lowing Zeilberger’s terminology [50, p. 457], we say that (3) is a polynomial equation with
one catalytic variable u. The aim of this paper is twofold: we prove that the solution of a
(well-founded) equation of form (3) is always algebraic and we present a strategy to obtain a
polynomial equation it satisfies.

There are several reasons why we like to know that the generating function of some class of
objects is algebraic. Firstly, the set of algebraic series is closed under natural operations (sum,
product, derivatives, composition, . . .). Secondly, these series are reasonably easy to handle (via
resultants or Gröbner bases). In particular, several computer algebra packages are now able to
make the above closure properties effective. Thirdly, algebraic series are also D-finite and this
implies that their coefficients can be computed in a linear number of operations [41, Chapter 6].
The asymptotic behaviour of these coefficients has a generic form, the details of which are usually
not too hard to obtain. Finally, and most importantly (at least for combinatorialists), the fact that
a class of objects is counted by an algebraic series suggests that it should be possible to construct
these objects recursively by concatenation of objects of the same type. For many objects, such
a construction is easily found, but for others, among which planar maps [25,38], the algebraic
structure of the objects is far from clear, and the algebraicity of the generating function gives rise
to challenging combinatorial problems. See [41, Chapter 6] or [31] for a presentation of algebraic
series in enumeration.

But let us return to polynomial equations with one catalytic variable. Many combinatorialists
have fought them before us, and we want to recall some milestones in this history.
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1.1. A partial historical account

In 1956 already, Temperley writes, for the perimeter enumeration of column-convex polyomi-
noes, a set of recurrence relations [42, Eq. (7)] that is equivalent, after summation, to

F(u) = ut2

1 − ut
+ t3u2F(u)

(1 − ut)2
+ 2

t2u2

1 − ut

F (u) − F(1)

u − 1

+ ut
uF(u) − uF(1) − (u − 1)F ′

u(1)

(u − 1)2
.

He proves that F(1) is algebraic, without being able to compute it explicitly (see [29] for a simple
expression of F(1)). Like (1), the above equation is linear in F(u), but it contains two additional
unknown functions, F(1) and F ′

u(1).
The first non-linear equations appear in the early sixties, in the work of Tutte and Brown on

planar maps. For instance, Tutte publishes in 1962 the following equation [43, Eq. (3.7)], which
rules the enumeration of certain triangulations:

F(u) = 1 + t

u

(
F(u)

1 − uF(u)
− F(0)

)
. (4)

In the following years, more equations of this type are published for various families of planar
maps (non-separable [18,23], general [44], other triangulations [19], quadrangulations [20]). All
of them involve only one unknown function F1 (and thus read P(F(u),F1, t, u) = 0), and are
quadratic in F(u), apart from the equation on quadrangulations which is cubic. In the first papers,
Tutte and Brown solve these equations by guessing and checking: either they guess the expan-
sions of F1 and F(u), and then check that their guesses satisfy the functional equation, or they
only guess the expansion of F1, and then prove that the polynomial equation P(F(u),F1, t, u),
taken with the conjectured value of F1, admits one root F(u) that is a formal power series in t

with polynomial coefficients in u. Of course, any equation for which the value of F1 cannot be
guessed remains hopeless with this strategy.

In 1965, Brown publishes a theorem that deals, at first sight, with a different topic: with the
conditions for a series in t and u to admit a square root (which is itself assumed to be a formal
power series) [21]. He shows that this theorem allows one to solve, in a systematic way, all
equations of type (3) that are quadratic in F(u) and only involve one unknown function F1. The
quadratic method is born (see [33, Section 2.9] for a modern account). Brown even manages
to solve, with some contortions, the above-mentioned cubic equation for quadrangulations [21,
Section 4]. At the end of [22], he writes “It is possible that the method may be effective when more
than one unknown series is present.” This hope was confirmed many years later, in 1994, when
Bender and Canfield applied the method to a quadratic equation with arbitrarily many unknown
functions [5].

But let us go back to the sixties. In 1968, in the first volume of The art of computer pro-
gramming, Knuth gives for the classical ballot problem an equation that is equivalent to (1), and
presents a “trick” that solves it [34, Section 2.2.1, Ex. 4]. This may have been the unnoticed birth
of the kernel method, which allows one to solve systematically equations of form (3) that are
linear in F(u). This trick may have been better known at that time in probability theory. At least,
the same idea definitely appears in a 1979 paper [28], in a more difficult, analytic context. The
kernel method is currently the subject of a certain revival in combinatorics [1,2,11,27,37].

In 1972, Cori and Richard solve again certain linear equations, and also some polynomial
equations with one unknown series F1 [24]. Their technique is very interesting, but the fact that
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they deal with equations in non-commuting variables makes it both deeper and more obscure.
Still, the strategy we present here to attack (3) owes a lot to [24].

Since then, equations of form (3) have continued to appear in various enumeration problems,
mostly involving maps [5,32], but also polyominoes [7,8,30], stack-sortable permutations [9,49]
and their generalizations [48], lattice walks [1,10], etc. Examples can be found were both the
degree of the equation and the number of unknown functions is arbitrarily large. For instance,
such equations are hiding in Tutte’s work on the chromatic polynomial of triangulations [46,45,
Section 5]. Another such set of equations, unbounded in degree and number of unknowns, is
presented in Section 5.3. It deals with the enumeration of certain Eulerian maps called constel-
lations.

1.2. Contents

The general strategy. The method presented in this paper to solve equations of form (3) encap-
sulates and simplifies all previous approaches, in particular the kernel method and the quadratic
method. It works without any restriction on the degree of the equation or on the number of
unknowns Fi . The general strategy is described in Section 2. Its justification only takes a few
lines. It yields a system of 3� polynomial equations that relate k + 2� series in t : the unknowns
F1, . . . ,Fk , first, then � series named U1, . . . ,U�, which are defined as the roots of a certain
equation (simply related to the original functional equation), and finally the values of F(u) at
u = Ui , for i = 1, . . . , �. The strategy “works” if, first, � = k (so that we have as many equations
as unknown series), and if the 3k polynomial equations thus obtained imply the algebraicity of
the Fi .

First examples. In Section 3, we apply this strategy to several examples. For each of them, we
observe that the strategy works: we find as many series Ui as we have unknowns Fi , and we can
derive from the system of 3k polynomial equations an algebraic equation for each Fi . We also
relate our approach to the earlier kernel method and quadratic method.

A generic algebraicity theorem. Will this strategy always work? Section 4 answers this question
positively, at least for equations of a specific, well-founded form. More precisely, for any series
F(u) ≡ F(t, u) in t and u, let Fi ≡ Fi(t) denote the coefficient of ui−1 in F(u). Denote

Δ(i)F (u) = F(u) − F1 − uF2 − · · · − ui−1Fi

ui
=

∑
j>i

Fju
j−i−1. (5)

Now consider the equation

F(u) = F0(u) + tQ
(
F(u),ΔF(u),Δ(2)F (u), . . . ,Δ(k)F (u), t, u

)
, (6)

where F0(u) is a given polynomial in u (with coefficients in a field K of characteristic 0) and
Q(x0, . . . , xk, t, v) is another polynomial. Then there exists a unique series F(u) satisfying this
equation, and it is actually a formal power series in t with polynomial coefficients in u. We prove
that F(u), and hence all the Fi , are algebraic.

Algebraicity results for planar maps. Thus the solution of every (well-founded) equation with
one catalytic variable is algebraic. This result urges a combinatorial interlude, in which we estab-
lish for several families of planar maps an equation of this type. The generic algebraicity theorem
tells us, without going further, that their generating functions are algebraic. Our examples include
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some already studied problems (like the face-distribution of Eulerian maps, for which we answer
positively a question left open in [13]), and some new ones, like the hard-particle model on
general planar maps.

From 3k to 2k, and then k equations. The next question that we address is both theoretical and
practical: it deals with the size of our polynomial system. Assume the general strategy works
and provides a system of 3k equations. Even when k = 2, even for a computer algebra system,
this can be hard to handle. In Section 6 we reduce the system to 2k equations which involve
only the series Fi and Ui . This new system can be described simply in terms of the discriminant
of the polynomial P occurring in (3), taken with respect to its first variable (we assume that P

is at least quadratic in this variable). Our 2k equations say that this discriminant, evaluated at
F1, . . . ,Fk, t, u and considered as a polynomial in u, has k multiple roots U1, . . . ,Uk . This ex-
tends a result that was known to hold in the quadratic case and is one of the possible formulations
of the quadratic method [33, Section 2.9].

Hence the discriminant and its derivative with respect to u have k roots in common. It is well
known that two polynomials have one root in common if their resultant is zero. In Section 7, we
recall how to express, by a set of k determinants, the fact that two polynomials have k roots in
common. Applying this to the discriminant and its derivative, we obtain a set of k polynomial
equations that relate F1, . . . ,Fk .

A new proof of Brown’s theorem. Before turning our attention to specific examples, we give in
Section 8 a “modern,” and maybe clearer proof of Brown’s theorem on square roots of bivariate
power series.2 Recall that this theorem is the basis of the quadratic method.

Practical examples. We discuss in Section 9 how to derive in practise an algebraic equation for,
say, the unknown series F1. We suggest various approaches, which we exemplify on certain maps
called 3-constellations. The associated equation is cubic and involves two unknown series Fi . In
Section 10, we walk in the steps of Bender and Canfield [5] to find the face-distribution of planar
maps. This problem was already solved in two other ways [14], and we prove that our results are
equivalent to the former ones. Finally, we solve in Section 11 the hard-particle model on general
planar maps. For other recent applications of our method, see [6].

Finally, Section 12 discusses a number of open questions.

1.3. Formal power series and their relatives

Let us conclude this introduction with some notation. Let K be a commutative ring. We denote
by K[t] the set of polynomials in t with coefficients in K. If K is a field, then K(t) denotes the
field of fractions in t with coefficients in K. We denote by K̄ the algebraic closure of K. We also
consider several sets of series of the form

A(t) =
∑
n�n0

ant
n/d,

where n0 ∈ Z, an0 �= 0 and d ∈ N \ {0}. The number n0/d is called the valuation of A(t). We use
the standard notation for the coefficients of a series:[

tn/d
]
A(t) := an.

2 As mentioned in Section 8, it seems that there may be a mistake in Brown’s original proof.
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In particular,

– K�t� is the set of formal power series in t with coefficients in K (n0 � 0 and d = 1);
– K((t)) is the set of Laurent series in t with coefficients in K (d = 1);
– Kfr�t� is the set of fractional power series in t with coefficients in K (n0 � 0);
– Kfr((t)) is the set of fractional Laurent series in t (a.k.a. Puiseux series) with coefficients in K

(no condition).

Each of these sets is a commutative ring, and the second and fourth are fields if K is a field. More
precisely, K((t)) is the fraction field of K�t�, and Kfr((t)) is the fraction field of Kfr�t�. If, more-
over, K is algebraically closed and has characteristic 0, then so is Kfr((t)) [41, Theorem 6.1.5].

These notations generalize to series in several indeterminates. In this paper, we will mostly
use series in t and u. Note the following inclusions:

K[t, u] ⊂ K�t�[u] ⊂ K[u]�t� ⊂ K�t, u� = K�t��u�.

The second set above is the set of polynomials in u whose coefficients are formal power series
in t . The third set is the set of formal power series in t whose coefficients are polynomials in u.
The notation K�u�fr�t� stands for the set of power series in u and t that are fractional in t .

All the fields considered in this paper have implicitly characteristic 0.

2. The general strategy

Let K be a field. In our examples, K will be C, or a field of fractions like C(s1, . . . , sm). Let
F(t, u) ≡ F(u) be a series of K[u]�t�, and let F1(t) ≡ F1, . . . ,Fk(t) ≡ Fk be k series of K�t�.
In our framework, these k + 1 series are the generating functions of certain families of objects,
counted according to one or two parameters. In general, we do not assume that Fi is the coeffi-
cient of ui−1 in F(u). Suppose these series are related by an equation of the form

P
(
F(u),F1,F2, . . . ,Fk, t, u

) = 0, (7)

where P(x0, x1, . . . , xk, t, v) is a non-trivial polynomial in k+3 variables, with coefficients in K.
Assume, moreover, that the above equation defines the (k +1)-tuple (F (u),F1, . . . ,Fk) uniquely
in the set K[u]�t�× K�t�k . Some examples were given in the introduction, and numerous exam-
ples will be given below.

Let us differentiate (7) with respect to u:

F ′(u)
∂P

∂x0

(
F(u),F1, . . . ,Fk, t, u

) + ∂P

∂v

(
F(u),F1, . . . ,Fk, t, u

) = 0,

with F ′(u) = ∂F (u)/∂u. Let U(t) ≡ U be a series of K̄fr�t�. The series F(U) ≡ F(t,U) is a
fractional power series in t (since the coefficients of F(t, u) are polynomials in u). The same
holds for F ′(U). If, moreover,

∂P

∂x0

(
F(U),F1, . . . ,Fk, t,U

) = 0, (8)

then the above identity implies that

∂P (
F(U),F1, . . . ,Fk, t,U

) = 0.

∂v
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This simple observation is the key of our solution of equations of form (7). If we can prove the
existence of k distinct series U1, . . . ,Uk , belonging to K̄fr�t�, that satisfy (8), then the following
system of 3k polynomial equations holds: for 1 � i � k,

P
(
F(Ui),F1, . . . ,Fk, t,Ui

) = 0, (9)

∂P

∂x0

(
F(Ui),F1, . . . ,Fk, t,Ui

) = 0, (10)

∂P

∂v

(
F(Ui),F1, . . . ,Fk, t,Ui

) = 0. (11)

A bit of optimism allows us to hope that this system characterizes completely the 3k unknown
series it involves, namely F1, . . . ,Fk , U1, . . . ,Uk and F(U1), . . . ,F (Uk), so that each unknown
series (in particular each Fi ) is algebraic. More precisely, we would like this system to have only
a finite number of solutions under the assumption that the series Ui are distinct. This assumption
can be encoded by adding a new unknown X and a new polynomial equation:

X
∏

1�i<j�k

(Ui − Uj) = 1. (12)

We prove in Section 4 that this optimism is justified: the solution of a well-founded equation
of form (6) is indeed shown to be algebraic. However, we do not need this general theorem to
examine and solve specific examples, like (2) or (4). What we do need is a way to determine how
many series U satisfy (8), without knowing the value of F(u) or F1, . . . ,Fk . This turns out to be
easy. Let us first clarify what we mean by a root U of a series Φ(t,u).

Lemma 1. Let Φ(t,u) ∈ K[u]fr�t�, and U ∈ Kfr�t�. Then Φ(t,U) is a series of Kfr�t�. If this
series is zero, we say that U is a root of Φ(t,u). In this case, there exists Ψ (t, u) ∈ K[u]fr�t�
such that

Φ(t,u) = (u − U)Ψ (t, u).

More generally, if Φ(t,u) factors as

Φ(t,u) = (u − U)mΨ (t, u),

where Ψ (t, u) ∈ K[u]fr�t�, the series U belongs to Kfr�t� and Ψ (t,U) �= 0, we say that U is a
root of Φ(t,u) of multiplicity m.

This extends to the case where Φ(t,u) belongs to K�u�fr�t�, if we require that U has no
constant term (that is, vanishes at t = 0). In this case, Ψ (t, u) also belongs to K�u�fr�t�.

Proof. The fact that Φ(t,U) is well defined is obvious, by definition of the substitution of se-
ries: If

Φ(t,u) =
∑
n�0

tn/dφn(u),

where φn(u) is a polynomial in u, then

Φ(t,U) =
∑

tn/dφn(U),
n�0
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and the coefficient of tp/q in Φ(t,U), for p/q � k/d , depends only on the polynomials
φ0(u), . . . , φk(u). Now for any indeterminate v,

Φ(t,u) − Φ(t, v) = (u − v)
∑
n�0

tn/dφ′
n(u, v),

where

φ′
n(u, v) = φn(u) − φn(v)

u − v

is a polynomial in u and v. The case v = U proves the second statement of the lemma.
The argument can be adapted without any difficulty to the case where Φ(t,u) belongs to

K�u�fr�t� and U has no constant term, upon writing

Φ(t,u) =
∑

n,m�0

φm,nu
mtn/d

with φm,n ∈ K. �
The next theorem tells how many roots a series Φ(t,u) has.

Theorem 2. Let Φ(t,u) ∈ K[u]fr�t�, where K is an algebraically closed field. Assume that the
coefficient of t0 in Φ , that is to say, the polynomial Φ(0, u), is non-zero and has degree k. Then
Φ(t,u) has exactly k roots in Kfr�t�, counted with multiplicities. Let U1, . . . ,Uk denote these
roots. Then

Φ(t,u) = (u − U1) · · · (u − Uk)Ψ (t, u),

where Ψ (t, u) ∈ K[u]fr�t�.

Proof. The proof is a harmless extension of the proof of the Puiseux theorem [47, Chapter 4],
which establishes the above result (and more) in the case where Φ(t,u) ∈ Kfr((t))[u]. The coef-
ficients of the Ui can be computed inductively using Newton’s polygon. �
3. First examples

We now apply our general strategy to a few examples.

3.1. Walks on a half-line and the kernel method

We consider here some equations of form (7) that are linear in F(u). The reader familiar with
the kernel method will not find our calculations very original, and this is normal: beyond solving
these equations, our objective here is to show that our general strategy reduces to the kernel
method when the equation is linear. We refer to [1] for a systematic treatment of walks on the
half-line, based on the kernel method.

Let us first go back to the simplest equation we have met so far, Eq. (2). It can be rewritten
under form (7):

P
(
F(u),F1, t, u

) = 0,

where

P(x0, x1, t, v) = (
v − t

(
1 + v2))x0 − v + tx1.
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Condition (8) reads in this case:

U − t
(
1 + U2) = 0.

In accordance with Theorem 2, we find that there exists a unique fractional power series in t that
satisfies this equation, namely

U = 1 − √
1 − 4t2

2t
.

System (9)–(11) now reads:(
U − t

(
1 + U2))F(U) = U − tF1, U − t

(
1 + U2) = 0, (1 − 2tU)F (U) = 1.

The first and second equations together imply that

F1 = U

t
= 1 − √

1 − 4t2

2t2
.

We have recovered the classical expression of the generating function of Dyck paths. An expres-
sion for F(u) now follows from the original equation P(F(u),F1, t, u) = 0.

Let us now study a problem with more unknown functions. We still consider walks on the half-
line N that start from 0, but they now consist of steps +3 and −2. A step-by-step construction of
these walks gives, for their bivariate generating function F(t, u) ≡ F(u), the equation

F(u) = 1 + tu3F(u) + t

u2

(
F(u) − F1 − uF2

)
, (13)

where F1 (respectively F2) is the length generating function of walks ending at 0 (respectively 1).
This equation can be rewritten as P(F(u),F1,F2, t, u) = 0, with

P(x0, x1, x2, t, v) = (
v2 − t

(
1 + v5))x0 − v2 + tx1 + tvx2.

Condition (8) now reads

U2 − t
(
1 + U5) = 0.

By Theorem 2, exactly two fractional power series U1 and U2 satisfy this equation, and we
happily observe that two is also the number of unknown series Fi . One may compute the first
terms of the Ui ’s using Newton’s polygon:

U1,2 = ±t1/2 + 1

2
t3 ± 9

8
t11/2 + 7

2
t8 + O

(
t21/2).

In particular, these two series are distinct. System (9)–(11) now reads, for i = 1,2,(
U2

i − t
(
1 + U5

i

))
F(Ui) = U2

i − tF1 − tUiF2, (14)

U2
i − t

(
1 + U5

i

) = 0, (15)

Ui

(
2 − 5tU3

i

)
F(Ui) = 2Ui − tF2.

We have thus obtained six equations that relate F1,F2,U1,U2,F (U1) and F(U2). At this point,
there are several ways to conclude. The fastest one is probably to observe that, by (14) and (15),
the series U1 and U2 are the two roots of the following polynomial in u:

R(u) = u2 − tuF2 − tF1.
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Thus this polynomial factors as (u − U1)(u − U2), which implies

−tF1 = U1U2 and tF2 = U1 + U2.

One can then eliminate U1 and U2 using (15), and obtain polynomial equations for F1 and F2.
In particular, the generating function F1 of walks ending at 0 satisfies:

F1 = 1 + 2t5F 5
1 − t5F 6

1 + t5F 7
1 + t10F 10

1 .

Consider, more generally, the case where the functional equation (7) has degree 1 in F(u) and
can be written as

K(t,u)F (u) = P(F1, . . . ,Fk, t, u),

where K(t,u) ∈ K[t, u] is the kernel of the equation, and P(x1, . . . , xk, t, u) is a polynomial in
k + 2 indeterminates. System (9)–(11) reads

K(t,U)F (U) = P(F1, . . . ,Fk, t,U), K(t,U) = 0,

K ′
u(t,U)F (U) = P ′

u(F1, . . . ,Fk, t,U).

By combining the first and second equations, we see that every root of the kernel that is finite at
t = 0 gives a polynomial equation relating the k unknown series F1, . . . ,Fk . This is exactly the
principle of the kernel method, which has been around since the late 60’s, and is currently the
subject of a certain revival (see [1,2,11,27,37] and references therein).

3.2. Planar maps and the quadratic method

We consider here rooted planar maps (see Section 5 or [33] for definitions). Let F(t, u) ≡
F(u) be their generating function, where t counts the number of edges, and u the degree of the
root-face. Deleting the root-edge gives [44, Eq. (4)]:

F(u) = 1 + tu2F(u)2 + tu
uF(u) − F(1)

u − 1
. (16)

Multiplying this equation by u − 1 gives a polynomial equation of form (7), with one unknown
function F1 := F(1). Condition (8) reads in this case:

U − 1 = 2tU2(U − 1)F (U) + tU2.

By Theorem 2, this equation has a (unique) solution U in the set of fractional power series in t .
It is actually clear from the equation that such a series exists, and is a formal power series in t

(think of extracting the coefficient of tn). Moreover, U �= 0,1. From (9)–(11), we obtain

(U − 1)F (U) = U − 1 + tU2(U − 1)F (U)2 + tU2F(U) − tUF1,

U − 1 = 2tU2(U − 1)F (U) + tU2,

F (U) = 1 + tU(3U − 2)F (U)2 + 2tUF(U) − tF1.

One can eliminate F(U) between the first and second equation, and then between the second
and the third. This gives two equations relating U and F1. We ignore the irrelevant factors U

and U − 1, and eliminate U . This gives an algebraic equation satisfied by F1, containing three
distinct factors. The one that actually vanishes is easily identified, given that F1 = 1 + O(t), and
one concludes that the generating function of planar maps, counted by edges, satisfies

F1 = 1 − 16t + 18tF1 − 27t2F 2
1 .
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More generally, an equation of form (7) having degree 2 in F(u) can be written as(
2aF(u) + b

)2 = b2 − 4ac = Δ(u),

where a, b, c and Δ lie in K[t, u,F1, . . . ,Fk]. (The discriminant Δ(u) should not be mixed up
with the discrete derivative defined by (5).) System (9)–(11) reads(

2aF(U) + b
)2 = Δ(U), 2aF(U) + b = 0,

2
(
2a′

uF (U) + b′
u

)(
2aF(U) + b

) = Δ′
u(U).

By combining the first and second equations, we see that every fractional power series U that
cancels 2aF(u) + b cancels the discriminant Δ. By combining the second and third equations,
we see that U is actually a multiple root of the discriminant.

When there is only one unknown function F1, we recover exactly the quadratic method, as
described in [33]: if there exists a series U such that 2aF(U) + b = 0, then Δ(u) admits a
multiple root. Hence the discriminant of Δ(u) with respect to u is zero: this gives an algebraic
equation satisfied by F1.

This will be generalized in this paper to functional equations of form (7) and of degree at least
two in F(u): we will prove that the discriminant Δ of P , taken with respect to its first variable
and evaluated at F1, . . . ,Fk, t, u, admits each Ui as a multiple root (Section 6).

3.3. Quadrangular dissections of the disk

Let us now consider a cubic example with one unknown function. This example was solved
by Brown, with some difficulties [21]. Our strategy works without any restriction on the degree
of the equation, and the solution of this cubic example will be just as easy as the solution of, say,
the quadratic equation (16).

The quadrangular dissections of the disk studied by Brown in [20] can be described as the
rooted, non-separable planar maps, with no multiple edges, in which each non-root face has
degree 4 (see Section 5 for definitions). It is easy to see that the root-face of such maps has an
even degree, at least equal to 4. Let an,k be the number of such maps with n+4 vertices in which
the root-face has degree 2k, and let

F(t, u) ≡ F(u) =
∑

n�0,k�2

an,kt
nuk−2.

Equation (5.1) of [20] can be rewritten as

F(u) = F(u) − F1

u
− t2F1F(u) + 2tF (u)

(
1 + ut2F(u)

) + (
1 + ut2F(u)

)3
,

where F1 ≡ F(0) is the generating function of dissections of squares. Condition (8) reads:

U = 1 − Ut2F1 + 2Ut
(
1 + 2Ut2F(U)

) + 3U2t2(1 + Ut2F(U)
)2

.

By Theorem 2, this equation has a (unique) solution U in the set of fractional power series in t .
(It is again clear on the equation itself that such a series exists, and is a formal power series in t .)
Moreover, U �= 0. From (9)–(11), we obtain

UF(U) = F(U) − F1 − Ut2F1F(U) + 2UtF(U)
(
1 + Ut2F(U)

) + U
(
1 + Ut2F(U)

)3
,

U = 1 − Ut2F1 + 2Ut
(
1 + 2Ut2F(U)

) + 3U2t2(1 + Ut2F(U)
)2

,

F (U) = −t2F1F(U) + 2tF (U)
(
1 + 2Ut2F(U)

) + (
1 + Ut2F(U)

)2(1 + 4Ut2F(U)
)
.
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One can eliminate F(U) between the first and second equation, and then between the second and
the third. This gives two equations relating U and F1. Ignoring the irrelevant factors U , we then
eliminate U . This gives an algebraic equation satisfied by F1, containing three distinct factors.
The right one is easily identified, given that F1 = 1+O(t), and one concludes that the generating
function of quadrangular dissections of a square, counted by the number of vertices, satisfies

F1 = 1 − 8t + 2t (5 − 6t)F1 − 2t2(1 + 3t)F 2
1 − t4F 3

1 .

4. A generic algebraicity theorem

Let Q(y0, y1, . . . , yk, t, v) be a polynomial in k + 3 indeterminates, with coefficients in a
field K. We consider the functional equation

F(u) ≡ F(t, u) = F0(u) + tQ
(
F(u),ΔF(u),Δ(2)F (u), . . . ,Δ(k)F (u), t, u

)
, (17)

where F0(u) ∈ K[u] is given explicitly and the operator Δ is the divided difference (or discrete
derivative):

ΔF(u) = F(u) − F(0)

u
.

Note that

lim
u→0

ΔF(u) = F ′(0),

where the derivative is taken with respect to u. The operator Δ(i) is obtained by applying i

times Δ, so that:

Δ(i)F (u) = F(u) − F(0) − uF ′(0) − · · · − ui−1/(i − 1)!F (i−1)(0)

ui
.

Observe that all the equations met in Sections 1 to 3 are of form (17), or can be easily transformed
into an equation of this form. Clearly, (17) has a unique solution F(t, u) in K[u]�t� (think of
extracting from (17) the coefficient of tn, for n = 0,1,2, . . .). Upon multiplying (17) by a large
power of u, one obtains a polynomial equation of the form

P
(
F(u),F1, . . . ,Fk, t, u

) = 0,

where Fi = F (i−1)(0)/(i − 1)! is the coefficient of ui−1 in F(u), for 1 � i � k. Here is the main
result of this section.

Theorem 3. The formal power series F(t, u) defined by (17) is algebraic over K(t, u).

The proof requires the following result [35, Proposition X.8].

Theorem 4. Let K ⊂ L be a field extension. For 1 � i � n, let Pi(x1, . . . , xn) be a polynomial
in n indeterminates x1, . . . , xn, with coefficients in the (small) field K. Assume F1, . . . ,Fn are n

elements of the (big) field L that satisfy Pi(F1, . . . ,Fn) = 0 for all i � n. Let J be the Jacobian
matrix

J =
(

∂Pi

∂xj

(F1, . . . ,Fn)

)
1�i,j�n

.

If det(J ) �= 0, then each Fj is algebraic over K.
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Proof of Theorem 3. The idea is of course to apply the general strategy of Section 2. However,
in order to avoid multiplicities in the roots Ui , we first introduce a small perturbation of (17). Let
ε be a new indeterminate, and consider the equation

G(u) ≡ G(z,u, ε) = F0(u) + εkzΔ(k)G(u)

+ z2Q
(
G(u),ΔG(u),Δ(2)G(u), . . . ,Δ(k)G(u), z2, u

)
, (18)

where F0 and Q are the same polynomials as above. Again, this equation admits a unique solu-
tion in the ring of formal power series in z with coefficients in K[u, ε]. Moreover, G(z,u,0) =
F(z2, u), so that it suffices to prove that G(z,u, ε) is algebraic over K(z, u, ε).

We now apply to (18) our general strategy. Our first task will be to convert (18) into a poly-
nomial equation of form (7). Let x0, x1, . . . , xk and v be some indeterminates. For 0 � i � k,
let

Yi = x0 − x1 − vx2 − · · · − vi−1xi

vi

and let

R(x0, x1, . . . , xk, z, v) = x0 − F0(v) − εkzYk − z2Q
(
Y0, Y1, . . . , Yk, z

2, v
)
. (19)

Then

R
(
G(u),G1, . . . ,Gk, z,u

) = 0,

with Gi = G(i−1)(0)/(i − 1)!. Moreover, R is a polynomial in z and the xi , but a Laurent poly-
nomial in v. So let m be the smallest integer such that

P(x0, x1, . . . , xk, z, v) := vmR(x0, x1, . . . , xk, z, v) (20)

is a polynomial in z, v and the xi (with coefficients in K(ε)). Then m � k (because of the term
εkzYk occurring in R) and Eq. (18) now reads

P
(
G(u),G1, . . . ,Gk, z,u

) = 0. (21)

Let us apply to (21) the general strategy of Section 2. We need to find sufficiently many fractional
power series U in z, with coefficients in some algebraic closure of K(ε), satisfying

∂P

∂x0

(
G(U),G1, . . . ,Gk, z,U

) = 0.

Let us focus on the non-zero solutions U . The above condition is then equivalent to

Uk = εkz + z2
k∑

i=0

Uk−i ∂Q

∂yi

(
F(U), . . . ,Δ(k)F (U), z2,U

)
.

By Theorem 2, this equation has exactly k solutions U1, . . . ,Uk , which are fractional power
series in z with coefficients in an algebraic closure of K(ε). More precisely, the Newton–Puiseux
algorithm shows that these series can be written as

Ui = εξ is
(
1 + V

(
ξ is

))
, (22)

where s = z1/k , ξ is a primitive kth root of unity and V (s) is a formal power series in s with
coefficients in K(ε), having constant term 0. In particular, the k series Ui are distinct.
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The following system of 3k polynomial equations thus holds:

∀i ∈ [1, k],

⎧⎪⎨
⎪⎩

P(G(Ui),G1, . . . ,Gk, z,Ui) = 0,

P ′
0(G(Ui),G1, . . . ,Gk, z,Ui) = 0,

P ′
v(G(Ui),G1, . . . ,Gk, z,Ui) = 0,

where P ′
0 = ∂P/∂x0 and P ′

v = ∂P/∂v respectively denote the derivatives of P with respect to
x0 and v. The above system relates 3k unknowns, namely the Ui , the G(Ui), and the series
G1, . . . ,Gk , and has coefficients in K(ε, z). Let us now apply Theorem 4. The Jacobian matrix is
represented below for k = 3. The rows are indexed by the 3k equations, and the columns by the
3k unknowns, taken in the following order: G(U1),U1, . . . ,G(Uk),Uk and finally G1, . . . ,Gk .
We denote any series of the form S(G(Ui),G1, . . . ,Gk, z,Ui) by S(Ui) for short. The notation
P ′

i means that the derivative of P is taken with respect to the variable xi .⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P ′
0(U1) P ′

v(U1) 0 0 0 0 P ′
1(U1) · · · P ′

k(U1)

P ′′
0,0(U1) P ′′

0,v(U1) 0 0 0 0 
 · · · 


P ′′
0,v(U1) P ′′

v,v(U1) 0 0 0 0 
 · · · 


0 0 P ′
0(U2) P ′

v(U2) 0 0 P ′
1(U2) · · · P ′

k(U2)

0 0 P ′′
0,0(U2) P ′′

0,v(U2) 0 0 
 · · · 


0 0 P ′′
0,v(U2) P ′′

v,v(U2) 0 0 
 · · · 


0 0 0 0 P ′
0(Uk) P ′

v(Uk) P ′
1(Uk) · · · P ′

k(Uk)

0 0 0 0 P ′′
0,0(Uk) P ′′

0,v(Uk) 
 · · · 


0 0 0 0 P ′′
0,v(Uk) P ′′

v,v(Uk) 
 · · · 


⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Recall that

P ′
0(Uj ) = P ′

v(Uj ) = 0 (23)

for all j , so that the top line in each 3×2 rectangle is actually zero. Consequently, the determinant
factors into k blocks of size 2 and one block of size k:

det(J ) = ±
k∏

j=1

(
P ′′

0,0(Uj )P
′′
v,v(Uj ) − P ′′

0,v(Uj )
2)det

(
P ′

i (Uj )
)

1�i,j�k
. (24)

Our aim is to prove that this Jacobian is not zero.

1. Assume

P ′′
0,0(Uj )P

′′
v,v(Uj ) − P ′′

0,v(Uj )
2 = 0. (25)

Let us differentiate twice the functional equation (21) with respect to u. We first obtain

G′(u)P ′
0

(
G(u), . . . , u

) + P ′
v

(
G(u), . . . , u

) = 0

and then

G′′(u)P ′
0(u) + G′(u)2P ′′

0,0(u) + 2G′(u)P ′′
0,v(u) + P ′′

v,v(u) = 0,

where, as above, the notation S(u) actually stands for S(G(u),G1, . . . ,Gk, t, u). For u = Uj , in
view of (23), the latter equation becomes

G′(Uj )
2P ′′

0,0(Uj ) + 2G′(Uj )P
′′
0,v(Uj ) + P ′′

v,v(Uj ) = 0.
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Assumption (25) implies that the quadratic equation in x

x2P ′′
0,0(Uj ) + 2xP ′′

0,v(Uj ) + P ′′
v,v(Uj ) = 0

has a double root. The previous equation shows that this root is G′(Uj ), so that

G′(Uj )P
′′
0,0(Uj ) + P ′′

0,v(Uj ) = 0.

Given that P ′
0(Uj ) = 0, this is equivalent to saying that the series

P ′
0

(
G(u),G1, . . . ,Gk, t, u

)
admits u = Uj as a multiple root, whereas we have seen that the k non-zero roots of this equation
are distinct. We have thus obtained a contradiction, and so (25) cannot hold.

2. Let us now focus on the second part of expression (24) of the Jacobian. From (20) and (19),
we derive that for j � 1, and indeterminates x0, x1, . . . , xk, z and v:

P ′
j (x0, . . . , xk, z, v) = vmR′

j (x0, . . . , xk, z, v)

= −vm

(
εkz

∂Yk

∂xj

+ z2
k∑

�=j

∂Y�

∂xj

Q′
�

(
Y0, . . . , Yk, z

2, v
))

,

where Q′
� denotes the derivative of Q(y0, . . . , yk, t, v) with respect to y�. Given that

∂Y�

∂xj

= −vj−�−1,

the above derivative can be rewritten

P ′
j (x0, . . . , xk, z, v) = vm−k

(
εkzvj−1 + z2

k∑
�=j

vk−�+j−1Q′
�

(
Y0, . . . , Yk, z

2, v
))

. (26)

Let us specialize this to P ′
j (Ui) ≡ P ′

j (G(Ui),G1, . . . ,Gk, z,Ui). By (22), this is a formal power
series in s = z1/k , with coefficients in K(ε, ξ). Moreover, z = sk = o(U

j−1
i ) for 1 � j � k, so

that, in view of (22) and (26), the first term in the expansion of P ′
j (Ui) in s is(

ξ iεs
)m+j−1

.

(Recall that ξ ik = 1.) The last factor in determinant (24) of the Jacobian matrix J reads

det
(
P ′

i (Uj )
)

1�i,j�k
= det

((
ξ iεs

)m+j−1)
1�i,j�k

+ higher powers of s.

But

det
((

ξ iεs
)m+j−1)

i,j
=

k∏
j=1

(εs)m+j−1
k∏

i=1

(
ξ i

)m det
((

ξ i
)j−1)

i,j
.

The last term is the VanderMonde of the ξ i . It equals

±
∏

1�i<j�k

(
ξ i − ξj

)
and it is not zero, since ξ is a kth primitive root of unity.

We have at last proved that the determinant of the Jacobian matrix associated with our system
of 3k polynomial equations is not zero. By Theorem 4, the series Gi are algebraic over K(z, ε).
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Recall that Gi is, up to a multiplicative constant, the derivative G(i−1)(0) of G(u). In view
of (18), the series G(z,u, ε) is algebraic over K(z, u, ε). By specializing ε to 0, we conclude that
F(t, u) = G(

√
t, u,0) is algebraic over K(t, u). �

5. Algebraicity results for planar maps

A planar map is a 2-cell decomposition of the oriented sphere into vertices (0-cells), edges
(1-cells), and faces (2-cells). Loops and multiple edges are allowed (Fig. 1(a)). The degree of
a vertex (or a face) is the number of incidences of edges to this vertex (or face). Two maps are
isomorphic if there exists an orientation preserving homeomorphism of the sphere that sends
cells of one of the maps onto cells of the same type of the other map and preserves incidences.
We shall consider maps up to isomorphisms.

A map is rooted if one of its edges, called the root-edge, is distinguished and oriented. In this
case, the map can be drawn in a canonical way in the plane, by deciding that the infinite face
lies to the right of the root-edge. This face is sometimes called the root-face. Its degree is called
the outer-degree. The starting point of the root-edge is the root-vertex. A corner of a face F is a
3-tuple (e1, v, e2), where e1 and e2 are edges, v is a vertex, and e1, v and e2 are met consecutively
when walking around the face F in counterclockwise order. The number of corners of F is thus
its degree. In the map of Fig. 1, the root-face has three corners. In what follows, we consider only
rooted maps, and the word “rooted” is often omitted.

A map M is separable if there exists a partition of the set of edges into two (non-empty) parts
such that only one vertex is incident to edges of both parts. For instance, the map of Fig. 1 is
separable.

The dual map M∗ of a map M describes the incidence relation between the faces of M (Fig. 2).
To construct M∗, create a vertex in every face of M : this gives the vertices of M∗. The edges of
M∗ are in bijection with the edges of M : for each edge e of M , incident to the faces f1 and f2,

Fig. 1. (a) A rooted planar map on the sphere. (b) Canonical representation on the plane.

Fig. 2. Construction of the dual map.
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create an edge of M∗ that crosses e and joins the vertices of M∗ corresponding to f1 and f2. The
root-edge of M∗ is chosen canonically.

5.1. The face-distribution of planar maps

Many functional equations for planar maps are based on the deletion of the root-edge. Here,
we write an equation for the series F(t, u; z1, . . . , zm, . . .) = F(t, u;z) that counts rooted planar
maps by the number of edges (variable t), the outer-degree (variable u) and the number of finite
faces of degree i (variable zi ) for all i � 1. This equation essentially appears in an old paper of
Tutte [44, Eq. (1)].

Lemma 5. The generating function F(t, u;z) ≡ F(u) satisfies

F(u) = 1 + tu2F(u)2 + t
∑
i�1

zi

F (u) − ∑i−2
j=0 ujFj

ui−2
,

where Fj is the coefficient of uj in F(u).

Proof. Take a planar map M . If it is not reduced to a single vertex, delete the root-edge (but not
its endpoints). Then

– either two connected components are left, which we can root in a canonical way (Fig. 3).
The generating function of such maps is tu2F(u)2;

– or only one connected component is left, which we can root in a canonical way. Let j be its
outer-degree, and let i be the degree of the finite face that has been deleted with the root-edge
of M . Then i ∈ [1, j + 1]. The generating function of maps of this second type is

t
∑
j�0

(
Fj

j+1∑
i=1

ziu
j−i+2

)
.

Adding the two contributions gives a functional equation for F(u) which

– specializes to (16) when zi = 1 for all i;
– gives the equation of Lemma 5 upon exchanging the order of the summations on i and j . �

Fig. 3. The decomposition of planar maps.
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One may think that there is in F(t, u;z) an unpleasant lack of symmetry: why should one
count only the finite faces of a given degree? Let G(t; z1, . . . , zm, . . .) = G(t;z) count rooted
planar maps by the number of edges (variable t) and the number of faces (finite or not) of degree i

(variable zi ). Observe that, by duality, G(t;z) also counts planar maps by the number of edges
and the number of vertices of degree i. We call G the face-distribution generating function of
planar maps (equivalently, the vertex-distribution generating function of planar maps).

Lemma 6. The face-distribution generating function of planar maps, G(t;z), is related to the
series F(t, u;z) of Lemma 5 by

G(t;z) = 1

t

[
u2]F(t, u;z).

Proof. Take a map M with outer-degree 2. The root-face is incident to two edges: delete the non-
root one to obtain a planar map M ′. This transformation is bijective and the degree distribution
of finite faces in M coincides with the degree distribution of all faces in M ′. �

The equation of Lemma 5 was solved in [5] in the case where zi = 1 if i ∈ D and zi = 0
otherwise, for a given set D. More recently, the vertex-distribution generating function of planar
maps was characterized in [14] via two methods: first, by a matrix integral calculation, and then
using a purely bijective approach. In Section 10, we provide an alternative solution to this prob-
lem, and prove that it is equivalent to [14]. For the moment, observe that the generic algebraicity
theorem of Section 4 (Theorem 3) implies the following:

Corollary 7. Let m � 1, and let F(t, u; z1, . . . , zm) be the generating function of rooted planar
maps in which no finite face has a degree larger than m (as above, t counts edges, u the outer-
degree, and zi the number of finite faces of degree i). Similarly, let G(t; z1, . . . , zm) be the face-
distribution generating function of rooted planar maps in which no face has a degree larger
than m. Then both series are algebraic.

Proof. These series F and G are obtained by setting zi = 0 for all i > m in the series F and G

of Lemmas 5 and 6. The equation of Lemma 5 has then the generic form (17). By Theorem 3, its
solution F(t, u; z1, . . . , zm) is algebraic over Q(t, u, z1, . . . , zm). Since the extraction of coeffi-
cients preserves algebraicity, Lemma 6 implies that G(t; z1, . . . , zm) is algebraic too. �
5.2. The face-distribution of Eulerian planar maps

The question we address here is similar to that of Section 5.1, but is made harder by the
fact that we now deal with Eulerian maps, that is, with maps in which all vertices have an even
degree. The faces of an Eulerian map can be uniquely coloured in black and white in such a way

– the infinite face is white;
– every black face is only adjacent to white faces, and vice versa.

Let F(t, u;x1, x2, . . . ;y1, y2, . . .) = F(t, u;x,y) be the generating function of these maps,
where t counts edges, u the outer-degree, xi the number of (finite) white faces of degree i,
and yi the number of black faces of degree i (all black faces are finite).
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If we set yi = 0 for i �= 2, the series F(t, u;x,y) only count those Eulerian maps in which
every black face has degree 2. Contracting every black face into a single edge gives a planar map
whose face-distribution coincides with the white face-distribution of the original Eulerian map.
Consequently, F(t, u; z1, z2, . . . ;0,1,0, . . .) is the series studied in Lemma 5, and the problem
addressed here generalizes the previous one.

In order to obtain a functional equation for F(t, u;x,y), we will delete all the edges of the
black face incident to the root-edge. We call this face the black root-face. A face is called a
polygon if the number of vertices it contains coincides with its degree.

Definition 8. An Eulerian map M is a skeleton if the following conditions hold:

(i) each of the connected components that remain after deleting the edges of the black root-face
R is either a single vertex or a polygon;

(ii) every edge that is incident to the white root-face is also incident to the black root-face.

A connected component of M \ R is called an internal component of M if none of its vertices
belong to the infinite face. Otherwise, it is said to be an external component of M .

The fourth map of Fig. 4 is a skeleton. Among its non-root black faces, two are external,
and two are internal. The following observation will be useful to prove that the face-distribution
generating function of Eulerian maps with faces of bounded degree is algebraic.

Lemma 9. Let m � 1. There exists only a finite number of skeletons in which the black root-face
and all the finite white faces have degree at most m.

Proof. Let us first bound the number of white faces. Condition (i) implies that each white face
of a skeleton shares at least one edge with the black root-face. Conversely, each edge of the black
root-face belongs to exactly one white face. Since there are, by assumption, at most m such
edges, the number of white faces is at most m. By assumption, the finite white faces have degree
at most m. Condition (ii) implies that this is also true for the infinite white face. Consequently,
the total number of edges that are incident to a white face—that is, the total number of edges—is
at most m2. Since there only exists a finite number of maps having a given number of edges, the
result follows. �
Proposition 10. Let S denote the set of skeletons. The generating function F(t, u;x,y) ≡ F(u)

counting Eulerian maps according to the above-defined parameters satisfies

F(u) = 1 +
∑
S∈S

(
ud(S)t i(S)yi(S)

∏
k�1

x
wk(S)
k

∏
k�1

F
Ik(S)
k

∏
k�0

(
Δ(k)F (u)

)Ek(S)
)

,

where for any skeleton S, d(S) is the outer-degree, i(S) is the degree of the black root-face, wk(S)

is the number of finite white faces of degree k, and Ik(S) (respectively Ek(S)) is the number of
internal (respectively external) components of degree k. As above, Fj denotes the coefficient of
uj in F(u), and for k � 0,

Δ(k)F (u) = F(u) − ∑k−1
j=0 ujFj

uk
.
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Proof. Take an Eulerian map M , not reduced to a single vertex. We first describe how to asso-
ciate a skeleton to M . This construction is illustrated in Fig. 4. Let R denote the black root-face
of M . Consider the set of connected components that are left after the deletion of the edges of R

(since we do not delete the vertices of R, some of these components may be reduced to a single
vertex). The corresponding sub-maps of M are called, for short, the components of M . Each
component is itself an Eulerian map. In order to obtain a skeleton, we are going to modify the
components of M , while keeping the black root-face R unchanged. In each component, delete
every edge that is not in the infinite face of M \R: in the resulting map M1, every component has
only black (finite) faces (Fig. 4(b)). Then “inflate” each component into a black polygon having
the same outer-degree (Fig. 4(c)). This gives an Eulerian map M2. Finally, contract every edge of
M2 that is incident to the white root-face but not to the black root-face. This gives a skeleton S

(Fig. 4(d)). The finite white faces of S are in one-to-one correspondence with the finite white
faces of M that are adjacent to R, and this correspondence preserves the degree.

Conversely, take a skeleton S with black root-face of degree i. We wish to find the generating
function of Eulerian maps M associated with S. To obtain these maps, one must:

– Replace every internal component of degree k by an Eulerian map of outer-degree k; this
gives the factors Fk in the functional equation of Proposition 10.

– Replace every external component of degree k by an Eulerian map of outer-degree j � k.
Then j − k edges of this map contribute to the outer-degree of the final map M . This gives
the factors Δ(k)F (u) in the equation.

Fig. 4. From an Eulerian map M to a skeleton S. In step (b), all white faces that are not adjacent to the black root-face
R disappear. In step (c), all connected component that are left after deleting the black root-face are inflated to polygons.
Finally, in step (d), all edges that are incident to the white root-face but not to the black root-face are contracted.
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The remaining factors take care of R and its edges, and of the contribution of the white faces
of S. The result follows. �
Corollary 11. Let m � 2. Let F(t, u;x1, . . . , xm;y1, . . . , ym) be the generating function of
Eulerian planar maps whose finite faces have degree at most m, counted, as above, by the num-
ber of edges, the outer-degree, and the degree-distribution of black and white finite faces.

Similarly, let G(t,u;x1, . . . , xm;y1, . . . , ym) be the generating function of Eulerian planar
maps in which all faces have degree at most m, counted by the number of edges, the outer-degree,
and the degree-distribution of white and black faces.

Then F and G are algebraic.

Proof. The series F is obtained by setting xi = yi = 0 for all i > m in the series of Proposi-
tion 10. In the equation given in this proposition, it is clear that the skeletons in which either the
black root-face, or one of the finite white faces, has degree more than m, have a zero contribution.
By Lemma 9, the right-hand side of the functional equation contains only finitely many terms,
so that one can apply Theorem 3, and conclude that F(t, u;x1, . . . , xm;y1, . . . , ym) is algebraic.

In particular, the coefficient of ui in this series is algebraic. Given that

G(t,u;x1, . . . , xm;y1, . . . , ym) =
m∑

i=0

xiu
i
[
ui

]
F(t, u;x1, . . . , xm;y1, . . . , ym),

the algebraicity of G follows. �
Note. It was already proved in [13] that F2, the coefficient of u2 in the series F(t, u;x,y),
is algebraic. The above corollary thus extends this earlier result, and actually seems difficult
to obtain via the combinatorial approach of [13]. However, as far as F2 is concerned, the result
of [13] is more precise than a simple algebraicity statement, since a system of 2m+3 polynomial
equations defining F2 is given explicitly, together with its combinatorial interpretation. Let us
compare the size of this system with the number of unknown series in our functional equation.
The skeleton of an Eulerian map in which all finite faces have degree at most m may contain a
component of degree (m − 1)2 (see the figure

for an example with m = 5), but no more, so that the functional equation contains approximately
m2 unknown functions. Consequently, the size of the polynomial system given by our general
strategy is quadratic in m.

Example. Let us illustrate Proposition 10 by writing a functional equation for the generating
function of Eulerian maps in which all finite faces have degree 2 or 3. The corresponding skele-
tons are shown in Fig. 5. Proposition 10 gives the contribution of each skeleton in the functional
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Fig. 5. The skeletons that are involved in the enumeration of Eulerian maps with finite faces of degree 2 and 3. The
multiplicities account for the number of possible rootings.

equation (for the sake of simplicity, the variable t is omitted: it is easily recovered upon replacing
yi by t iyi ).

The functional equation reads:

F(u) = 1 + u2y2F(u)2 + u3y3F(u)3 + uy3(x2 + x3F1)F (u)

+ u
(
x2y2 + 2ux2y3F(u) + x3y3

)
ΔF(u)

+ u
(
x3y2 + 2ux3y3F(u) + x2

2y3
)
Δ(2)F (u) + 2ux2x3y3Δ

(3)F (u)

+ ux2
3y3Δ

(4)F (u).

We may check the validity of this equation as follows. Replacing yi by t iyi , we derive from this
equation the first terms of the expansion in t of F(u). Retaining only the coefficient of u2, we
obtain the expansion of the series F2 that counts maps of outer-degree 2, and we check that this
expansion is (fortunately!) in adequation with the algebraic equations of [13].

5.3. Constellations

We focus in this section on the enumeration of certain Eulerian planar maps defined by con-
straints on their face degrees. Let m � 2. An Eulerian planar map M , having its faces bicolored
in such a way the infinite face is white, is an m-constellation if

– the degree of every black face is m;
– the degree of every white face is a multiple of m.

An example of a 3-constellation is given in Fig. 6. As explained in [12], these maps are closely
connected to minimal transitive factorizations of permutations.

The above conditions guarantee that it is possible to label all vertices, with labels taken from
the set {1,2, . . . ,m}, in such a way that in every black face, the vertices are labelled 1,2, . . . ,m

in counterclockwise order. Moreover, if we fix the label of the root-vertex to be i, then there is a
unique labeling satisfying the above property, which we call the canonical labeling of root i.
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Fig. 6. A 3-constellation with its canonical labelling of root 3.

Let

F(t, u) ≡ F(u) =
∑
n,d

an,d tnud =
∑
d

Fdud, (27)

where an,d is the number of m-constellations having n black faces and outer-degree md . This
series is a specialization of the face-distribution generating function of Eulerian planar maps
studied in Section 5.2. More precisely, if, in the series F(t, u;x,y) of Proposition 10, we set{

xi = 1 if m divides i,

xi = 0 otherwise,
and

{
ym = 1,

yi = 0 if i �= m,

we obtain the series F(tm,um), with F(t, u) defined by (27). However, the functional equation
of Proposition 10, specialized to the above values of xi and yi , contains infinitely many terms.
We give in Proposition 12 an equation with finitely many terms defining F(t, u). Before we do
so, let us examine cases m = 2 and m = 3.

2-Constellations. Take a 2-constellation not reduced to a single vertex, label the root-vertex with
2 and the other vertices canonically. Each black face has degree 2 and contains a vertex labelled
1 and a vertex labelled 2. Contract each black face to a single edge: this gives a bipartite map,
that is, a map in which every face has an even degree. The series F(t, u) thus counts bipartite
maps by the number of edges (t) and half the outer-degree (in other words, the number of corners
labelled 1 in the infinite face). Deleting the root-edge as we did in Section 5.1 for general maps
now gives

F(u) = 1 + tuF (u)2 + t
∑
d�0

Fd

(
ud + · · · + u

) = 1 + tuF (u)2 + tu
F (u) − F(1)

u − 1
. (28)

Observe that the deletion of the root-edge in a bipartite map corresponds to the deletion of the
black root-face in the associated 2-constellation. The study of 2-constellations will be useful in
Section 5.4, where we count certain maps with bicolored vertices. However, it is a bit too simple
to foresee what happens for general m-constellations. This is why we also treat below the case
of 3-constellations.

3-Constellations. Take a 3-constellation C not reduced to a single vertex, label the root-vertex
with 3 and the other vertices canonically. Let R denote the black root-face. Erase all the edges
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Fig. 7. The decomposition of 3-constellations. The dashed arrows indicate how to root the components after the deletion
of the black root-face.

of R (but not its vertices). This leaves a set of connected components, which are constellations,
and which we root in a canonical way (Fig. 7).

Five cases occur, depending on which vertices of R end up in the same component. For the
first case, the generating function is clearly tuF (u)3. The second and third cases are symmetric
and thus give the same generating function. Note that the component C1 in Fig. 7(b) must have
outer-degree 3 at least, and that the number of ways to glue a (rooted) 3-constellation C1 of
outer-degree 3d to the face R is d . If the j th corner labelled 2 of the infinite face of C1 is glued
to R, then 1 + 3(j − 1) edges of C1 contribute to the outer-degree of C. Thus the generating
function in the second case is

tu2/3F(u)
∑
d�1

(
Fd

d∑
j=1

u1/3+j−1

)
= tuF (u)

F (u) − F(1)

u − 1
.

In the fourth case, the component C2 does not contribute to the outer-degree of C, but this case
is otherwise similar to the previous one. The generating function is now

tuF (1)
F (u) − F(1)

u − 1
.

Finally, in the fifth case, the component C1 has degree 3d with d � 2. Assume the j th corner
labelled 3 of the infinite face of C1 is glued to R, as well as the kth corner labelled 2. Then
1 � j < k � d and the generating function of this last case is

tu1/3
∑
d�2

(
Fdu2/3

d−1∑
j=1

(
uj−1

d∑
k=j+1

1

))
,

which, after two summations, reduces to

tu
F (u) − F(1) − (u − 1)F ′(1)

(u − 1)2
.

Finally, the generating function of 3-constellations satisfies

F(u) = 1 + tuF (u)3 + tu
(
2F(u) + F(1)

)F(u) − F(1)

u − 1

+ tu
F (u) − F(1) − (u − 1)F ′(1)

(u − 1)2
. (29)
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m-Constellations. In order to write a functional equation for general m-constellations, we need
the notion of non-crossing partitions [40]. A partition P of the set {1,2, . . . ,m} is non-crossing
if one cannot find i < j < k < � such that i and k are in the same block, j and � are in the same
block, but i and j are not in the same block. A block B of a non-crossing partition P is internal
if there exists another block B ′ such that minB ′ < minB � maxB < maxB ′. Otherwise, it is
external. Let Pm denote the set of non-crossing partitions of {1,2, . . . ,m}.
Proposition 12. Let m � 2. The generating function F(t, u) ≡ F(u) of m-constellations, defined
by (27), satisfies:

F(u) = 1 + tu
∑

P∈Pm

m−1∏
k=1

(Gk−1)
Ik(P )

m∏
k=1

(
F(u) − ∑k−2

i=0 (u − 1)iGi

(u − 1)k−1

)Ek(P )

,

where

Gi = 1

i!
∂iF

∂ui
(1)

and Ik(P ) (respectively Ek(P )) denotes the number of internal (respectively external) blocks of
cardinality k in the partition P .

Note that

Gk−1 = lim
u→1

F(u) − ∑k−2
i=0 (u − 1)iGi

(u − 1)k−1
.

The above equation defining F(u) has degree m in F(u) and involves m−1 additional unknowns
series Gi , for 0 � i � m − 2.

Proof. The proof is based again on the deletion of the black root-face. We call this face the root
m-gon and denote it by R.

1. Decomposition of constellations. Take a constellation C that is not reduced to a single vertex.
Label the root-vertex by m, and all the other vertices in a canonical way. Erase all the edges of
the root m-gon R (but not its vertices). This leaves a number of constellations, which we root
in a canonical way (Fig. 8): For each of them, the label of the root-vertex is minimal among the
labels of the vertices that it shares with R.

Associate with C the partition P of {1,2, . . . ,m} defined as follows: i and j belong to the
same block if and only if the vertices labeled i and j in R end up in the same connected com-
ponent after deleting the edges of R. By planarity of C, the partition P is non-crossing. To each
block B of P , there corresponds a constellation CB (the associated connected component).

Fig. 8. The decomposition of m-constellations. The dashed arrow indicates how to root the component after the deletion
of the black root-face. One has i1 < i2 < · · · < ik .
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The outer-degree of C is

ext(P ) +
∑

B external

δ(CB,C), (30)

where ext(P ) is the number of external blocks of P and δ(CB,C) is the number of edges of CB

that contribute to the outer-degree of C.

2. Construction of constellations. Conversely, let P be a non-crossing partition of {1,2, . . . ,m}.
We wish to find the generating function of the m-constellations associated with P .

Take first a root m-gon R, and label it canonically, the root-vertex being labeled m. Then,
for each block B of P , take a constellation CB of outer-degree md , for some d � 0. Label its
root-vertex by minB , and the other vertices in a canonical way.

For each block B , we need to glue the component CB to the m-gon R, and to keep track of the
number of edges of CB that will contribute to the outer-degree of the final constellation C. Let
B = {i1, i2, . . . , ik} with 1 � i1 < i2 < · · · < ik � m. If one walks around the root-face of CB ,
starting from the root-edge, the labels read at the corners of the root-face form the word u =
(i1 · · · i2 · · · ik · · ·)d . From now on, we identify the corners of this face with the letters of u. For
r = 1, . . . , k, glue the jr th corner labeled ir to the (unique) vertex labeled ir in R. To be consistent
with the way we have chosen to root the components in the decomposition of a constellation, j1
must be 1. The condition for the final map to be planar is

1 � jk < · · · < j2 � d

(see Fig. 8). Hence the component CB must have outer-degree at least m(k − 1) and there are(
d

k−1

)
ways of gluing CB to R.

If B is an internal block, none of its edges contribute to the outer-degree of C. Otherwise,

δ(CB,C) =
{

md if k = 1,

ik − i1 + m(jk − 1) if k � 2.

For jk fixed, the number of ways of choosing jk−1, . . . , j2 is
(
d−jk

k−2

)
.

By (30), the outer-degree of the final constellation C is thus

ext(P ) +
∑

B external

(
maxB − minB + m

(
j (B,C) − 1

)) = m + m
∑

B external

(
j (B,C) − 1

)
,

where j (B,C) = d + 1 if B is a singleton and CB has outer-degree md , and j (B,C) is the
number jk defined above if B has at least two elements.

Putting together the above results, one can write the generating function of m-constellations
associated with the partition P as

tu

m−1∏
k=1

( ∑
d�k−1

(
d

k − 1

)
Fd

)Ik(P )( ∑
d�0

Fdud

)E1(P )

×
m∏

k=2

( ∑
d�k−1

(
Fd

d∑
j=1

uj−1
(

d − j

k − 2

)))Ek(P )

,

where Fd is the coefficient of ud in F(u), that is, the generating function of constellations having
outer-degree md , and Ik(P ) (respectively Ek(P )) denotes the number of internal (respectively
external) blocks of cardinality k in the partition P .
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Clearly, with the notation defined in the proposition,∑
d�k−1

(
d

k − 1

)
Fd = Gk−1 and

∑
d�0

Fdud = F(u).

Now

d∑
j=1

uj−1
(

d − j

k − 2

)

=
d−1∑
i=0

ud−i−1
(

i

k − 2

)

= ud−k+1

(k − 2)!
dk−2

dvk−2

(
1 − vd

1 − v

)∣∣∣∣
v=1/u

(use Leibnitz’ formula)

= ud−k+1

(k − 2)!

(
1 − vd

(1 − v)k−1
(k − 2)! −

k−2∑
i=1

(
k − 2

i

)(
d

i

)
i!(k − 2 − i)!vd−i

(1 − v)k−i−1

)∣∣∣∣∣
v=1/u

= ud−k+1

(k − 2)!

(
(k − 2)! ud − 1

(u − 1)k−1
uk−1−d −

k−2∑
i=1

(k − 2)!
(

d

i

)
uk−d−1

(u − 1)k−i−1

)

= 1

(u − 1)k−1

(
ud − 1 −

k−2∑
i=1

(
d

i

)
(u − 1)i

)

= 1

(u − 1)k−1

(
ud −

k−2∑
i=0

(
d

i

)
(u − 1)i

)
.

Consequently,

∑
d�k−1

(
Fd

d∑
j=1

uj−1
(

d − j

k − 2

))
= 1

(u − 1)k−1

(
F(u) −

k−2∑
i=0

(u − 1)i

i! F (i)(1)

)
,

and the proposition follows. �
Note. The above functional equations for constellations were obtained a few years ago by the first
author of this paper. They were used to conjecture that the number of m-constellations having n

black faces is

Cm(n) = (m + 1)mn−1

[(m − 1)n + 2][(m − 1)n + 1]
(

mn

n

)
.

This conjecture was then proved in a bijective way [12].

5.4. Hard particles on planar maps

We consider here rooted planar maps in which the vertices are either vacant, or occupied
by a particle, with the constraint that two adjacent vertices cannot be both occupied. In [13], it
was shown that the generating function of such decorated maps (rooted at an edge with vacant
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Fig. 9. The decomposition of planar maps carrying hard particles.

endpoints) is a specialization of the vertex-distribution generating function of bipartite planar
maps, and it was proved to be algebraic provided the degree of the vertices is bounded.

Here, we provide an independent approach for the case of unbounded degrees. We say that
an edge is frustrated if it has an occupied endpoint (so that the other endpoint is vacant).3 Let
F(t, s, x, y,u) ≡ F(u) be the generating function of maps with hard particles rooted at a vacant
vertex, counted by the number of edges (t), frustrated edges (s), vacant vertices (x), occupied
vertices (y), and number of white corners in the infinite face (u). Let G(t, s, x, y,u) ≡ G(u)

be defined similarly for maps with hard particles rooted at an occupied vertex. As observed by
Schaeffer [39], it is not hard to adapt the equation written for bipartite maps (28) so as to obtain
equations for F(u) and G(u).

Lemma 13. The series F(u) and G(u) defined above are related by

F(u) = x − y + G(u) + tu2F(u)2 + tu
uF(u) − F(1)

u − 1
,

G(u) = y + tsuF (u)G(u) + tsu
G(u) − G(1)

u − 1
.

Proof. As in Section 5.1, these equations follow from the deletion of the root-edge. From Fig. 9
one derives

F(u) = x + G(u) − y + tu2F(u)2 + t
∑
j�0

Fj

(
u + · · · + uj+1),

G(u) = y + tsuF (u)G(u) + ts
∑
j�0

Gj

(
u + · · · + uj

)
,

where Fj (respectively Gj ) is the coefficient of uj in F(u) (respectively G(u)). The result fol-
lows. �

Since the second equation is linear in G(u), it is easy to eliminate G(u). This gives a poly-
nomial equation involving F(u), F(1) and G(1), and we can foresee that its solution will be
algebraic. We solve this equation in Section 11 (in the case x = y = 1).

3 The terminology is standard in magnetism models like the Ising model.
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6. From 3k to 2k equations: The role of the discriminant

Let us now return to the general strategy developed in Section 2. We assume again that k + 1
power series in t , denoted F(u),F1, . . . ,Fk , are related by a functional equation of the form

P
(
F(u),F1, . . . ,Fk, t, u

) = 0. (31)

Here, P(x0, x1, . . . , xk, t, v) is a polynomial with coefficients in a field K, the Fi belong to K�t�
and F(u) belongs to K[u]�t�. As discussed in Section 2, for every fractional power series U ≡
U(t) such that

P ′
0

(
F(U),F1, . . . ,Fk, t,U

) = 0, (32)

a system of three polynomial equations relating U , F(U) and the unknown functions Fi holds:⎧⎪⎨
⎪⎩

P
(
F(U),F1, . . . ,Fk, t,U

) = 0,

P ′
0

(
F(U),F1, . . . ,Fk, t,U

) = 0,

P ′
v

(
F(U),F1, . . . ,Fk, t,U

) = 0.

We say that the functional equation is generic if there exist k distinct series Ui in K̄fr�t� satis-
fying (32). In this case, the strategy of Section 2 provides a system of 3k polynomial equations
relating the series Ui , F(Ui) and Fi for 1 � i � k (more precisely, a system of 3k + 1 equa-
tions, since one has to take into account the fact that the Ui are distinct, thanks to an equation of
form (12)).

The aim of this section is to eliminate the series F(Ui), and to reduce the system to 2k (+1)

equations involving only the series Ui and Fi . The key of this reduction is the following theorem,
which also considers the case of multiple roots Ui .

Theorem 14. Assume that the functional equation (31) holds, and that the series U ∈ K̄fr�t�
is a root of multiplicity � of P ′

0(F (u),F1, . . . ,Fk, t, u), with � � 1. Assume also that the de-
gree of P(x0, . . . , xk, t, v) in x0 is at least 2, and let Δ(x1, . . . , xk, t, v) be the discriminant of
P(x0, . . . , xk, t, v) with respect to x0. Then, as a polynomial in v, Δ(F1, . . . ,Fk, t, v) admits the
series U as a root of multiplicity at least 2�. In other words, for 0 � i � 2� − 1,

∂iΔ

∂vi
(F1, . . . ,Fk, t,U) = 0.

Recall that the discriminant of a polynomial P(x) = anx
n + · · · + a0 such that an �= 0 can be

expressed as

Δ = (−1)n(n−1)/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 an−1 · · · a2 a1 a0
an · · · a2 a1 a0

. . .
. . .

. . .

an · · · a0
n (n − 1)an−1 · · · 2a2 a1 0

nan · · · a1
. . .

. . .

na · · · a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (33)
n 1
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The above square matrix has size 2n − 1, and the coefficients that are not indicated equal 0. In
the generic case, Theorem 14 provides a system of 2k equations:

∀i ∈ [1, k],
{

Δ(F1, . . . ,Fk, t,Ui) = 0,

Δ′
v(F1, . . . ,Fk, t,Ui) = 0,

(34)

which we complete with the distinctness condition (12). But it may also happen that the series
P ′

0(F (u),F1, . . . ,Fk, t, u) has a multiple root. In this case, the system derived from Theorem 14
contains more equations than unknowns. An example is provided in Section 9.2.2.

In order to simplify the proof of Theorem 14, we first reduce it to the case U = 0. Define

S(x, v) := P(x,F1, . . . ,Fk,U + v) and G(u) := F(u + U). (35)

Then S(x, v) is a polynomial in x and v with coefficients in L = K̄fr((t)), and G(u) is a series of
K̄[u]fr�t�, and hence of L�u�. The functional equation (31) and the assumption of Theorem 14,
respectively, imply

S
(
G(u),u

) = 0 and
∂S

∂x

(
G(u),u

) = u�Φ(u) (36)

with Φ(u) ∈ K̄[u]fr�t� ⊂ L�u� (the second identity follows from Lemma 1). Thanks to this re-
duction, we will derive Theorem 14 from the following proposition.

Proposition 15. Let L be an algebraically closed field, and let S(x, v) be a polynomial in x with
coefficients in Lfr�v�, of degree n � 2 in x. Suppose that there exist two elements G(u) and Φ(u)

in Lfr�u� such that

S
(
G(u),u

) = 0 and
∂S

∂x

(
G(u),u

) = u�Φ(u).

Then the discriminant of S(x, v) with respect to x, denoted Δ(v), is divisible by v2� in Lfr�v�.

The first step in the proof of Proposition 15 is the following “exchange” lemma.

Lemma 16. Under the assumptions of Proposition 15, suppose, moreover, that ∂2S

∂x2 (G(0),0) �= 0.

Then there exists H(u) and Ψ (u) in Lfr�u� such that

S
(
H(u),u

) = u2�Ψ (u) and
∂S

∂x

(
H(u),u

) = 0.

Proof. We look for a solution of the equation S′
x(H(u),u) = 0 in the form H(u) = G(u) +

u�Y (u), with Y(u) ∈ Lfr�u�. Using Taylor’s formula, we write

S
(
G(u) + z,u

) =
n∑

i=1

zi

i!
∂iS

∂xi

(
G(u),u

)
, (37)

and
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∂S

∂x

(
G(u) + z,u

) =
n−1∑
j=0

zj

j !
∂j+1S

∂xj+1

(
G(u),u

)
.

We thus want to find out whether there exists Y ≡ Y(u) in Lfr�u� satisfying

n−1∑
j=0

u�jY j

j !
∂j+1S

∂xj+1

(
G(u),u

) = 0,

that is,

∂S

∂x

(
G(u),u

) +
n−1∑
j=1

u�jY j

j !
∂j+1S

∂xj+1

(
G(u),u

) = 0,

which, after dividing by u�, reduces to

Φ(u) +
n−1∑
j=1

u�(j−1)Y j

j !
∂j+1S

∂xj+1

(
G(u),u

) = 0.

This is a polynomial equation in Y with coefficients in Lfr�u�. By Theorem 2, the number of
roots lying in Lfr�u� is

degY

(
Φ(0) + Y

∂2S

∂x2

(
G(0),0

))
.

The assumption of Lemma 16 implies that this degree is 1, so that the equation S′
x(H(u),u) = 0

admits a solution of the form H(u) = G(u) + u�Y , with Y ≡ Y(u) in Lfr�u�. Then, by (37),

S
(
H(u),u

) =
n∑

i=1

u�iY i

i!
∂iS

∂xi

(
G(u),u

) = u2�YΦ(u) +
n∑

i=2

u�iY i

i!
∂iS

∂xi

(
G(u),u

)
,

which is divisible by u2� in Lfr�u�. �
Proof of Proposition 15. Let S̃(x, v) = S(x, v) + ε(x − G(v))2 + ε(x − G(v))n, where ε is a
new indeterminate. Then S̃(x, v) belongs to Mfr�v�[x], where M is the algebraic closure of L(ε).
Moreover,

S̃
(
G(u),u

) = 0 and
∂S̃

∂x

(
G(u),u

) = ∂S

∂x

(
G(u),u

) = u�Φ(u).

Also,

∂2S̃

∂x2

(
G(0),0

) = ∂2S

∂x2

(
G(0),0

) + 2ε(1 + δn,2) �= 0 and

∂nS̃

∂xn
(x,0) = ∂nS̃

∂xn
(x,0) + ε(2δn,2 + n!) �= 0.
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The discriminant of S̃(x, v) with respect to x can be written as follows [35, Chapter V, §10]:

Δ̃(v) = ±nnan(v)n−1
∏

X(v)∈R
S̃
(
X(v), v

)
, (38)

where an(v) ∈ Mfr�v� is the coefficient of xn in S̃(x, v) and R = {X(v) ∈ Mfr((v)): S̃′
x(X(v),

v) = 0}.
The condition ∂nS̃

∂xn (x,0) �= 0, combined with Theorem 2, implies that all the elements of R
are actually in Mfr�v�. Hence all the series S̃(X(v), v), for v ∈ R, lie in Mfr�v�. The condition
∂2S̃

∂x2 (G(0),0) �= 0, combined with Lemma 16, implies that one of the elements of R, say H(v),

is such that S̃(H(v), v) is divisible by v2�. By (38), v2� divides Δ̃(v) in Mfr�v�.
Since Δ̃(v) is a polynomial in ε, this implies that each of its coefficients is divisible by v2�.

Since its constant coefficient is equal to Δ(v), we conclude that v2� divides Δ(v) in Lfr�v�. �
Proof of Theorem 14. Let us return to (35) and (36). Let n be the degree of P in its first vari-
able x0. Then the polynomial S(x, v) has degree at most n in x. Indeed, the specialization of
x1, . . . , xk to F1, . . . ,Fk may result in a decrease of the degree in x. At any rate, by Proposi-
tion 15, if the degree of S(x, v) in x is at least 2, the discriminant of S(x, v) with respect to x,
denoted here δ(v), has a root of multiplicity at least 2� at v = 0. We want to prove that the same
holds for Δ(F1, . . . ,Fk, t,U + v). How is this polynomial (in v) related to δ(v)?

• If S(x, v) has degree n in x, then Δ(F1, . . . ,Fk, t,U + v) = δ(v), and the theorem follows
from Proposition 15.

• If S(x, v) has degree at most n− 2, then (33) shows that Δ(F1, . . . ,Fk, t, v) = 0 (the second
column is entirely filled with zeros), and the result is trivial.

• If S(x, v) has degree n − 1, then (33) gives Δ(F1, . . . ,Fk, t,U + v) = an−1(v)2δ(v), where
an−1(v) is the coefficient of xn−1 in P(x,F1, . . . ,Fk, t,U + v).
– If n = 2, then P(x,F1, . . . ,Fk, t,U +v) = a1(v)x +a0(v), where a0(v) and a1(v) belong

to K̄fr�t�[v]. Then P ′
0(x,F1, . . . ,Fk, t,U +v) = a1(v) and the assumption of Theorem 14

tells us that 0 is a root of a1(v) of multiplicity �, and hence a root of multiplicity 2� of
Δ(F1, . . . ,Fk, t,U + v) = an−1(v)2.

– If n � 3, then S(x, v) has degree at least 2, and the theorem follows again from Proposi-
tion 15. �

7. From 2k to k equations: Resultants and their generalization

In the previous section, we have shown how to reduce our polynomial system to 2k + 1 equa-
tions, at least in a generic situation. This system says that the polynomials (in v) Δ(F1, . . . ,

Fk, t, v) and Δ′
v(F1, . . . ,Fk, t, v) have k distinct roots in common. It is well known that two

polynomials have one root in common if and only if their resultant vanishes. This is the re-
sult we generalize in this section: we give a criterion that tells when two polynomials P and
Q have k roots in common. If the respective degrees of P and Q are m and n, this criterion
involves k determinants of respective order m + n,m + n − 2, . . . ,m + n − 2k + 2. In a generic
situation, these determinants directly provide k equations between the series F1, . . . ,Fk , with
no mention of the series Ui . Whether these equations are as small as they can be is another
story.
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Let P(X) = ∑m
i=0 aiX

i and Q(X) = ∑n
i=0 biX

i , where the coefficients ai and bi belong to a
field L. For 0 � k < min(m,n), we define a square matrix Sk(P,Q) of size m + n − 2k by:

Sk(P,Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am · · · a0
. . .

. . .

am · · · a0
. . .

...

am · · · ak

bn · · · b0
. . .

bn · · · bk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first n − k rows are filled up with the coefficients ai of P and the m − k last ones by
the coefficients bi of Q. The other entries are zero. In particular, S0(P,Q) is the Sylvester matrix
of P and Q (and its determinant is the resultant of P and Q). In general, Sk(P,Q) is obtained
by deleting the k last rows of a’s, the k last rows of b’s, and the 2k rightmost columns in the
Sylvester matrix of P and Q.

The following theorem is a simple adaptation of [4, Proposition 4.33].

Theorem 17. Let k � min(m,n). If the polynomials P and Q have k common roots, counted
with multiplicities, then for 0 � i � k − 1,

detSi (P ,Q) = 0.

Conversely, if the above determinants vanish, then either P and Q have k common roots, or
am = bn = 0.

8. A new proof of Brown’s theorem

Theorem 18 below is essentially due to Brown [21]. It has been used several times in the
past to solve functional equations of form (3). Its application is straightforward for quadratic
equations (see [5,32] and the discussion at the end of this section), but more elusive when the
degree in F(u) is larger (see [21, Section 4] for a solution of the cubic equation of Section 3.3
based on this theorem).

In this section, we give a new proof of, and a new point of view on Brown’s theorem.4 Here
is our formulation of this theorem.

Theorem 18. Let Δ(t,u) ∈ K�t�[u], where K is a field. If Δ has a square root in K�t, u�, then it
can be factored as

Δ(t,u) = c2t2p
(
1 + tS(t)

)(
1 + tuR1(t, u)

)(
ud + tR2(t, u)

)2

×
k∏

i=1

((
1 − u

αi

)di

+ tuQi(t, u)

)
,

where

4 Or maybe we should write that we give a proof of this theorem, since there seems to be a mistake in Brown’s
proof [21]: in the equation that follows (2.12), why are not there any terms Ur−1V1, . . . ,U0Vr ?
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– p, d , and the di ’s are non-negative integers;
– c belongs to K and the αi ’s belong to K̄, the algebraic closure of K;
– S(t) ∈ K�t�;
– R1(t, u) and R2(t, u) belong to K�t�[u], with degu(R2) < d ;
– Qi(t, u) belongs to K̄�t�[u], and degu(Qi) < di .

Moreover, if Δ has a square root in K[u]�t�, then it can be factored as

Δ(t,u) = c2t2p
(
1 + tS(t)

)(
1 + tuR1(t, u)

)(
ud + tR2(t, u)

)2

×
k∏

i=1

((
1 − u

αi

)di

+ tuQi(t, u)

)2

,

with the same conditions as above.

What is remarkable in the above factorizations is the fact that some factors are squared. We
will derive this theorem from the combination of two results. The first one is a factorization
theorem which has an independent interest and will be used in Sections 9 and 10.

Theorem 19 (Factorization Theorem). Let Δ(t,u) be a non-zero polynomial of K�t�[u], where
K is a field. Then Δ admits a unique factorization as

Δ(t,u) = ctp
(
1 + tS(t)

)(
1 + tuR1(t, u)

)(
ud + tR2(t, u)

)
×

k∏
i=1

((
1 − u

αi

)di

+ tuQi(t, u)

)
,

with the same conditions as in Theorem 18. The roots of Δ(t,u) that are infinite (respectively
zero, finite and non-zero) at t = 0 are the roots of the first (respectively second, third) factor
above.

Proof. Let us first recall that the units of K�t�[u] and K�t� coincide, and are the series
c(1 + tS(t)), where c ∈ K \ {0} and S(t) ∈ K�t�.

Now consider an irreducible polynomial of K�t�[u], denoted P(t, u), of degree d in u. By
definition, P is not a unit. If d = 0, then

P(t, u) = tI (t),

where I (t) is unit of K�t�. If d > 0, then P(0, u) �= 0 (otherwise P would be divisible by t).
Moreover, P(t, u) is also irreducible in K((t))[u]. The roots U1, . . . ,Ud of P are of form [41,
Proposition 6.1.6]

Ui =
∑
n�n0

an

(
ξ i t1/d

)n
,

where n0 ∈ Z ∪ {+∞}, an0 �= 0, the coefficients an lie in K̄, and ξ is a primitive d th root of unity
in K̄. We consider three cases, depending on whether n0 is negative, positive or zero.

Case 1. n0 < 0. Then all the roots of P are infinite at t = 0. By Theorem 2, degu P (0, u) = 0.
Thus P can be written P(t, u) = P(t,0)+ tuR(t, u) with degu R(t, u) = d −1. Since by assump-
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tion P(0, u) �= 0, we have P(0,0) �= 0, so that P(t,0) is a unit in K�t�. Denoting P(t,0) = P0(t),
we have

P(t, u) = P0(t)
(
1 + tuR1(t, u)

)
with R1(t, u) ∈ K�t�[u].

Case 2. n0 > 0. All the roots of P are zero at t = 0. By Theorem 2, degu P (0, u) = d . More
precisely, P(0, u) = cud for some c ∈ K \ {0}. Denoting by Pd(t) the coefficient of ud in P , we
thus have P(t, u) = Pd(t)ud + tR(t, u) where degu R(t, u) < d , and Pd(0) = c �= 0. Thus Pd(t)

is a unit of K�t�, and we can write

P(t, u) = Pd(t)
(
ud + tR2(t, u)

)
,

where R2(t, u) ∈ K�t�[u] and degu R2(t, u) < d .

Case 3. n0 = 0. All the roots of P are equal to some α �= 0 when t = 0, with α ∈ K̄. As in Case 2,
degu P (0, u) = d , and more precisely

P(0, u) = c

(
1 − u

α

)d

,

where c ∈ K \ {0}. In particular, P(0,0) = c �= 0, so that P(t,0) ≡ P0(t) is a unit in K�t�. Thus
we can write P(t, u) = P0(t)(1 + uR(t, u)) where R(t, u) ∈ K�t�[u] and degu R(t, u) = d − 1.
Setting t = 0 gives P(0, u) = P0(0)(1 + uR(0, u)) = P0(0)(1 − u/α)d . Finally,

P(t, u) = P0(t)

((
1 − u

α

)d

+ tuQ(t, u)

)
,

where

Q(t,u) = R(t, u) − R(0, u)

t

belongs to K�t�[u] and has degree at most d − 1 in u.

Now take Δ ∈ K�t�[u], as in the statement of the theorem. Factor Δ into irreducible polyno-
mials of K�t�[u]. Write each irreducible factor in the above canonical form. Then, group together
the irreducible factors whose roots are infinite (respectively zero, equal to αi �= 0) at t = 0. This
gives for Δ a factorization of the prescribed form.

The uniqueness of this factorization is a consequence of the two following facts:

– the roots of the first (respectively second, third) factor are exactly the roots of Δ(t,u) that
are infinite (respectively zero, equal to αi �= 0) at t = 0;

– these factors are normalized (they have either constant term 1, or leading coefficient 1).

This concludes the proof. �
In order to prove Brown’s theorem (Theorem 18), we only need to combine the above factor-

ization theorem with the following proposition.

Proposition 20. Let Δ(t,u) ∈ Kfr�t�[u], where K is a field. The roots of Δ(t, ·) belong to K̄fr((t)).
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If Δ has a square root in K�u�fr�t�, then every root U of Δ that vanishes at t = 0 has an even
multiplicity in Δ.

If Δ has a square root in K[u]fr�t�, then every root U of Δ that is finite at t = 0 has an even
multiplicity.

Proof. Assume Δ(t,u) = δ(t, u)2, with δ ∈ K�u�fr�t�. Let U ≡ U(t) be a root of Δ that vanishes
at t = 0. Then δ(t,U) is a well-defined series in Kfr�t�, which must be 0. Thus U is a root of
δ(t, u), and by Lemma 1,

δ(t, u) = (u − U)Ψ (t, u), (39)

where Ψ (t, u) ∈ K̄�u�fr�t�, so that

Δ(t,u) = (u − U)2Ψ (t, u)2.

Thus U is a root of Δ of multiplicity at least 2.
More generally, let us prove by induction on m � 0 that, if U has multiplicity at least 2m + 1

in Δ, then it actually has multiplicity at least 2m + 2. The case m = 0 has just been proved. Now
take m � 1, and assume

Δ(t,u) = (u − U)2m+1Δ1(t, u) = δ(t, u)2

with Δ1(t, u) ∈ K̄fr�t�[u]. As argued above, U is a root of δ(t, u), and factorization (39) gives

Δ̃(t, u) := (u − U)2m−1Δ1(t, u) = Ψ (t, u)2.

The induction hypothesis implies that U is a root of Δ̃(t, u) of multiplicity at least 2m, and thus
a root of Δ(t,u) of multiplicity at least 2m + 2. This completes the proof of the first statement
of the proposition.

The proof of second statement is very similar. It relies on the fact that if δ(t, u) lies in
K[u]fr�t�, then all roots U of Δ that are finite at t = 0 can be substituted for u in δ(t, u). �

We are finally ready for a proof of Theorem 18.

Proof of Theorem 18. Take Δ(t,u) ∈ K�t�[u] and consider its canonical factorization, given by
Theorem 19. Assume Δ(t,u) = δ(t, u)2, with δ ∈ K�u, t�. If q is the valuation in t of δ, then the
valuation in t of Δ is p = 2q . Thus p is even. Now

t−2qΔ(t, u) = (
t−qδ(t, u)

)2
.

Setting t = 0 in this identity shows that the constant c occurring in the canonical factorization of
Δ is a square of K.

By Proposition 20, each root of Δ that vanishes at t = 0 has an even multiplicity in Δ. This
means that every irreducible factor of Δ occurring in the term (ud + tR2(t, u)) actually occurs
an even number of times. This implies that d is even, and that this term can be factored as
(ud/2 + tR̃2(t, u))2. This completes the proof of the first statement.

The proof of the second statement is very similar: now, each root of Δ that is finite at t = 0
must have an even multiplicity. �

Let us finally discuss how Brown’s theorem may be used to solve a quadratic equation with
one catalytic variable [5,32]. We start from a (k + 1)-tuple of series, denoted F(u),F1, . . . ,Fk ,
such that F(u) ∈ K[u]�t� and Fi ∈ K�t� for all i. We assume they satisfy(

2aF(u) + b
)2 = Δ(u), (40)
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where a, b and Δ are polynomials in F1, . . . ,Fk, t and u, with coefficients K. Obviously, Δ has
a square root in K[u]�t� (namely, the series 2aF(u) + b). Hence the second part of Theorem 18,
applies: the canonical factorisation of Δ contains several squared factors.

Let us now adopt the notation of Theorem 18. In order to determine the degrees in u of R1,
R2 and the Qi , one has to decide how many roots of Δ are infinite (respectively equal to zero,
equal to αi ) when t = 0. This can be done routinely using Newton’s polygon method. (Curiously,
these degrees are only guessed in [5,32]. This forces the authors to check afterwards the validity
of their assumption.) One then introduces a new set of indeterminates (the coefficients of the
polynomials R1, R2 and Qi ) and obtains a system of polynomial equations by comparing the
coefficient of uj in Δ and in its factorisation, for all j . This is illustrated in Sections 9.3 and 10
(even though we do not use Brown’s theorem, but rather a combination of our general strategy
with the factorization theorem, Theorem 19).

To conclude, let us underline one important difference between the quadratic case and the
general case. As shown by (40), in the quadratic case, every root of Δ that is finite at t = 0 has
an even multiplicity. For a general (i.e., non-quadratic) equation, Theorem 14 exhibits a certain
number of multiple roots of Δ, which are finite at t = 0. But Δ may also have simple roots (or
roots of odd multiplicity) that are finite at t = 0. In the example of Section 11, Δ has two simple
roots that are finite at t = 0.

9. Practical strategies

The general strategy presented in Section 2 to solve functional equations of the form
P(F(u),F1, . . . ,Fk, t, u) = 0 yields a system of polynomial equations (3k + 1 equations in a
generic case) relating the unknown series Fi , some auxilliary series Ui , and the values of F(Ui).
Section 6 performs the elimination of the F(Ui), yielding a system of 2k+1 equations. Section 7
even goes further by eliminating the Ui , but the k equations it provides are often, in practise, un-
necessarily big. At any rate, it is always easy to write a system of 2k + 1 equations relating the
series Fi and Ui .

In most combinatorial problems, one is interested in finding the minimal equation satisfied
by F1, or at least a “nice” system involving all the Fi , if such a system exists. As discussed
in [31, Section 4], three main methods can be used to reduce further the size of our system: the
paper-and-pencil approach, the resultant approach, and the Gröbner basis approach. Note that
our system of 2k + 1 equations contains k times the “same” pair of equations (see (34)), which
means that the elimination of the Ui must be performed with care not to loose any information.

The paper-and-pencil approach has been amply illustrated in Section 3. In almost all exam-
ples presented there, there was actually a single unknown function F1. In this case, as soon as
one finds a series U that cancels P ′

0(F (u), . . . , t, u), the discriminant Δ has a double root (The-
orem 14), and one obtains immediately an equation for F1 by writing that

the discriminant of the discriminant vanishes.

We also studied in Section 3 one equation involving two unknown series Fi , but it was linear in
F(u) and of an especially simple form.

In this section, we gather a number of practical strategies that permit to solve bigger examples.
We advise the reader who would be interested in the practical aspects of our method to read what
follows with a computer algebra system at hand. All the strategies we suggest have been tested
on the same example (except the Gröbner one, which seems to be too brutal to work). Two more
examples are provided in Sections 10 and 11.
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9.1. Brute force on 3k + 1 equations

The laziest approach naturally consists in feeding a Gröbner basis package with the 3k(+1)

equations obtained in the generic case, and let it work. The aim is to obtain either a polynomial
system defining the series Fi , or a single algebraic equation for, say, F1. One has to choose
carefully a monomial order. See [26] for generalities on Gröbner bases, and [3] for a recent study
of the complexity of Gröbner computations.

Unfortunately, this lazy approach often fails, because the computation tends to take forever.
This is why we only give here a very simple—and somewhat degenerate—example.

Return to the second example of Section 3.1, Eq. (13). Form a set S of 5 equations consisting
of (15) for i = 1,2, the right-hand side of (14) for i = 1,2 again, and the distinctness condition
X(U1 −U2) = 1. The MAPLE command Groebner[univpoly](F1, S, {X,U1,U2,F1,F2})
directly gives

F1 = 1 + 2t5F 5
1 − t5F 6

1 + t5F 7
1 + t10F 10

1 .

9.2. Bare hands elimination on 2k + 1 equations

9.2.1. The number of 3-constellations
Let us consider now Eq. (29) that defines the generating function of 3-constellations. It

has degree 3 in F(u) and contains two unknown series F1 = F(1) and F2 = F ′(1). Mul-
tiplying by (u − 1)2 gives an equation of the form P(F(u),F1,F2, t, u) = 0. Theorem 2,
applied to P ′

0(F (u),F1,F2, t, u), shows that this series has two roots, U1 and U2. Indeed,
P ′

0(F (u),F1,F2, t, u) reduces to (u − 1)2 when t = 0. The original functional equation gives
the first terms of F(u):

F(u) = 1 + tu + 3(u + 1)ut2 + 2
(
6u2 + 10u + 11

)
ut3 + O

(
t4),

and the equation P ′
0(F (Ui),F1,F2, t,Ui) = 0 provides the first terms of U1 and U2:

U1,2 = 1 ± t1/2 + 2t ± 5t3/2 + 15t2 ± 48t5/2 + O
(
t3).

In particular, the series Ui are distinct. Let Δ(F1,F2, t, v) ≡ Δ(v) be the discriminant of
P(x,F1,F2, t, v), taken with respect to x. By Theorem 14, Δ(v) admits U1 and U2 as multi-
ple roots. But Δ(v) factors as tv(v − 1)4R1(v), where R1 is a polynomial in F1,F2, t and v of
degree 5 in v. Since Ui �= 0 and Ui �= 1, we conclude that U1 and U2 are double roots of R1. Let
R2(v) be the derivative of R1 with respect to v. Then R1 and R2 have the roots U1 and U2 in
common.

The rest of the elimination procedure is schematized in Fig. 10. The labels on the arrows
indicate which variable is eliminated (using a resultant) at each stage.

Fig. 10. The bare-hand elimination procedure for k = 2.
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We first eliminate F2 between R1(F1,F2, t,Ui) and R2(F1,F2, t,Ui). The polynomial thus
obtained factors in much smaller terms than R1 or R2. Knowing the first terms of F(u), U1 and
U2 allows us to decide which factor vanishes. We thus obtain R3(F1, t,Ui) = 0, with

R3(F1, t, v) = t2v4F 2
1 + 2tv2F1(v − 1)(v − 3) − 4tv2 + v4 − 8v3 + 22v2 − 24v + 9.

Similarly, if we eliminate F1 between R1(F1,F2, t,Ui) and R2(F1,F2, t,Ui), and then choose
the right factor, we obtain an equation of the form R4(F2, t,Ui) = 0, of degree 8 in Ui .

We now eliminate F1 between R3(F1, t,U1) and R3(F1, t,U2). The resultant naturally con-
tains a factor (U1 − U2), which we know to be non-zero. Choosing the right factor among the
remaining ones provides a first equation between U1 and U2, of the form R5(t,U1,U2) = 0.
Similarly, eliminating F2 between R4(F2, t,U1) and R4(F2, t,U2) provides another such equa-
tion, say R6(t,U1,U2) = 0. Finally, eliminating one of the Ui ’s between R5 and R6 gives
R7(t,Ui) = 0, with

R7(t, v) = (t − 4)3v6 − 4(21t + 44)(t − 4)v5 − (
180t + 2944 + 27t2)v4

− 18(−332 + 15t)v3 + 27(−235 + 9t)v2 + 3402v − 729.

We have finally obtained the algebraic equation (on Q(t), of degree 6) satisfied by each of the
series Ui . It remains to eliminate U1 between R3(F1, t,U1) and R7(t,U1) to obtain, by extraction
of the relevant factor, the (cubic) algebraic equation satisfied by F1:

F1 = 1 − 47t + 3t2 + 3t (22 − 9t)F1 + 9t (9t − 2)F 2
1 − 81t2F 3

1 . (41)

Recall that F1 counts 3-constellations by their number of black triangles.

9.2.2. An example with multiple roots Ui

Consider the functional equation

F(u) = u + t

(
F(u)3 − 3 + 2

F(u) − F(0)

u
− t

F (u) − F(0) − uF ′(0)

u2

)
. (42)

Clearly, it has a unique power series solution. The first terms of the expansion of F are:

F(u) = u + (
u3 − 1

)
t + u2(3u3 − 1

)
t2 + 3u4(4u3 − 1

)
t3 + u6(55u3 − 12

)
t4 + · · · .

After multiplying by u2, our functional equation reads P(F(u),F (0),F ′(0), t, u) = 0, for
some polynomial P(x0, x1, x2, t, u). We are looking for fractional series U that satisfy
P ′

0(F (U),F (0),F ′(0), t,U) = 0, that is

(U − t)2 = 3tU2F(U)2. (43)

By Theorem 2, this equation has two solutions, counted with multiplicities. Let us denote them
U1 and U2. Using the first terms of F(u), one derives from (43) the first terms of the series Ui .
Remarkably, one finds Ui = t + O(t9) for i = 1,2.

This observation leads us to conjecture that the series Ui are the same, so that (43) has only one
solution, of multiplicity 2. Let Δ(x1, x2, t, v) be the discriminant of P(x0, x1, x2, t, v) taken with
respect to x0. If U1 = U2 ≡ U , then, by Theorem 14, the series U is a root of Δ of multiplicity at
least 4. As Δ factors as tv2D, for some polynomial D ≡ D(v) of degree 8 in v, our assumption
implies that for 0 � i � 3,

∂iD

i

(
F(0),F ′(0), t,U

) = 0.

∂v
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This gives 4 equations involving 3 unknowns, namely F(0), F ′(0) and U .
Let us first eliminate F ′(0) between D(U) and D′(U). The resultant thus obtained reads

t10U6(U − t)6R1, where R1 is a polynomial in t , U and F(0), of degree 8 in U . The first few
terms of F(0) and U , which we have computed, rule out the possibility that U = 0, but are not
sufficient to decide which of the factors (U − t) and R1 are zero.

So let us first assume that U = t . Taking the resultant in F ′(0) of D(U) and D′′(U) gives
F(0) = −t . Returning to Δ provides F ′(0) = 1. Set now F(0) = −t and F ′(0) = 1 in the original
functional equation (42). This gives the following cubic equation in F(u):

tu2F(u)3 − (u − t)2F(u) + (u − t)3 = 0.

By Theorem 2, this equation has only one solution that is a formal power series in t . The form of
the equation suggests to write F = (u − t)G, so that G satisfies G = 1 + tu2G3.

Hence, our assumption that (43) has a double root has led us to the conjecture that the solution
of (42) is F = (u − t)G, where G is the unique series in t satisfying G = 1 + tu2G3. It is now
straightforward to check that this series F satisfies F(0) = −t , F ′(0) = 1, and that the original
functional equation (42) holds. Given that this equation has a unique power series solution, we
have solved it.

9.3. Applying the factorization theorem to the discriminant

We exploit here the factorization theorem, Theorem 19, in combination with Theorem 14,
which implies that the discriminant Δ(F1, . . . ,Fk, t, v) admits k multiple roots.

Our example is again the equation for 3-constellations studied in Section 9.2.1. There, k = 2,
and the discriminant reads Δ(F1,F2, t, v) = tv(v − 1)4R1, where R1 is a polynomial in F1, F2,
t and v, of degree 5 in v. By Theorem 14, Δ admits two double roots U1 and U2, and we have
seen that they are actually double roots of R1. What about the fifth root of R1? Setting t = 0 in
R1 gives a polynomial in v of degree 4, so the fifth root of R1 is infinite at t = 0.

Theorem 19, combined with the form of the series Ui , implies that R1 factors as

R1 = ctp(1 + tS)(1 + tvR)
(
(1 − v)2 + tvQ0 + tv2Q1

)2
, (44)

where S, R, Q0 and Q1 belong to C�t�. Setting t = 0 in this identity immediately gives c = −4
and p = 0. Setting v = 0 gives S = 0. Extracting the coefficient of v gives an expression of Q0
in terms of R and F1. Extracting the coefficient of v2 gives an expression of Q1 in terms of
R, F1 and F2. We now replace Q0 and Q1 by their expressions in (44). The extraction of the
coefficients of vi , for i = 3,4,5 gives a system of 3 polynomial equations relating R, F1 and F2.
The elimination of R and F2 yields back (after some heavy intermediate steps) the algebraic
equation (41) satisfied by F1.

9.4. Writing directly k equations

We exploit here the results of Section 7 (Theorem 17), which provide directly a system of k

equations between the series Fi . Our guinea-pig is again the equation for 3-constellations studied
in Section 9.2.1. In order to apply Theorem 17, we need two polynomials P and Q having 2 roots
in common. With the notation of Section 9.2.1, these polynomials can be either Δ and Δ′

v , or R1
and R2, or R3 and R4: the latter pair being the simplest, we decide to start from it. Then P has
degree m = 4 and Q has degree n = 8. The Sylvester matrix of P and Q, denoted S0(P,Q) in
Section 7, has size 12. By Theorem 17, its determinant D0—the resultant of P and Q—is zero,
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as well as the determinant D1 of the matrix S1(P,Q), obtained by deleting the last two columns,
as well as the last row of a’s (the 8th row) and the last row of b’s (the 12th row).

The determinant D0 is found to factor into two terms. The relevant one has degree 8 in F1
and degree 4 in F2. The second determinant, D1, does not factor, and has degrees 14 and 6 in
F1 and F2, respectively. Still, MAPLE agrees to eliminate F2 between D1 and the relevant factor
of D0. The corresponding resultant contains four different factors, and the one that vanishes
yields (41) again.

We observe that two of the above factors are squared. The occurrence of repeated factors in
iterated resultants is a systematic phenomenon, which we discuss in Section 12.

10. The degree distribution of planar maps

Let us return to the equations of Lemmas 5 and 6, which characterize the face-distribution of
rooted planar maps. In this section, we solve these equations by generalizing the approach of [5].
Then we compare our solution to the result obtained in [14] for the same problem.

Theorem 21. There exists a unique pair (R1,R2) of formal power series in t with coefficients in
Q[z1, z2, . . .] such that

R1 = t

2

∑
i�1

zi

[
ui−1] 1√

R
and R2 = t − 3R2

1 + t

2

∑
i�1

zi

[
ui

] 1√
R

, (45)

where

R = 1 − 4uR1 − 4u2R2.

Let G(t;z) = G(t; z1, z2, . . .) be the generating function of rooted planar maps, counted by the
number of edges (variable t) and the number of faces of degree i (variable zi ). Then

t2(tG(t;z))′ = (
R2 + R2

1

)(
R2 + 9R2

1

)
,

where the derivative is taken with respect to t , and

tG(t;z) = 1

t

(
R2 + R2

1

)(
3R2 + 15R2

1 − 2t
) + R1[u] β√

R
− 1

2

[
u2] β√

R
,

where

β =
∑
i�1

ziu
−i .

Comments
1. The equations defining R1 and R2 can also be written in terms of β:

R1 = t

2

[
u−1] β√

R
and R2 = t − 3R2

1 + t

2

[
u0] β√

R
. (46)

2. Let m be a positive integer, and set zi = 0 for i > m. Then G(t;z) is the face-distribution
generating function of planar maps in which all faces have degree at most m. The right-hand
sides of the equations defining R1 and R2 now involve only finitely many terms, so that these
two series are actually algebraic. The same holds for G(t;z) (as stated in Corollary 7), and
the above theorem makes this algebraicity explicit by providing a system of three polynomial
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equations defining R1, R2 and G. For instance, the generating function of planar maps in which
all faces have degree 3, counted by edges and faces, satisfies

t2G(t; z) = (
R2 + R2

1

)(
3R2 + 15R2

1 − 2t − 24tzR1R2 − 56tzR3
1

)
with

R1 = zt
(
R2 + 3R2

1

)
and R2 = t − 3R2

1 + zt
(
6R1R2 + 10R3

1

)
.

Proof of Theorem 21. The existence and uniqueness of the series Rj is clear: think of extracting
inductively from Eqs. (45) the coefficient of tn. The fact that R1 and R2 are multiples of t implies
that only finitely many values of i are involved in this extraction, so that the coefficient of tn in
R1 and R2 is a polynomial in the zi .

We now want to relate R1 and R2 to the face-distribution of planar maps. As noted in [5,
p. 13], it suffices to prove our results when zi = 0 for i > m, for any m � 3. Then the equation
of Lemma 5 may be written in the form P(F(u),F1, . . . ,Fm−2, t, u) = 0:

um−2F(u) = um−2 + tumF(u)2 + tθ1(u)F (u) − t

m−2∑
j=0

ujFj θj+2(u), (47)

where θk(u) is the following polynomial in u, of degree m − k:

θk(u) =
m∑

i=k

ziu
m−i .

Note that F0 = 1. This equation coincides with Eq. (2.2) of [5], apart for the value of θk .
We now apply the general strategy of Section 2. The condition P ′

0(F (U),F1, . . . , t,U) = 0
reads:

Um−2 = 2tUmF(U) + tθ1(U).

By Theorem 2, this equation has m − 2 solutions, U1, . . . ,Um−2, which are fractional series
in t (with coefficients in an algebraic closure of Q(z1, . . . , zm)). All of them vanish at t = 0. By
Theorem 14, these series are multiple roots of the discriminant Δ(u) ≡ Δ(F1, . . . ,Fm−2, t, u).
This discriminant is found to be

Δ(u) = (
tθ1(u) − um−2)2 − 4tum

(
um−2 − t

m−2∑
j=0

ujFj θj+2(u)

)
. (48)

It has degree (at most) 2m−2 in u, and it reduces to u2(m−2) when t = 0. By the Newton–Puiseux
theorem, this implies that the series Ui , for 1 � i � m − 2, are the only roots of Δ(u) that are
finite at t = 0, and that they have multiplicity 2 exactly. The remaining roots are infinite at t = 0.
The canonical factorization of Δ(u) (Theorem 19) thus reads:

Δ(u) = ctp
(
1 + tS(t)

)(
1 + tuS1(t, u)

)(
um−2 + tS2(t, u)

)2
,

where S1 has degree (at most) 1 in u and S2 has degree at most m − 3. Setting t = 0 in (48)
shows that p = 0 and c = 1. Setting u = 0 then gives t2(1 + tS(t))S2(t,0)2 = t2z2

m, and we
finally choose to write the canonical factorization of Δ(u) with the notation of [5]:

Δ = RQ2
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with

R = 1 − 4uR1 − 4u2R2 and Q = tzm +
m−2∑
i=1

Qiu
i.

The Ri and Qi are power series in t with coefficients in Q(z1, . . . , zm).
The derivations of the equations defining the Ri , and of the expression of (tG)′, now faithfully

follow [5]. Let us simply recall where (45) comes from. Solving (47) gives

2tumF(u) = um−2 − tθ1(u) ± √
Δ(u) = um−2 − tθ1(u) + Q

√
R, (49)

so that

Q = 2tum + tθ1(u) − um−2

√
R

+ O
(
um+1). (50)

Recall that Q(u) has degree m − 2 in u. Extracting the coefficients of um−1 and um in the above
identity gives (45).

Let us finally derive an expression for G(t;z). By (50),

Qi = [
ui

] tθ1(u) − um−2

√
R

for 0 � i � m − 2. (51)

Now by Lemma 6 and (49),

2t2G = 2tF2 = [
um+2]Q√

R =
m−2∑
i=0

Qi

[
um+2−i

]√
R

=
m−2∑
i=0

[
ui

] tθ1(u) − um−2

√
R

[
um+2−i

]√
R by (51)

=
m+2∑
i=0

[
ui

] tθ1(u) − um−2

√
R

[
um+2−i

]√
R −

m+2∑
i=m−1

[
ui

] tθ1(u) − um−2

√
R

[
um+2−i

]√
R

= [
um+2](tθ1(u) − um−2) −

m+2∑
i=m−1

[
ui

] tθ1(u) − um−2

√
R

[
um+2−i

]√
R

= −
2∑

i=−1

[
ui

] tβ − u−2

√
R

[
u2−i

]√
R,

where β = u−mθ1(u). The expected expression of G(t;z) follows, upon using (46). �
In [14], another characterization of the face-distribution of planar maps was obtained, using

two different methods: first, using matrix integrals, and then by a purely combinatorial approach.
Both methods yield the same expression for the series G(t;z), but this expression differs from
that of Theorem 21. Our aim is now to relate these two different expressions. Let us first recall
the expression of [14].

Theorem 22. [14] There exists a unique pair (S1, S2) of formal power series in t with coefficients
in Q[z1, z2, . . .] such that

S1 = t
[
v0]W and S2 = t + t

[
v−1]W, (52)
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where

W =
∑
i�1

ziP
i−1 and P = v + S1 + S2/v.

The face-distribution generating function of rooted planar maps, denoted above G(t;z), satisfies

tG(t;z) = S2
1 + S2 − 2S1

[
v−2]W − [

v−3]W.

Proposition 23. The solutions to the face-distribution problem given by Theorems 21 and 22 are
related as follows.

(i) The auxilliary series Ri and Si satisfy

S1 = 2R1 and S2 = R2 + R2
1 .

Moreover, for all � � 0,

[
u�

] β√
R

= [
v0]P �+1W.

(ii) The following identities, valid for all k � 0 and j ∈ Z,[
vj

]
P k+1W = [

vj−1]P kW + S1
[
vj

]
P kW + S2

[
vj+1]P kW,[

vj
]
P kW = S

−j

2

[
v−j

]
P kW,

allow one to express any term [vj ]P kW as a linear combination of terms [v−i]W , for i � 0,
with coefficients in Q(S1, S2).

(iii) Rewrite the expression of G(t;z) given in Theorem 21 in terms of S1, S2 and P using (i).
Then, use (ii) to rewrite this in terms of S1, S2 and the [v−i]W , for i � 0. Use finally (52)
to express [v0]W and [v−1]W in terms of S1 and S2: The resulting expression of G(t;z) is
that of Theorem 22.

Proof. (i) Let us introduce the series

R̄1 := S1

2
, R̄2 := S2 − S2

1

4
and R̄ := 1 − 4uR̄1 − 4u2R̄2 = (1 − uS1)

2 − 4u2S2.

We want to prove that R̄, R̄1 and R̄2 satisfy (45) (with bars over all unknowns). In view of (52),
the first equation in (45) holds if and only if[

v0]W =
∑
j�0

zj+1
[
uj

]
R̄−1/2.

Given that W = ∑
j�0 zj+1P

j , it suffices to prove that for all j � 0,[
v0]P j = [

uj
]
R̄−1/2, (53)

or, upon taking generating functions, that∑
j�0

uj
[
v0]P j = R̄−1/2.
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But ∑
j�0

uj
[
v0]P j =

∑
j�0

uj
∑
k�0

(
j

2k

)(
2k

k

)
S

j−2k

1 Sk
2 =

∑
k�0

(
2k

k

)
Sk

2
u2k

(1 − uS1)2k+1

= 1

1 − uS1

(
1 − 4u2S2

(1 − uS1)2

)−1/2

= R̄−1/2.

(By convention,
(
b
a

) = 0 unless 0 � a � b.) The first equation of (45) follows. The second one
reads, in view of (52),

2
[
v−1]W + S1

[
v0]W =

∑
i�1

zi

[
ui

]
R̄−1/2.

In order to prove it, it suffices to check that for all j � 0,

2
[
v−1]P j + S1

[
v0]P j = [

uj+1]R̄−1/2,

= [
v0]P j+1 by (53).

This is easily proved by first extracting the coefficient of v0 in P j+1 = (v + S1 + S2/v)P j , and
then noticing that S2[v]P j = [v−1]P j (this comes from the fact that P j is left unchanged when
replacing v by S2/v). Since R̄1 and R̄2 satisfy (45), they coincide, respectively, with the series
R1 and R2. The second result of (i) follows from (53).

The first identity of (ii) is simply obtained by writing

P k+1W = (v + S1 + S2/v)P kW,

and extracting the coefficient of vj . The second one follows from the fact that P , and hence W ,
is left invariant upon replacing v by S2/v.

Finally, (iii) is a straightforward verification. �
11. Hard particles on planar maps

Let us return to the equations established in Lemma 13 for planar maps carrying hard particles.
We will solve this system when x = y = 1. That is, the series F(u) ≡ F(t, s, u) counts maps
rooted at a vacant vertex by the total number of edges (variable t), the number of frustrated
edges (variable s) and the number of white corners in the root-face (variable u). The series
G(u) ≡ G(t, s, u) counts maps rooted at an occupied vertex, according to the same statistics.

The first step consists in eliminating G(u). This gives an equation of the form P(F(u),F (1),

G(1), t, u) = 0, which is cubic in F(u).
The next steps require a computer, but otherwise copy faithfully the bare-hands strategy of

Section 9.2.1. We do not give the details. Let us simply mention that, when s = 1, the two series
Ui that cancel P ′

0(F (u),F (1),G(1), t, u) are formal power series in
√

t :

U1,2 = 1 + t ± t3/2 + 4t2 ± 17/2t5/2 + O
(
t3)

while, when s �= 1, they are formal series in t with coefficients in Q(s):

U1 = 1 + t + (3s − 4)t2

s − 1
+ (−25 + 64s + s4 + 12s3 − 51s2)t3

(s − 1)3
+ O

(
t4),

U2 = 1 + st + s2(−2 + 3s)t2

+ s2(−28s3 + 13s4 + 16s2 − 2)t3

3
+ O

(
t4).
s − 1 (s − 1)
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Another interesting observation is that, in all cases, some of the roots of the discriminant Δ(u) ≡
Δ(F(1),G(1), t, u) that are finite at t = 0 are simple. For instance, when s = 1, this discriminant
has two simple roots, U3 and U4, of the following form:

U3,4 = 1 ± 2it1/2 − 5t ∓ 13it3/2 + O
(
t2).

In other words, Δ(u) does not have a square root in K[u]�t� (by Proposition 20). The other roots
of Δ(u) that are finite at t = 0 are U1, U2, 0 and 1, and have an even multiplicity.

At the end of the elimination procedure, one obtains a pair of quartic polynomial equations for
the series F(1) and G(1). The corresponding curves have genus 0 (as is often the case for hard-
particle models [15]), and we have found, with the help of the algcurves package of MAPLE,
a simple parametrization of them. In this form, our results are begging for a purely combinatorial
derivation, in the vein of [13,16,17].

Proposition 24. Let T ≡ T (t, s) be the unique formal power series in t with constant term 0
satisfying

T (1 − 2T )
(
s − 3T + 3T 2) = s2t.

Then T has actually coefficients in N[s]. Morever, the generating functions F(t, s,1) ≡ F(1)

and G(t, s,1) ≡ G(1) that count planar maps carrying hard particles (rooted, respectively, at an
empty and an occupied vertex) satisfy

s3t2F(1) = T 2(s − 4T − 3sT + 15T 2 + sT 2 − 15T 3 + 4T 4),
s4t2G(1) = T 3(s − 3T + 3T 2)(s − 4T − 3sT + 14T 2 − 9T 3).

Proof. The only result that does not follow from the elimination of U1 and U2 is the fact that T

has coefficients in N[s]. By writing

T = sS, S = t

(1 − 2sS)(1 − 3S(1 − sS))
, S(1 − sS) = t

1 − sS

1 − 2sS

1

1 − 3S(1 − sS)
,

it is easy to prove by induction on n that the coefficient of tn in S and in S(1 − sS) belongs
to N[s]. Since T = sS, the same holds for the coefficients of T . �

By studying the singular behaviour of the series F(1) and G(1) when s = 1, one obtains the
following corollary.

Corollary 25. The number of n-edge planar maps carrying hard particles is asymptotic to

α

( 3
√

39509 + 23436
√

62 − 3
√

−39509 + 23436
√

62 + 38

3

)n

n−5/2 � α(15.4 . . .)nn−5/2,

for some positive constant α.

Proof. We apply the general principles that relate the singularities of an algebraic series to the
asymptotic behaviour of its coefficients [31]. Since T , F(1) and G(1) have non-negative coeffi-
cients, their radius of convergence is one of their singularities. The expressions of F(1) and G(1)

show that their singularities are also singularities of T . As the leading coefficient of the equation
defining T does not vanish, the singularities of T are among the roots of the discriminant of its
minimal polynomial, that is, among the roots of

δ = 18432t3 − 1545t2 + 38t − 1.
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The only real root of δ is ρ � 0.065. Hence ρ is the radius of convergence of T , F(1) and G(1).
The modulus of the other two roots of δ is less than ρ. So ρ is actually the only singularity of T ,
F(1) and G(1). A local expansion of these three series in the neighborhood of t = ρ shows that
T has a square root type singularity, while F(1) and G(1) have a singularity in (1− t/ρ)3/2. This
implies that the nth coefficient of F(1) and G(1) is asymptotic to αρ−nn−5/2 for some positive
constant α (which is not the same for F(1) and G(1)). But ρ−1 is exactly the constant occurring
above in the corollary. �
Note. A similar study can be conducted for a generic value of s ∈ (0,+∞). We have not worked
out all the details, but it seems that the above pattern persists for all s ∈ R+. In other words, there
is no (physical) phase transition in this model. At any rate, it is not very difficult to prove that the
radius of convergence ρ(s) is a smooth function of s, equal to the branch of

18432s4ρ3 − 3s2ρ2(963 − 2496s + 2048s2)
+ 2ρ

(
16s2 + 21s − 18

)
(4s − 3)2 − (4s − 3)3

that equals 1/12 at s = 0.

12. Concluding remarks and questions

Let us begin by bragging a bit about some positive points of this paper. We have proved that
the series F(t, u) given by a functional equation of a certain type (see (17)) are algebraic. As
illustrated in Section 5, this tells us that a number of enumerative problems have an algebraic
generating function, without having to solve them in detail. Our general strategy gives a system
of 3k polynomial equations. Its reduction to 2k equations (Section 6) has a theoretical interest,
and tells us what is left of the “quadratic method” for equations that are no longer quadratic.

However, the practical aspects of our approach probably require more work. Generally speak-
ing, we are lacking an efficient elimination theory for polynomial systems which, as (9)–(11)
or (34), are highly symmetric. The case of 3-constellations, solved by different approaches
in Section 9, shows that even when the final result is relatively simple (here, F1 satisfies
a cubic equation), the intermediate steps may involve big polynomials. Does this mean that
3-constellations are somehow pathological, or that we have not conducted the calculations in
the best possible way (or both. . .)? We have no definite answer to this question, but the following
observations may be of some interest:

1. The degree of F(u) may be very big compared to the degrees of the original functional
equation. Consider, for instance, the enumeration of walks on the half-line N, that start from 0
and take steps +k and −�, where k and � are coprime. The case (k, �) = (3,2) was solved in
Section 3.1. In general, the equation reads

(
u� − t

(
1 + uk+�

))
F(u) = u� − t

�−1∑
i=0

uiFi.

Its solution satisfies [11, Ex. 4]:

tF0 = tF (0) = (−1)�+1
�∏

Ui,
i=1
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where U1, . . . ,U� are the � roots of the kernel that are finite at t = 0. It can be proved that F0 has
degree exactly

(
k+�
k

)
. When � = k − 1, this degree is exponential in k, even though the original

equation is linear in F(u) and all the Fi (and has degree 2k − 1 in u).

2. Certain resultant calculations yield systematically repeated factors. Imagine we are trying
to find a polynomial equation for F1, starting from P(F(u),F1,F2, t, u) = 0. At some point, we
end up with two polynomials R(u) and Q(u), with coefficients in K[F1,F2, t], which have two
roots in common. We thus apply Theorem 17: the determinants D0 and D1 of S0 and S1 vanish.
We take the resultant of D0 and D1 in F2 to obtain a polynomial equation for F1. Then every
factor in this resultant has multiplicity at least 2 [36, Theorem 3.4].

Moreover, a similar reduction might apply to equations with a single unknown function F1.
For such equations, we obtain a polynomial equation for F1 by writing that the iterated discrim-
inant discrimv(discrimx P (x,F1, t, v)) vanishes. Again, if P is a generic polynomial in x, F1
and v of total degree d � 3, then it is conjectured that this iterated discriminant has repeated
factors [36, p. 384]. Note that this does not mean that we will always meet such a factor in
our examples, since they do not have generic coefficients. This is illustrated by the following
example, which is a generalization of the equation for planar maps (Section 3.2):

F(u) = 1 + atu2F(u)2 + tu
uF(u) − F(1)

u − 1
.

There, the iterated discriminant is an irreducible polynomial of degree 4 in F1—but the equation
we start from is not a generic equation of total degree 5.

Finally, let us underline that it is still an unsolved problem to enumerate m-constellations
starting from the equations of Proposition 12 (even though the result is known to be remarkably
simple [12]).
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[30] S. Feretić, D. Svrtan, On the number of column-convex polyominoes with given perimeter and number of columns,

in: Barlotti, Delest, Pinzani (Eds.), Proceedings of the 5th Conference on Formal Power Series and Algebraic Com-
binatorics, Florence, Italy, 1993, pp. 201–214.

[31] R. Flajolet, R. Sedgewick, Analytic combinatorics: Functional equations, rational, and algebraic functions, Tech-
nical Report RR4103, INRIA, 2001, a component of the book project “Analytic Combinatorics,” available at
http://www.inria.fr/rrrt/rr-4103.html.

[32] Z.J. Gao, I.M. Wanless, N.C. Wormald, Counting 5-connected planar triangulations, J. Graph Theory 38 (1) (2001)
18–35.

[33] I.P. Goulden, D.M. Jackson, Combinatorial Enumeration, Wiley-Interscience Ser. Discrete Math., John Wiley &
Sons, New York, 1983.

[34] D.E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, Addison–Wesley, Reading, MA,
1968.

[35] S. Lang, Algebra, Addison–Wesley, Reading, MA, 1965.
[36] S. McCallum, Factors of iterated resultants and discriminants, J. Symbolic Comput. 27 (4) (1999) 367–385.
[37] H. Prodinger, The kernel method: A collection of examples, Sém. Lothar. Combin. 50 (2003/04), Art. B50f, 19 p.

(electronic).
[38] G. Schaeffer, Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees,

Electron. J. Combin. 4 (1) (1997), Research Paper 20, 14 p. (electronic).
[39] G. Schaeffer, personal communication, 2002.



672 M. Bousquet-Mélou, A. Jehanne / Journal of Combinatorial Theory, Series B 96 (2006) 623–672
[40] R. Simion, Noncrossing partitions, Discrete Math. 217 (1–3) (2000) 367–409.
[41] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Stud. Adv. Math., vol. 62, Cambridge Univ. Press,

Cambridge, 1999.
[42] H.N.V. Temperley, Combinatorial problems suggested by the statistical mechanics of domains and of rubber-like

molecules, Phys. Rev. (2) 103 (1956) 1–16.
[43] W.T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962) 21–38.
[44] W.T. Tutte, On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 (1968) 64–74.
[45] W.T. Tutte, Chromatic sums for rooted planar triangulations. V. Special equations, Canad. J. Math. 26 (1974) 893–

907.
[46] W.T. Tutte, Chromatic sums revisited, Aequationes Math. 50 (1–2) (1995) 95–134.
[47] R.J. Walker, Algebraic Curves, Springer-Verlag, New York, 1978. Reprint of the 1950 edition.
[48] D. Xu, Generalizations of two-stack-sortable permutations, PhD thesis, Brandeis University, Waltham, MA, 2002.
[49] D. Zeilberger, A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length n

is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Math. 102 (1) (1992) 85–93.
[50] D. Zeilberger, The umbral transfer-matrix method: I. Foundations, J. Combin. Theory Ser. A 91 (2000) 451–463.


