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The existence and the uniqueness of the solution to the BCS gap equation of superconduc-
tivity are established in previous papers, but the temperature dependence of the solution
is not discussed. In this paper, in order to show how the solution varies with the temper-
ature, we first give another proof of the existence and the uniqueness of the solution and
point out that the unique solution belongs to a certain set. Here this set depends on the
temperature T . We define another certain subset of a Banach space consisting of continu-
ous functions of both T and x. Here, x stands for the kinetic energy of an electron minus
the chemical potential. Let the solution be approximated by an element of the subset of
the Banach space above. Second, we show, under this approximation, that the transition to
a superconducting state is a second-order phase transition.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

We use the unit kB = 1, where kB stands for the Boltzmann constant. Let ωD > 0 and k ∈ R
3 stand for the Debye

frequency and the wave vector of an electron, respectively. We denote Planck’s constant by h > 0 and set by � = h/(2π).
Let m > 0 and μ > 0 stand for the electron mass and the chemical potential, respectively. We denote by T (� 0) the
temperature, and by x the kinetic energy of an electron minus the chemical potential, i.e., x = �

2|k|2/(2m) − μ ∈ [−μ,∞).
Note that 0 < �ωD � μ.

In the BCS model [2,4] of superconductivity, the solution to the BCS gap equation (1.1) below is called the gap function.
We regard the gap function as a function of both T and x, and denote it by u, i.e., u : (T , x) �→ u(T , x) (� 0). The BCS gap
equation is the following nonlinear integral equation:

u(T , x) =
�ωD∫
ε

U (x, ξ)u(T , ξ)√
ξ2 + u(T , ξ)2

tanh

√
ξ2 + u(T , ξ)2

2T
dξ, (1.1)

where U (x, ξ) > 0 is the potential multiplied by the density of states per unit energy at the Fermi surface and is a function
of x and ξ . In (1.1) we introduce ε > 0, which is small enough and fixed (0 < ε � �ωD). It is known that the BCS gap
equation (1.1) is based on a superconducting state called the BCS state. In this connection, see [11, (6.1)] for a new gap
equation based on a superconducting state having a lower energy than the BCS state.

The integral with respect to ξ in (1.1) is sometimes replaced by the integral over R
3 with respect to the wave vector k.

Odeh [9], and Billard and Fano [3] established the existence and the uniqueness of the positive solution to the BCS gap
equation in the case T = 0. In the case T � 0, Vansevenant [10] determined the transition temperature (the critical tem-
perature) and showed that there is a unique positive solution to the BCS gap equation. Recently, Hainzl, Hamza, Seiringer
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and Solovej [6] proved that the existence of a positive solution to the BCS gap equation is equivalent to the existence of a
negative eigenvalue of a certain linear operator to show the existence of a transition temperature. Hainzl and Seiringer [7]
also derived upper and lower bounds on the transition temperature and the energy gap for the BCS gap equation. Moreover,
Frank, Hainzl, Naboko and Seiringer [5] gave a rigorous analysis of the asymptotic behavior of the transition temperature at
weak coupling.

However, the solution mentioned above belongs to a function space consisting of functions of the wave vector only,
and the temperature is regarded as a parameter, i.e., in previous papers the existence and the uniqueness of the solution
are established for T fixed. So the temperature dependence of the solution is not discussed. For example, it is not shown
that the solution is continuous for T � 0. Moreover, how the solution varies with the temperature is not studied. Studying
the temperature dependence of the solution to the BCS gap equation is very important. This is because, by dealing with
the thermodynamical potential, this study leads to the mathematical challenge of showing that the transition to a super-
conducting state is a second-order phase transition. So it is highly desirable to study the temperature dependence of the
solution.

In this paper, in order to show how the solution varies with the temperature, we first give another proof of the existence
and the uniqueness of the solution to the BCS gap equation (1.1). More precisely, we show that the unique solution belongs
to V T (see (2.1) below). Note that the set V T depends on T . We define a certain subset W (see (2.2) below) of a Banach
space consisting of continuous functions of both T and x. Let the solution be approximated by an element of W . Second,
we show, under this approximation, that the transition to a superconducting state is a second-order phase transition. In
other words, we show that the condition that the solution belongs to W is a sufficient condition for the second-order phase
transition in superconductivity.

In this connection, on the basis of the Banach fixed-point theorem, the author [13, Theorem 2.3] recently gave a proof of
the statement that the solution to the BCS gap equation (1.1) is continuous for both T and x when T (� 0) is small enough.

Let

U (x, ξ) = U1 at all (x, ξ) ∈ [ε,�ωD ]2, (1.2)

where U1 > 0 is a constant. Then the gap function depends on the temperature T only. We therefore denote the gap
function by �1 in this case, i.e., �1 : T �→ �1(T ). Then (1.1) leads to the simplified gap equation

1 = U1

�ωD∫
ε

1√
ξ2 + �1(T )2

tanh

√
ξ2 + �1(T )2

2T
dξ. (1.3)

It is known that superconductivity occurs at temperatures below the transition temperature. The following is the definition
of the transition temperature, which originates from the simplified gap equation (1.3).

Definition 1.1. (See [2].) The transition temperature originating from the simplified gap equation (1.3) is the temperature
τ1 > 0 satisfying

1 = U1

�ωD∫
ε

1

ξ
tanh

ξ

2τ1
dξ.

The BCS model makes the assumption that there is a unique solution �1 : T �→ �1(T ) to the simplified gap equation
(1.3) and that it is of class C2 with respect to the temperature T (see e.g. [2] and [15, (11.45), p. 392]). The author [12] has
given a mathematical proof of this assumption on the basis of the implicit function theorem. Set

� =
√

(�ωD − εe1/U1)(�ωD − εe−1/U1)

sinh 1
U1

. (1.4)

Proposition 1.2. (See [12, Proposition 2.2].) Let � be as in (1.4). Then there is a unique nonnegative solution �1 : [0, τ1] → [0,∞) to
the simplified gap equation (1.3) such that the solution �1 is continuous and strictly decreasing on the closed interval [0, τ1]:

�1(0) = � > �1(T1) > �1(T2) > �1(τ1) = 0, 0 < T1 < T2 < τ1.

Moreover, it is of class C2 on the interval [0, τ1) and satisfies

�′
1(0) = �′′

1(0) = 0 and lim
T ↑τ1

�′
1(T ) = −∞.

Remark 1.3. We set �1(T ) = 0 for T > τ1.
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Remark 1.4. In Proposition 1.2, �1(T ) is nothing but
√

f (T ) in [12, Proposition 2.2].

Let 0 < U1 < U2, where U2 > 0 is a constant. We assume the following condition on U (·,·) throughout this paper:

U1 � U (x, ξ) � U2 at all (x, ξ) ∈ [ε,�ωD ]2, U (·,·) ∈ C2([ε,�ωD ]2). (1.5)

When U (x, ξ) = U2 at all (x, ξ) ∈ [ε,�ωD ]2, an argument similar to that in Proposition 1.2 gives that there is a unique
nonnegative solution �2 : [0, τ2] → [0,∞) to the simplified gap equation

1 = U2

�ωD∫
ε

1√
ξ2 + �2(T )2

tanh

√
ξ2 + �2(T )2

2T
dξ, 0 � T � τ2. (1.6)

Here the transition temperature τ2 > 0 is defined by

1 = U2

�ωD∫
ε

1

ξ
tanh

ξ

2τ2
dξ. (1.7)

We again set �2(T ) = 0 for T > τ2. A straightforward calculation gives the following.

Lemma 1.5.

(a) The inequality τ1 < τ2 holds.
(b) If 0 � T < τ2 , then �1(T ) < �2(T ). If T � τ2 , then �1(T ) = �2(T ) = 0.

On the basis of Proposition 1.2, the author [12, Theorem 2.3] proved that the transition to a superconducting state is a
second-order phase transition under the restriction (1.2).

As mentioned above, we now introduce the thermodynamical potential Ω to study the phase transition in superconduc-
tivity. The thermodynamical potential Ω is of the form

Ω = −kB T ln Z ,

where Z is the function called the partition function. For more details on the thermodynamical potential, see e.g. [2, Sec-
tion III] or Niwa [8, Section 7.7.3]. Let N(x) � 0 stand for the density of states per unit energy at the energy x (−μ � x < ∞)

and set N0 = N(0) > 0. Here, N0 stands for the density of states per unit energy at the Fermi surface (x = 0). Note that the
function x �→ N(x) is continuous on [−μ,∞). For the gap function u, set

ΩS(T ) = ΩN(T ) + Ψ (T ),

where

ΩN(T ) = −2N0

�ωD∫
ε

x dx − 4N0T

�ωD∫
ε

ln
(
1 + e−x/T )

dx + Φ(T ), T > 0, (1.8)

Φ(T ) = 2

−�ωD∫
−μ

xN(x)dx − 2T

−�ωD∫
−μ

N(x) ln
(
1 + ex/T )

dx − 2T

∞∫
�ωD

N(x) ln
(
1 + e−x/T )

dx, T > 0, (1.9)

Ψ (T ) = −2N0

�ωD∫
ε

{√
x2 + u(T , x)2 − x

}
dx + N0

�ωD∫
ε

u(T , x)2√
x2 + u(T , x)2

tanh

√
x2 + u(T , x)2

2T
dx

− 4N0T

�ωD∫
ε

ln
1 + e−

√
x2+u(T ,x)2/T

1 + e−x/T
dx, 0 < T � Tc . (1.10)

Here, Tc is the transition temperature defined by Definition 2.5 below and originates from the BCS gap equation (1.1).

Remark 1.6. The integral
∫ ∞

�ωD
N(x) ln(1 + e−x/T )dx on the right side of (1.9) is well defined for T > 0, since N(x) = O (

√
x)

as x → ∞.
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Definition 1.7. Let ΩS (T ) and ΩN (T ) be as above. The thermodynamical potential Ω in the BCS model is defined by (see
e.g. Niwa [8, Section 7.7.3])

Ω(T ) =
{

ΩS(T ) (0 < T � Tc),

ΩN(T ) (T > Tc).

Remark 1.8. Generally speaking, the thermodynamical potential Ω is a function of the temperature T , the chemical po-
tential μ and the volume of our physical system. Fixing both μ and the volume of our physical system, we deal with the
dependence of Ω on the temperature T only.

Remark 1.9. Hainzl, Hamza, Seiringer and Solovej [6] studied the BCS gap equation with a more general potential examining
the thermodynamic pressure.

Remark 1.10. It is shown in [12, Lemmas 6.1 and 6.2] that both of the functions ΩN (see (1.8)) and Φ (see (1.9)), regarded
as functions of T , are of class C2 on (0,∞).

Definition 1.11. We say that the transition to a superconducting state at the transition temperature Tc is a second-order
phase transition if the following conditions are fulfilled.

(a) The thermodynamical potential Ω , regarded as a function of T , is of class C1 on (0,∞).
(b) The thermodynamical potential Ω , regarded as a function of T , is of class C2 on (0,∞) \ {Tc}, and the second-order

partial derivative (∂2Ω/∂T 2) is discontinuous at T = Tc .

Remark 1.12. As is known in condensed matter physics, condition (a) implies that the entropy S = −(∂Ω/∂T ) is continuous
on (0,∞) and that, as a result, no latent heat is observed at T = Tc . On the other hand, (b) implies that the specific heat
at constant volume, C V = −T (∂2Ω/∂T 2), is discontinuous at T = Tc and that the gap �CV in the specific heat at constant
volume is observed at T = Tc . For more details on the entropy well as the specific heat at constant volume, see e.g. [2,
Section III] or Niwa [8, Section 7.7.3].

The paper proceeds as follows. In Section 2 we state our main results without proof. In Sections 3, 4 and 5 we prove our
main results.

2. Main results

Let 0 � T � τ2 and fix T , where τ2 is that in (1.7). We first consider the Banach space C([ε,�ωD ]) consisting of contin-
uous functions of x only, and deal with the following subset V T :

V T = {
u(T , ·) ∈ C

([ε,�ωD ]): �1(T ) � u(T , x) � �2(T ) at x ∈ [ε,�ωD ]}. (2.1)

Remark 2.1. The set V T depends on T . So we denote each element of V T by u(T , ·).

As mentioned in the introduction, the existence and the uniqueness of the solution to the BCS gap equation were es-
tablished in previous papers [3,5–7,9,10] and the uniqueness only holds for a nonnegative U (·, ·). However the temperature
dependence of the solution is not discussed, and so we give another proof of the existence and the uniqueness of the so-
lution to the BCS gap equation (1.1) so as to show how the solution varies with the temperature. More precisely, we show
that for T fixed, the unique solution belongs to V T . Note that Proposition 1.2 and Lemma 1.5 point out how �1 and �2
depend on the temperature and how �1 and �2 vary with the temperature.

Theorem 2.2. Assume condition (1.5) on U (·,·). Let T ∈ [0, τ2] be fixed. Then there is a unique nonnegative solution u0(T , ·) ∈ V T to
the BCS gap equation (1.1):

u0(T , x) =
�ωD∫
ε

U (x, ξ)u0(T , ξ)√
ξ2 + u0(T , ξ)2

tanh

√
ξ2 + u0(T , ξ)2

2T
dξ, x ∈ [ε,�ωD ].

Consequently, the solution is continuous with respect to x and varies with the temperature as follows:

�1(T ) � u0(T , x) � �2(T ) at (T , x) ∈ [0, τ2] × [ε,�ωD ].
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Remark 2.3. In fact, Theorem 2.2 holds true under

U1 � U (x, ξ) � U2 at all (x, ξ) ∈ [ε,�ωD ]2, U (·,·) ∈ C
([ε,�ωD ]2).

But we assume condition (1.5) on U (·,·) instead. This is because we deal with the subset W (see (2.2) below) so as to prove
Theorem 2.11.

Proposition 2.4. Let T ∈ [τ1, τ2] be fixed and let u0(T , ·) be as in Theorem 2.2. If there is a point x1 ∈ [ε,�ωD ] satisfying
u0(T , x1) = 0, then u0(T , x) = 0 at all x ∈ [ε,�ωD ].

The existence of the transition temperature Tc is pointed out in previous papers [5–7,10]. In our case, it is defined as
follows.

Definition 2.5. Let u0(T , ·) ∈ V T be as in Theorem 2.2. The transition temperature Tc originating from the BCS gap equation
(1.1) is defined by

Tc = inf
{

T > 0: u0(T , x) = 0 at all x ∈ [ε,�ωD ]}.
Remark 2.6. Combining Definition 2.5 with Theorem 2.2 implies that τ1 � Tc � τ2. For T > Tc , we set u0(T , x) = 0 at all
x ∈ [ε,�ωD ].

Proposition 2.7. Let u0(T , ·) be as in Theorem 2.2. If U (x, ξ) = U1 at all (x, ξ) ∈ [ε,�ωD ]2 , then u0(T , x) = �1(T ) and Tc = τ1 .

We next consider the Banach space C([0, Tc] × [ε,�ωD ]) consisting of continuous functions of both T and x. Let us
consider the following condition, which gives the behavior of functions as T → Tc . We assume condition (1.5) on U (·,·). Let
Tc be as in Definition 2.5 and let ε1 > 0 be arbitrary.

Condition (C). For u ∈ C([0, Tc] × [ε,�ωD ]) ∩ C2((0, Tc) × [ε,�ωD ]), there are a unique v ∈ C([ε,�ωD ]) and a unique w ∈
C([ε,�ωD ]) satisfying the following.

(C1) v(x) > 0 at all x ∈ [ε,�ωD ].
(C2) For ε1 > 0, there is a δ > 0 such that |Tc − T | < δ implies∣∣∣∣v(x) − u(T , x)2

Tc − T

∣∣∣∣ < Tcε1 and

∣∣∣∣v(x) + 2u(T , x)
∂u

∂T
(T , x)

∣∣∣∣ < Tcε1,

where δ does not depend on x ∈ [ε,�ωD ].
(C3) Set f (T , x) = u(T , x)2. Then, for ε1 > 0, there is a δ > 0 such that |Tc − T | < δ implies∣∣∣∣ w(x)

2
+ f (T , x) + (Tc − T )

∂ f
∂T (T , x)

(Tc − T )2

∣∣∣∣ < ε1 and

∣∣∣∣w(x) − ∂2 f

∂T 2
(T , x)

∣∣∣∣ < ε1,

where δ does not depend on x ∈ [ε,�ωD ].

Remark 2.8. If u ∈ C([0, Tc] × [ε,�ωD ]) ∩ C2((0, Tc) × [ε,�ωD ]) satisfies Condition (C), then u(Tc, x) = 0 at all x ∈ [ε,�ωD ].

We deal with the following subset W of the Banach space C([0, Tc] × [ε,�ωD ]). Dealing with W is important both in
studying smoothness of the thermodynamical potential with respect to T and in showing that the transition to a supercon-
ducting state is a second-order phase transition.

W = {
u ∈ C

([0, Tc] × [ε,�ωD ]) ∩ C2((0, Tc) × [ε,�ωD ]): �1(T ) � u(T , x) � �2(T )

at (T , x) ∈ [0, Tc] × [ε,�ωD ], u satisfies Condition (C)
}
. (2.2)

Remark 2.9. Let u ∈ W . Then, for T � Tc , we set u(T , x) = 0 at all x ∈ [ε,�ωD ].

The set W is not empty. Let U3 > 0 be a constant satisfying

1 = U3

�ωD∫
1

ξ
tanh

ξ

2Tc
dξ.
ε
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Note that (0 <) U1 � U3 � U2 (see Remark 2.6). An argument similar to that in Proposition 1.2 gives that there is a unique
nonnegative solution �3 : [0, Tc] → [0,∞) to the simplified gap equation

1 = U3

�ωD∫
ε

1√
ξ2 + �3(T )2

tanh

√
ξ2 + �3(T )2

2T
dξ.

Indeed, the function �3 just above is an element of W (see [12]). Therefore, W �= ∅.
Define a mapping A by

Au(T , x) =
�ωD∫
ε

U (x, ξ)u(T , ξ)√
ξ2 + u(T , ξ)2

tanh

√
ξ2 + u(T , ξ)2

2T
dξ, u ∈ W . (2.3)

Proposition 2.10. Assume condition (1.5) on U (·,·). Let W , a subset of the Banach space C([0, Tc] × [ε,�ωD ]), be as above. Let
u0(T , ·) ∈ V T be as in Theorem 2.2.

(a) The mapping A : W → W is continuous with respect to the norm of the Banach space C([0, Tc] × [ε,�ωD ]).
(b) Let u ∈ W . Let 0 � T � τ2 and fix T . Then all of u(T , ·), Au(T , ·) and u0(T , ·) belong to V T . Consequently, at all (T , x) ∈

[0, τ2] × [ε,�ωD ],

�1(T ) � u(T , x), Au(T , x), u0(T , x) � �2(T ).

We choose U1 and U2 (see (1.5)) such that the following inequality holds:

sup
0�T �τ2

∣∣�2(T ) − �1(T )
∣∣ < ε2, (2.4)

where ε2 > 0 is small enough. Then it follows from Proposition 2.10(b) that for u ∈ W ,

∣∣u(T , x) − u0(T , x)
∣∣ < ε2,

∣∣Au(T , x) − u0(T , x)
∣∣ < ε2,

∣∣Au(T , x) − u(T , x)
∣∣ < ε2 (2.5)

at all (T , x) ∈ [0, τ2] × [ε,�ωD ].

Approximation (A). The gap function on the right side of (1.10) is the solution u0 of Theorem 2.2, i.e., the solution to the
BCS gap equation (1.1). But no one gives the proof of the statement that there is a unique solution in W to the BCS gap
equation (1.1). In view of (2.5), we then let u0 be approximated by a u ∈ W , and replace the gap function on the right side
of (1.10) by this u ∈ W .

Let g : [0,∞) → R be given by

g(η) =
⎧⎨
⎩

1
η2

( 1
cosh2 η

− tanhη
η

)
(η > 0),

− 2
3 (η = 0).

(2.6)

Note that g(η) < 0. See Lemma 5.2 below for some properties of g .

Theorem 2.11. Assume condition (1.5) on U (·,·). Let U1 and U2 be chosen such that (2.4) holds, and let the solution u0 of Theorem 2.2
be approximated by a u ∈ W as stated in Approximation (A) above. Let v ∈ C([ε,�ωD ]) be as in Condition (C). Then the following
hold.

(a) The transition to a superconducting state at the transition temperature Tc is a second-order phase transition. Consequently, the
condition that the solution to the BCS gap equation (1.1) belongs to W is a sufficient condition for the second-order phase transition
in superconductivity.

(b) The gap �CV in the specific heat at constant volume at the transition temperature Tc is given by the form

�C V = − N0

8Tc

�ωD/(2Tc)∫
ε/(2Tc)

v(2Tcη)2 g(η)dη (> 0).
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Remark 2.12. Suppose that U (x, ξ) = U1 at all (x, ξ) ∈ [ε,�ωD ]2. By Proposition 2.7, u0(T , x) = �1(T ) and Tc = τ1. Therefore
the function �1 of Proposition 1.2 becomes an element of W (see [12]), and hence, u of Theorem 2.11 can be replaced
by �1. So, setting ε = 0, we find that the gap �C V reduces to the form (see [12, Proposition 2.4])

�C V = −N0 f ′(Tc) tanh
�ωD

2Tc
(> 0), (2.7)

where f ′(Tc) = − limT ↑Tc
�1(T )2

Tc−T .

3. Proof of Theorem 2.2

Let 0 � T � τ2 and fix T . Let V T be as in (2.1). A straightforward calculation gives the following.

Lemma 3.1. The set V T is bounded, closed and convex.

Let x ∈ [ε,�ωD ] and define a mapping B by

Bu(T , x) =
�ωD∫
ε

U (x, ξ)u(T , ξ)√
ξ2 + u(T , ξ)2

tanh

√
ξ2 + u(T , ξ)2

2T
dξ, u(T , ·) ∈ V T . (3.1)

Lemma 3.2. Bu(T , ·) ∈ C([ε,�ωD ]) for u(T , ·) ∈ V T .

Proof. For ε1 > 0, let δ = ε1

�ωD sup
(x,ξ)∈[ε,�ωD ]2 | ∂U

∂x (x,ξ)| . Then |x − x0| < δ implies

∣∣Bu(T , x) − Bu(T , x0)
∣∣ �

�ωD∫
ε

∣∣U (x, ξ) − U (x0, ξ)
∣∣dξ

� �ωD |x − x0| sup
(x,ξ)∈[ε,�ωD ]2

∣∣∣∣∂U

∂x
(x, ξ)

∣∣∣∣
< ε1. �

Since δ in the proof just above does not depend on u(T , ·) ∈ V T , we immediately have the following.

Lemma 3.3. The set B V T = {Bu(T , ·): u(T , ·) ∈ V T } (⊂ C([ε,�ωD ])) is equicontinuous.

Lemma 3.4. Let u(T , ·) ∈ V T . Then �1(T ) � Bu(T , x) � �2(T ) at x ∈ [ε,�ωD ].

Proof. We show Bu(T , x) � �2(T ). Since

u(T , ξ)√
ξ2 + u(T , ξ)2

� �2(T )√
ξ2 + �2(T )2

,

it follows from (1.6) that

Bu(T , x) �
�ωD∫
ε

U2�2(T )√
ξ2 + �2(T )2

tanh

√
ξ2 + �2(T )2

2T
dξ = �2(T ).

The rest can be shown similarly by (1.3). �
Combining Lemma 3.2 with Lemma 3.4 immediately implies the following.

Lemma 3.5. B V T ⊂ V T .

By Lemma 3.4, the set B V T is uniformly bounded since

Bu(T , x) � �2(0) =
√

(�ωD − εe1/U2)(�ωD − εe−1/U2)

sinh 1
U2

for u(T , ·) ∈ V T .

Combining Lemma 3.3 with the Ascoli–Arzelà theorem thus yields the following.
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Lemma 3.6. The set B V T , a subset of the Banach space C([ε,�ωD ]), is relatively compact.

Lemma 3.7. The mapping B : V T → V T is continuous with respect to the norm of the Banach space C([ε,�ωD ]).

Proof. Let u(T , ·), v(T , ·) ∈ V T . Then∣∣∣∣ u(T , ξ)√
ξ2 + u(T , ξ)2

tanh

√
ξ2 + u(T , ξ)2

2T
− v(T , ξ)√

ξ2 + v(T , ξ)2
tanh

√
ξ2 + v(T , ξ)2

2T

∣∣∣∣
� |u(T , ξ) − v(T , ξ)|√

ξ2 + u(T , ξ)2
+ v(T , ξ)

∣∣∣∣ 1√
ξ2 + u(T , ξ)2

− 1√
ξ2 + v(T , ξ)2

∣∣∣∣
+ v(T , ξ)√

ξ2 + v(T , ξ)2

∣∣∣∣tanh

√
ξ2 + u(T , ξ)2

2T
− tanh

√
ξ2 + v(T , ξ)2

2T

∣∣∣∣
� 3

|u(T , ξ) − v(T , ξ)|
ξ

.

Thus ‖Bu(T , ·) − B v(T , ·)‖ � 3U2 ln �ωD
ε · ‖u(T , ·) − v(T , ·)‖, where ‖ · ‖ stands for the norm of the Banach space

C([ε,�ωD ]). �
We now have the following.

Lemma 3.8. The mapping B : V T → V T is compact, i.e., the mapping B : V T → V T is continuous and transforms bounded sets into
relatively compact sets.

See Zeidler [14, pp. 39–40] for (nonlinear) compact operators. The Schauder fixed-point theorem (see e.g. Zeidler [14,
p. 61]) thus implies the following.

Lemma 3.9. Let T ∈ [0, τ2] be fixed. Then the mapping B : V T → V T has at least one fixed point u0(T , ·) ∈ V T , i.e.,

u0(T , ·) = Bu0(T , ·), u0(T , ·) ∈ V T .

Let us prove the uniqueness of u0(T , ·) ∈ V T .

Lemma 3.10. Let T ∈ [0, τ2] be fixed. Then the mapping B : V T → V T has a unique fixed point u0(T , ·) ∈ V T .

Proof. We give a proof similar to that of Theorem 24.2 given by Amann [1]. Let v0(T , ·) ∈ V T be another fixed point of B ,
i.e., v0(T , ·) = B v0(T , ·). We deal with the case where u0(T , x) > 0 and v0(T , x) > 0 at all x ∈ [ε,�ωD ] (see Proposition 2.4).

Step 1. The case where {x ∈ [ε,�ωD ]: u0(T , x) � v0(T , x)} �= ∅ and {x ∈ [ε,�ωD ]: u0(T , x) < v0(T , x)} �= ∅.
Then there are a number t (0 < t < 1) and a point x0 ∈ [ε,�ωD ] such that

u0(T , x) � tv0(T , x)
(
x ∈ [ε,�ωD ]) and u0(T , x0) = tv0(T , x0). (3.2)

Hence

u0(T , x0) =
�ωD∫
ε

U (x0, ξ)u0(T , ξ)√
ξ2 + u0(T , ξ)2

tanh

√
ξ2 + u0(T , ξ)2

2T
dξ

�
�ωD∫
ε

U (x0, ξ)tv0(T , ξ)√
ξ2 + t2 v0(T , ξ)2

tanh

√
ξ2 + t2 v0(T , ξ)2

2T
dξ

> t

�ωD∫
ε

U (x0, ξ)v0(T , ξ)√
ξ2 + v0(T , ξ)2

tanh

√
ξ2 + v0(T , ξ)2

2T
dξ

= tv0(T , x0),

which contradicts (3.2).
Step 2. The case where u0(T , x) � v0(T , x) at all x ∈ [ε,�ωD ].
We again have (3.2). Hence the same reasoning applies.
Thus u0(T , ·) = v0(T , ·). �
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The proof of Lemma 3.10 is based on the condition that U (·,·) is nonnegative. The proof of Theorem 2.2 is complete.
We assumed also, in the proof of Lemma 3.10, that u0(T , x) > 0 and v0(T , x) > 0 at all x ∈ [ε,�ωD ]. We now show that

if there is a point x1 ∈ [ε,�ωD ] satisfying u0(T , x1) = 0, then u0(T , x) = 0 at all x ∈ [ε,�ωD ] (see Proposition 2.4).

Proof of Proposition 2.4. Since u0(T , x1) = 0, Theorem 2.2 implies

�ωD∫
ε

U (x1, ξ)u0(T , ξ)√
ξ2 + u0(T , ξ)2

tanh

√
ξ2 + u0(T , ξ)2

2T
dξ = 0.

Since the integrand is nonnegative, it follows that u0(T , ξ) = 0 at all ξ ∈ [ε,�ωD ]. �
Remark 3.11. Let τ1 � T < τ2 and fix T . Clearly, 0 ∈ V T is a fixed point of B . If, for such a T , there are the two fixed points
u0(T , ·) ∈ V T mentioned in Lemma 3.10 and 0 ∈ V T , then the fixed point 0 ∈ V T is disregarded.

Let us give a proof of Proposition 2.7.

Proof of Proposition 2.7. By Theorem 2.2,

u0(T , x) = U1

�ωD∫
ε

u0(T , ξ)√
ξ2 + u0(T , ξ)2

tanh

√
ξ2 + u0(T , ξ)2

2T
dξ, x ∈ D.

Hence u0(T , x) does not depend on x. Therefore we denote u0(T , ·) by u0(T ). Then

u0(T )

{
1 − U1

�ωD∫
ε

1√
ξ2 + u0(T )2

tanh

√
ξ2 + u0(T )2

2T
dξ

}
= 0.

Since u0(T ) �= 0, it follows from (1.3) and Proposition 1.2 that u0(T ) = �1(T ) and Tc = τ1. �
4. Proof of Proposition 2.10

Let A be as in (2.3). A straightforward calculation gives the following.

Lemma 4.1. Let u ∈ W . Then Au ∈ C([0, Tc] × [ε,�ωD ]) ∩ C2((0, Tc) × [ε,�ωD ]).

A proof similar to that of Lemma 3.4 immediately gives the following.

Lemma 4.2. Let u ∈ W . Then

�1(T ) � Au(T , x) � �2(T ) at (T , x) ∈ [0, Tc] × [ε,�ωD ].

We next show that Au (u ∈ W ) satisfies Condition (C) above. For u ∈ W , let v be as in Condition (C). Set

F (x) =
( �ωD∫

ε

U (x, ξ)
√

v(ξ)

ξ
tanh

ξ

2Tc
dξ

)2

(> 0), ε � x � �ωD . (4.1)

A straightforward calculation gives the following.

Lemma 4.3. Let F be as in (4.1). Then F ∈ C([ε,�ωD ]).

Lemma 4.4. Let F be as in (4.1). Then, for ε1 > 0, there is a δ > 0 such that |Tc − T | < δ implies∣∣∣∣F (x) − {Au(T , x)}2

Tc − T

∣∣∣∣ < Tcε1,

where δ does not depend on x (ε � x � �ωD).
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Proof. Set M = supε�ξ��ωD
v(ξ). Let ε1 and δ be as in (C2) of Condition (C), and let 0 < ε1 < 1. Then,

∣∣∣∣F (x) − {Au(T , x)}2

Tc − T

∣∣∣∣ �
∣∣∣∣∣

�ωD∫
ε

U2
√

v(ξ)

ξ
dξ +

�ωD∫
ε

U2

ξ

√
u(T , ξ)2

Tc − T
dξ

∣∣∣∣∣ · ∣∣I1(x) + I2(x) + I3(x)
∣∣

� 2U2

√
M + Tc ln

�ωD

ε
· ∣∣I1(x) + I2(x) + I3(x)

∣∣,
where

I1(x) =
�ωD∫
ε

U (x, ξ)

ξ

(√
v(ξ) −

√
u(T , ξ)2

Tc − T

)
tanh

ξ

2Tc
dξ,

I2(x) =
�ωD∫
ε

U (x, ξ)

√
u(T , ξ)2

Tc − T

(
1

ξ
− 1√

ξ2 + u(T , ξ)2

)
tanh

ξ

2Tc
dξ,

I3(x) =
�ωD∫
ε

U (x, ξ)√
ξ2 + u(T , ξ)2

√
u(T , ξ)2

Tc − T

(
tanh

ξ

2Tc
− tanh

√
ξ2 + u(T , ξ)2

2T

)
dξ.

Let T > Tc/2. Then, by (C2), |Tc − T | < δ implies

∣∣I1(x)
∣∣ � ε1

U2

2

�ωD∫
ε

dξ√
v(ξ)

.

Note that δ does not depend on x (ε � x � �ωD). Since

u(T , ξ)2 = u(T , ξ)2

Tc − T
(Tc − T ),

u(T , ξ) tends to 0 uniformly with respect to ξ as T → Tc by (C2). Therefore, |Tc − T | < δ implies u(T , ξ) < Tcε1. Recalling
T > Tc/2 and (C2), we can show similarly that

∣∣I2(x)
∣∣ � ε1

U2Tc
√

M + Tc

ε
and

∣∣I3(x)
∣∣ � ε1U2

(√
M + Tc

2
ln

�ωD

ε
+ �ωD√

2Tc

)
.

Note also that ε > 0 is fixed. �
A straightforward calculation similar to the above gives the following.

Lemma 4.5. Let F be as in (4.1). Then, for ε1 > 0, there is a δ > 0 such that |Tc − T | < δ implies∣∣∣∣F (x) + 2Au(T , x)
∂ Au

∂T
(T , x)

∣∣∣∣ < Tcε1,

where δ does not depend on x (ε � x � �ωD).

For u ∈ W , let v and w be as in Condition (C). For ε � x � �ωD , set

G(x) =
�ωD∫
ε

U (x, ξ)
√

v(ξ)

ξ
tanh

ξ

2Tc
dξ

�ωD∫
ε

U (x, η)

×
{(

w(η)

η
√

v(η)
− 2

√
v(η)3

η3

)
tanh

η

2Tc
+

√
v(η)

cosh2 η
2Tc

(
v(η)

Tcη2
+ 2

T 2
c

)}
dη. (4.2)

A straightforward calculation similar to the above gives the following.

Lemma 4.6. Let G be as in (4.2). Then G ∈ C([ε,�ωD ]).
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Lemma 4.7. Let G be as in (4.2). Set H(T , x) = {Au(T , x)}2 . Then, for ε1 > 0, there is a δ > 0 such that |Tc − T | < δ implies∣∣∣∣ G(x)

2
+ H(T , x) + (Tc − T ) ∂ H

∂T (T , x)

(Tc − T )2

∣∣∣∣ < ε1 and

∣∣∣∣G(x) − ∂2 H

∂T 2
(T , x)

∣∣∣∣ < ε1,

where δ does not depend on x (ε � x � �ωD).

We therefore have AW ⊂ W . A proof similar to that of Lemma 3.7 immediately gives the following.

Lemma 4.8. The mapping A : W → W is continuous with respect to the norm of the Banach space C([0, Tc] × [ε,�ωD ]).

We have thus proved (a) of Proposition 2.10. Part (b) follows immediately from (a).

5. Proof of Theorem 2.11

Let T1 > 0 be arbitrary.

Lemma 5.1. Let the function Ψ be as in (1.10). Then the function Ψ is differentiable on (T1, Tc], and (∂Ψ/∂T )(Tc) = 0.

Proof. A straightforward calculation gives that Ψ is differentiable on (T1, Tc). So it suffices to show that Ψ is differentiable
at T = Tc and (∂Ψ/∂T )(Tc) = 0. Note that Ψ (Tc) = 0 since u(Tc, x) = 0 at all x ∈ [ε,�ωD ] (see Remark 2.8). Then, for T < Tc ,

− Ψ (T )

Tc − T
= 2N0

Tc − T

�ωD∫
ε

{√
x2 + u(T , x)2 − x

}
dx − N0

Tc − T

�ωD∫
ε

u(T , x)2√
x2 + u(T , x)2

tanh

√
x2 + u(T , x)2

2T
dx

+ 4N0T

Tc − T

�ωD∫
ε

ln
1 + e−

√
x2+u(T ,x)2/T

1 + e−x/T
dx. (5.1)

By (C2) in Condition (C),∣∣∣∣
√

x2 + u(T , x)2 − x

Tc − T

∣∣∣∣ � v(x) + Tc

x
,

where ε1 < 1 is assumed. Hence, the Lebesgue dominated convergence theorem implies that as T ↑ Tc , the first term on the
right side of (5.1) tends to

lim
T ↑Tc

2N0

Tc − T

�ωD∫
ε

{√
x2 + u(T , x)2 − x

}
dx = N0

�ωD∫
ε

v(x)

x
dx.

Similarly we can deal with the second and the third terms. Thus Ψ is differentiable at T = Tc and

− lim
T ↑Tc

Ψ (T )

Tc − T
= 0. �

A straightforward calculation gives the following.

Lemma 5.2. Let g be as in (2.6). Then the function g is of class C1 on [0,∞) and satisfies

g(η) < 0 (η � 0), g′(0) = 0, lim
η→∞ g(η) = lim

η→∞ g′(η) = 0.

Lemma 5.3. Let Ψ be as in Lemma 5.1. Then ∂Ψ/∂T is differentiable on (T1, Tc], and

∂2Ψ

∂T 2
(Tc) = N0

8T 2
c

�ωD/(2Tc)∫
ε/(2Tc)

v(2Tcη)2 g(η)dη (< 0).
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Proof. A straightforward calculation gives that ∂Ψ/∂T is differentiable on (T1, Tc). So it suffices to discuss its differentiabil-
ity at T = Tc . Note that (∂Ψ/∂T )(Tc) = 0 by Lemma 5.1. Then

− lim
T ↑Tc

∂Ψ
∂T (T )

Tc − T
= −N0 lim

T ↑Tc

�ωD∫
ε

u(T , x)2

Tc − T
u(T , x)

∂u(T , x)

∂T

1

x2 + u(T , x)2

×
(

1

2T cosh2
√

x2+u(T ,x)2

2T

− tanh
√

x2+u(T ,x)2

2T√
x2 + u(T , x)2

)
dx.

Note that u(Tc, x) = 0 at all x ∈ [ε,�ωD ] by Remark 2.8. Hence, combining the Lebesgue dominated convergence theorem
with (C2) in Condition (C) proves the lemma. �

Note that T1 > 0 is arbitrary. Therefore, combining Lemmas 5.1 and 5.3 with Remark 1.10 immediately implies the
following.

Lemma 5.4. The thermodynamical potential Ω , regarded as a function of T , is of class C1 on (0,∞).

A straightforward calculation based on (C3) in Condition (C) gives the following.

Lemma 5.5. The function ∂2Ψ/∂T 2 is continuous on (0, Tc].

Lemma 5.3 immediately implies the following.

Lemma 5.6. The thermodynamical potential Ω , regarded as a function of T , is of class C2 on (0,∞)\{Tc}. Consequently, the transition
to a superconducting state at the transition temperature Tc is a second-order phase transition, and hence the condition that the solution
to the BCS gap equation (1.1) belongs to W is a sufficient condition for the second-order phase transition in superconductivity.

Since the specific heat at constant volume is of the form C V = −T (∂2Ω/∂T 2), the gap �CV in CV at the transition
temperature Tc is given by (see Definition 1.7)

�C V = −Tc

{
lim
T ↑Tc

∂2Ω

∂T 2
(T ) − lim

T ↓Tc

∂2Ω

∂T 2
(T )

}
= −Tc

∂2Ψ

∂T 2
(Tc).

We thus have the following by Lemma 5.3.

Lemma 5.7. The gap �C V in the specific heat at constant volume at the transition temperature Tc is given by the form

�C V = − N0

8Tc

�ωD/(2Tc)∫
ε/(2Tc)

v(2Tcη)2 g(η)dη (> 0).
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