Background: Coronary lesions may impair the transmission of pressure waves across a stenosis, potentially acting as a low-pass filter. The pulse transmission coefficient (PTC) is a novel non-hyperemic parameter that calculates the transmission of high frequency components of the pressure signal through a stenosis. Thus, it may reflect the severity of the coronary artery stenosis, This study was designed to study the change of PTC as stenosis, potentially acting as a low-pass filter.

Methods: Pressure signals were obtained by pressure guidewire in 27 lesions (27 pts.) pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifies the high frequency component in the pressure signal. The PTC was calculated pre and post PCI, and were analyzed with a new algorithm (Florence Medical Ltd.) that identifi...